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A Simulation Study of Decoupled Architecture
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Abstract-Decoupled architectures achieve high scalar per-
formance by cleanly splitting instruction processing into memory
access and execution tasks. Several decoupled architectures have
been proposed, and they all have two characteristics in common:
1) they have two separate sets of instructions, one for accessing
memory and one for performing function execution. 2) The
memory accessing task and the execution task communicate via
architectural queues.

These characteristics lead to pipelined computers that have the
following advantages: 1) they can issue more than one instruction
per clock period; 2) they can dynamically schedule instructions at
runtime; 3) they are less senFitive to memory access delays than
conventional architectures.
We present a simulation study of decoupled architectures. The

simulation models are very detailed, with timing resolution to the
clock period. The Lawrence Livermore Loops are used as the
workload. We first describe a decoupled architecture based on
the CRAY-1 scalar architecture. The sensitivity to memory access
delays are studied by varying memory access time over a wide
range o,f yalues. We show that performance improvements
increase linearly over the scalar CRAY-1 as the memory access
paths of both are lengthened. Then, we study queue lengths in
decoupled machines, and show the affect of queue lengths on
performance. Relatively short queues are shown to give opti-
mum, or near-optimum, performance

Index Terms-Decoupled architectures, performance evalua-
tion, pipelined processors, scientific computers, supercomputers.

I. INTRODUCTION

IGH-performance scalar computation is of fundamental
importance, despite the increasing attention given to

highly parallel methods that use vector processing and
multiprocessor systems. In the realm of scientific supercom-
puters, evidence of the importance of scalar performance is
given in [2]. Even for the best vectorizer studied by Arnold,
automatic vectorization increases the total throughput of the
CDC CYBER 205 by a factor of only 1.7. Furthermore, for
the examples studied by Arnold, the scalar time dominates the
total computing time: 60 percent scalar mode versus 40
percent vector mode. More recent results by Worlton [22]
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comparing the CRAY X-MP with various Japanese Supercom-
puters also serve to illustrate the importance of scalar
performance in a scientific computing environment.

The importance of scalar processing goes beyond its
significance in vector supercomputers. Cost considerations
justify the existence of much less expensive processors that
can achieve cost/performance comparable with, or superior to,
supercomputers without incorporating an expensive vector
unit. The current success of minicomputers and microcompu-
ter-based workstations in scientific and engineering applica-
tions indicates the importance of this class of machines.

Scalar performance is also important in multiprocessor
systems. Because of the relatively high cost of interprocessor
communication, MIMD multicomputers tend to exploit paral-
lelism at a higher level, namely at the level of tasks, rather
than parallelism among individual instructions. Any increase
in the performance of each of the processing elements, through
concurrent execution of instructions from its own instruction
stream, supplements the gain achieved through the MIMD
configuration and is reflected in an increase of the overall
system performance.

A. Decoupled Architectures
In the process of executing a program, a computer's

instruction stream performs two interrelated tasks. The first is
the memory access task which loads operands and stores
results; this incl4des indexing and other addressing operations.
The second js te Iexecution task which operates on the data to
produce results. The execution task is often considered to be
the "useful" part of computation while the memory access
task is often considered to be "overhead." Both are essential,
however.

In most conventional architectures these two tasks "inter-
mingle" in a single instruction stream, and high-performance
implementations attempt to separate them to increase overlap.
The computer's architecture significantly influences the de-
gree to which this can be done, as well as the complexity of the
underlying implementation. We give two examples to illus-
trate this point.
The access and execution tasks are very cleanly separated in

most high-performance scientific computer systems, including
the CDC 6600 [20], CDC 7600 [3], CRAY-1 [14], [7], the
scalar unit of the CDC CYBER 205 [5], and the Denelcor HEP
[16]. In these register-register, or RR architectures, functional
unit operands come only from registers. To perform a floating
point opeiration, one must first explicitly load both operands
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into registers before the operation is performed, and then
explicitly store the result register afterwards. All instructions
are handled in a uniform way with all registers read at one

stage in the pipeline. An operand cache is not essential for
good performance because load instructions can be placed in
the program ahead of when the data are needed. The memory

access path is thus uniform and predictable, which simplifies
interlocks.
As the second example, some architectures use a common

set of registers for addressing and execution, while others use

separate sets of registers for the two tasks. Perhaps the most
notable examples of the latter are once again the CDC and
Cray Research architectures. It is also true to a lesser extent in
the IBM 360/370 architecture, and it is pointed out in [1] that
separate floating point registers in the IBM 360/370 architec-
ture leads to increased parallelism in high-performance imple-
mentations.
The class of architectures to be studied in this paper,

decoupled architectures, are specifically designed to separate
the memory access and execution tasks as much as possible,
farther than the two methods described above. One main
element of decoupled architectures is the use of two (or
possibly more) instruction streams which may either be
fetched from memory separately, or which may be split from a

single stream early in instruction processing. This increases
the maximum instruction issue bandwidth to two instructions
per clock period rather than one instruction per clock period in
conventional pipelined processors [9].
The second main element of decoupled architectures is

communication through architectural queues. This tends to
maximize independence of the access and execution instruc-
tions, and allows them to "slip" with respect to one another.
The access instruction stream typically moves ahead of the
execution stream, and when a program is looping, it often
precedes the execution stream by at least one loop iteration.
This is, in effect, a form of dynamic instruction scheduling
which takes place at runtime.

In contrast, modern pipelined computers rely almost solely
on static code scheduling done by the compiler. For example,
in the CDC 7600 and CRAY-1 instructions issue in strict
program order, and all code scheduling must be static. Static
scheduling cannot be as good as dynamic scheduling because it
is done with less knowledge of the runtime state of the
machine. It does lead to simple pipeline control, however,
which permits a very short clock period to be used.

In a decoupled architecture, dynamic scheduling does not
come at the expense of additional control complexity [24].
This is because each instruction stream by itself is issued in
strict program order with pipeline control that differs very

little from a Cray-type implementation. The dynamic schedul-
ing is only between the two streams. This constrains the extent
of dynamic scheduling somewhat, but the dynamic scheduling
that does take place reduces the most significant instruction
issue delays.

Another important characteristic of decoupled architectures
is a reduced sensitivity to memory access delays. This results

from the ability of the access instructions to run ahead and
fetch data in advance of when they are needed. Often the

distance the access process can run ahead is only limited by the
lengths of the queues. Hence, a slow memory access path can
be compensated for by using longer queues. This last
characteristic is likely to be important in VLSI systems where
communication delay, especially with memory, is a critical
factor in determining system performance.

B. Paper Overview

We begin in the next section with a survey of decoupled
architecture computers that have been proposed to date. This
discussion is intended to highlight the similarities and thus to
indicate the generality of the results given. in this paper.
Section III contains a general description of the specific
decoupled architecture that serves as a basis for the simulation
studies to follow. Section IV describes the simulation method-
ology used in the paper. Section V begins with a performance
comparison to the CRAY-1, and contains a study of the
sensitivity of performance to memory access delays. Section
VI studies the effect of queue lengths on performance.

II. A SURVEY OF DECOUPLED ARCHITECTURES

A number of decoupled architectures are currently in
various stages of development and investigation. Although the
design details vary, the main feature common to these
architectures is the partitioning of the machine into two or
more units, each servicing its own instruction stream and
interconnected by architectural queues.

Perhaps first of these, and the only one that is in production,
is the MAP series of array processors developed by CSPI, and
exemplified by the MAP-200 [6]. In Fig. 1, two major
components of the MAP-200 are an "addresser," or APS, and
an arithmetic processing unit or APU. Each of these units has
its own instruction stream coming from its private program
memory. These two programs cooperate during the execution
of user tasks. The addresser performs address calculations and
places addresses of memory data to be read or written into the
read address FIFO (RAF) or write address FIFO (WAF),
respectively. The memory transfer controller services the
WAF and RAF queues by loading data addressed by the RAF
into the APU's input queue, and storing data addressed by the
WAF from the APU's output queue. The two instruction
streams run at their own speed, with the queues absorbing
excess data. The APS typically runs ahead and fetches data in
advance of when it is needed by the APU as well as generating
store addresses so that they are ready when data become
available to be stored. Coordination for branches and memory
hazards takes place via flags that are set and interrogated by
APS and APU instructions.

For example, when the APS finishes a loop, it sets a flag
and enters a "wait" state. When the APU processor is done
with its corresponding loop, it clears the flag and allows the
APS processor to continue. As pointed out in [6], this method
is inefficient because it forces synchronization of the two
processors at the end of each loop.

Developed independently and in the context of general-
purpose scientific computers is a proposal for decoupled
architectures in [17]. A specific decoupled architecture based
on the CRAY-1 was introduced as a basis for performance
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Fig. 1. The CSPI MAP-200 architecture.

comparisons. A slight variation of this same architecture will
be used for the much more detailed simulation studies in this
paper. Because this architecture will be described in detail in
the next section, we give only a brief description here. Refer to
Fig. 2. The architecture has two instruction streams just as the
MAP processors have. However, they are stored in main
memory and are fetched into instruction caches in the Access
and Execution processors. The most significant difference
with the MAP processors has to do with coordination of the
two instruction streams for branching and resolution of
memory hazards. In [17], queues are used to pass branch
outcome information. This allows the same flexibility as is
afforded by the data queues. Memory hazards are resolved
automatically by the memory interface. Both of these features
streamline the architecture by avoiding the use of flags which
tend to inhibit overlap.
As will be pointed out later in this paper, decoupled

architectures have several features that make them particularly
appealing for VLSI implementations. One of the major
advantages is reduced sensitivity to memory access delays.
Consequently, PIPE [18], an architecture descended from
[17], is being studied at the University of Wisconsin in the
context of VLSI implementations.
The synchronous distributed processor (SDP) [15], is a

special-purpose processor designed for signal processing. It is
illustrated in Fig. 3. Because of its special-purpose nature, an
SDP program is stored in a microprogram memory. SDP
contains two major units, the index arithmetic unit (IAU) and
the arithmetic unit (AU). The primary task of the IAU is to
compute effective addresses and to load and store data. The
AU receives instructions from the IAU and performs opera-
tions on the operand stream. Communication between the AU
and memory is handled through architectural queues. These
result in reduced memory access delays because of the
decoupling of the IAU and the AU.
A main difference between SDP and the decoupled architec-

tures discussed thus far is that it has a single instruction stream
coming from a microprogram memory. The instructions
passed to the AU, however, are more like large subroutine

Fig. 2. The decoupled architecture studied in this paper.
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Fig. 3. The synchronous distributed processor (SDP) architecture.

calls than elementary operations. Hence, a mode of operation
very similar to having dual instruction streams is achieved.
The Fortran oriented machine, or FOM [4] is an architec-

ture proposed at IBM research; refer to Fig. 4. FOM has a
single instruction stream that is fetched by an instruction
dispatch unit. The instruction stream is split so that instruc-
tions are sent to a fixed point unit, a floating point unit, and an
exchange/convert unit. The load/store unit gets its instructions
indirectly through the fixed and floating point units. The
instructions are queued in front of the units, and splitting can
be done at a rate higher than one instruction per clock period.
The load/store unit serves as an access processor, and the
fixed and floating point units serve as execution processors.
The exchange/convert unit serves the same function as the
copy queues used in the architecture studied in this paper, but
it has the additional capability of converting from fixed to
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Fig. 4. The Fortran oriented machine (FOM) architecture.

floating point. All communication among the units is via
architectural queues, so that the instruction streams seen by
each unit have the ability to "slip" with respect to one

another.
SMA [13] is an architecture based on earlier theoretical

work by Hammerstrom and Davidson [10]. SMA has a

memory access processor (MAP), and a computation proces-

sor (CP); refer to Fig. 5. The communication between the two
units is via architectural queues. The MAP fetches a single
instruction stream for both processors, but blocks of instruc-
tions are passed to the CP. Hence, SMA bears some similarity
to SDP. Both the MAP and CP can capture loops so that each
effectively has its own instruction stream when loops are being
executed. As with the other decoupled architectures, the
access stream can run ahead of the execution stream. The
MAP in the SMA is more elaborate than those in the other
decoupled architectures and several mechanisms are included
for efficient accessing of data structures. Control information,
e.g., a branch terminating a loop, is passed from the MAP to
the CP via a data queue.
The above survey shows that several decoupled architec-

tures have been proposed, all with the same goal of partition-
ing data access and functional operations on the data. They all
use architectural queues for communication between the two
major processors, and either use multiple instruction streams
directly or are capable of what is effectively a multiple stream
mode of operation. While most of the decoupled architectures
have been independently proposed, their similarities are much
more significant than their differences. Hence, the remainder of
this paper studies one decoupled architecture in depth, but it is
felt that the results, at least qualitatively, extend to the others.

III. A PIPELINED DECOUPLED ARCHITECTURE

A. Architecture Overview

The decoupled architecture to be studied in this paper is
closely related to the CRAY-1 scalar architecture, but uses
two instruction streams. This is very natural because the
CRAY-1 has its registers divided into 24-bit addressing
registers (A and B) and 64-bit floating point registers (S and
T). The CRAY-I has a set of instructions for each type of
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Fig. 5. The SMA architecture.

register. In our architecture, these become the access, or A-
processor instructions and execution, or E-processor instruc-
tions.

In Fig. 2, each of the processors has its own set of registers
(we use A, B, S, and T registers to match their CRAY-1
counterparts). The processors exchange data and control
information through a set of architectural queues. Data to be
used by the E-processor are loaded by instructions issued by
the A-processor, and are placed in the load data queue (LDQ).
The E-processor consumes the data from the LDQ and
executes instructions that use the data. The memory system
handles all load requests in program sequence and returns
them to the LDQ in the same order.
The A-processor also generates store addresses for the E-

processor, and they are saved in the store address queue (SAQ)
where they await data generated by the E-processor. When the
E-processor has computed results needing to be stored to
memory, it places the data in the store data queue (SDQ).
When both the SDQ and the SAQ are nonempty, the operand
at the head of the SDQ is matched with the address at the head
of the SAQ, and the store address and data are sent to memory.
Both the SDQ and SAQ follow a rigid FIFO discipline so that
data are paired with the correct address. Allowing stores to
wait until data are ready while letting subsequent loads pass
through a memory does introduce the possibility of memory
hazards. To resolve them, the architecture compares all load
addresses to queued store addresses; if there is a match, the
load must wait until the store is sent to memory, and the match
goes away.
The LDQ is referenced by the E-processor as if it is a

register. That is, the LDQ may be specified in any instruction
source operand field instead of a register. One register
designator is therefore reserved for this purpose, say S7.
However, in this paper we will explicitly refer to it as LDQ for
clarity. In order to access the LDQ as efficiently as possible,
the LDQ may be used to supply both source operands for an
instruction. In this case, the first and second LDQ elements are
used, and issue is blocked if the LDQ contains fewer than two
elements.
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The SDQ is also referred to as a register, and can be used
for an instruction's result instead of a register. The same
reserved register designator (S7) can be used for the SDQ and
LDQ without ambiguity. That is, when it specifies a source
operand the LDQ is referenced; when it specifies a destination
operand, the SDQ is referenced.

In some programs it is necessary to pass data directly from
one of the processors to the other. Two copy queues are used
for this purpose. These are the A to E copy queue (AECPQ)
and the E to A copy queue (EACPQ). In order to effect a
copy, there needs to be an instruction for each processor. For
example, to copy from anA register in the A-processor to an S
register in the E-processor, an A-processor instruction copies
from the A register to the AECPQ. The corresponding E-
processor instruction copies from the AECPQ to the S
register. The copy queues are not absolutely essential because
copies could take place through main memory. Nevertheless,
in the few cases where they are used, especially for an E to A
copy, they can have a significant effect on performance.

For synchronizing branch instructions, two branch queues
(EABQ and AEBQ) are used. Each processor has its own set
of conditional branch instructions. The processor that has the
data to determnine the outcome of a branch will encounter a
conditional branch instruction, execute it, and place the branch
outcome (taken or not taken) on the tail of the branch queue.
Its coprocessor will encounter a "branch from queue" (BFQ)
instruction that is the mate of the conditional branch instruc-
tion and will read the head of the branch queue to determine to
take its branch. The A-processor usually determines the results
of conditional branches; for example, it performs loop
counting functions. Hence, it typically leads the E-processor,
and continues to run ahead even after a conditional branch has
been encountered. One bit is sufficient to indicate if a branch is
taken or not, and thus the branch queues are relatively
inexpensive to implement because each stage is only one-bit
wide.

In the simulations to follow, we assume that the decoupled
architecture is implemented with pipelining to the same degree
as the CRAY-1. That is, all the pipelines are the same length
as in the CRAY-1, and the clock period is the same. For this to
be possible, the control logic, instruction issue logic in
particular, must be no more complicated. Consequently, we
assume all instructions issue in order. The checks for queues
empty or full can be integrated into the register "busy bit"
scheme used in the CRAY-1. An empty LDQ as a source
operand and a full SAQ or SDQ as a destination operand cause
instruction issue to block just as a busy register does.

It is also assumed that accessing a queue takes no longer
than accessing a register. This can be done if the queues are
held in register files used as circular buffers, and are addressed
with head and tail counters rather than register designators
coming from instructions. A more complete discussion of this
issue can be found in [19]. Nevertheless, results given later
will show that performance is not degraded in any significant
way if the memory access path is increased by a clock period
or two.

q = 0.0
do 3 k = 1, 1000

3 q = q + z(k) * x(k)

(a)
Al
A3
A2
S6

3: S3
S2
Al
AO
A2
Si
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JAM
q

4-- 1750
+-1
4-1

4- z, A2
- x, A2
4- Al + 1
4- A1
4- A2 + A3
4- S2 *fS3
4- S6 + f SI

3
4- S6

(b)
Access Processor

Al - -1750
A3 I-
A2 1-

3a: LDQ - z,A2
LDQ 4- x,A2
Al 4- Al + 1
AO - Al
A2 4- A2 + A3
JAM 3a
SAQ 4- q

initialize loop counter
index increment
initialize index
q = 0.0
lload z(k)
load x(k)
increment loop counter
transfer loop counter to A0
increment index
zZ(k) * x(k)
add above to q
branch if AO < 0
store q

Execute Processor

S6
3e: Si

S6
BFQ
SDQ

O-0
- LDQ * f LDQ
4- S6 + f Si

3e
4- S6

(c)
Fig. 6. Lawrence Livermore Loop 3. (a) FORTRAN code for Lawrence

Livermore Loop3 (inner product). (b) Assembly code for CRAY-1S. (c)
Assembly code for decoupled architecture.

B. Program Example

Fig. 6 illustrates a program example for the decoupled
architecture. The Fortran source for Lawrence Livermore
Loop 3 is in Fig. 6(a). Fig. 6(b) shows a CRAY-1 compila-
tion; we have inserted arrows to improve readability. The
decoupled architecture compilation is in Fig. 6(c).

IV. SIMULATION METHODOLOGY

A. Simulator Structure
A number of simulation tools have been developed for this

study [12]. They are written in C and run on a VAX®-I1 under
the UNIX® operating system. The tools are capable of
simulating program execution, producing instruction and data
traces, and providing extensive performance-related data by
displaying resource usage and conflicts on a clock-by-clock
basis. The tools are primarily table driven so that experiments
can be carried out by varying numerous timing parameters.
The basic approach we use is to divide the simulation task into
architecture and implementation phases. Thus, CRAY-1 simu-
lation is done by two simulators, one used to simulate function
and the other to simulate performance.
The table-driven functional simulator takes CRAY-1 ma-

chine language programs and simulates them to generate trace
files. These trace files contain all the information necessary to

® VAX is a trademark of Digital Equipment Corporation.
® UNIX is a trademark of AT&T Bell Laboratories.
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determine processor performance. The performance simulator
takes a trace file and a table containing timing information and
produces either a detailed timing history for each instruction
and/or a timing summary for the entire program. The table
that drives the simulation contains interlock conditions that
must be checked at issue time as well as the times required by
the major functions in the CRAY-1.

In addition to the CRAY-1 simulators, two decoupled
simulators have been constructed. The relationship of the
decoupled functional simulator and the decoupled perform-
ance simulator is similar to that of the CRAY-1 simulators.

B. Simulation Workload

Performance is measured by simulating the first 14 Law-
rence Livermore Loops [11]. These are excerpts from large
Fortran programs that have been judged to provide a good
measure of large scale computer performance. The loops were
first compiled using the CRAY Fortran (CFT) optimizing
compiler [8], version 109h. Since we are interested in scalar
performance, the CFT compiler was run with the "vector-
izer" turned off so that no vector instructions were produced.
When the vectorizer is on, half of the 14 loops contain a
substantial amount of vector code, and half remain scalar.
Although all the loops were compiled with scalar instructions,
we will refer to the ones that can be vectorized by the CFT
compiler as "vectorizable" and to the others as "nonvector-
izable."

For some of our simulation results, we separate the
vectorizable and the nonvectorizable loops. This is because
vector architectures and decoupled architectures are in a sense
orthogonal (one could use both in the same computer).
Separating the vector and scalar results allows one to see the
improvement in both the context of a vector supercomputer
and a scientific superminicomputer without vectors. In gen-
eral, a decoupled architecture performs best on loops that have
characteristics that make them vectorizable. If a loop can be
vectorized then there is a high degree of independence among
the loop iterations. Also, the data access mechanism is
independent of the execution mechanism.
No further optimization or code scheduling was done in

addition to that of the CFT compiler. A minor change to the
code as generated by the CFT compiler was necessary,
however. As a practical matter in a decoupled architecture,
transfer of data or control information from the E to the A-
processor will force the A-processor to wait for the E-
processor. This at least temporarily halts prefetching by the A-
processor and reduces performance. Such a forced delay of the
A-processor cannot always be eliminated. Loop counting,
however, is one case where it can be avoided because
incrementing a loop counter can be entirely done by the A-
processor. This is, in fact, one of the stated functions of the A
registers in [7]. For rather obscure reasons, CFT generates
code so that loop counters are held in A registers, but are
copied into S registers to be incremented before being copied
back into A registers for loop testing. Therefore, the code
generated by the CFT has been manually changed so that all

the loop counting operations are done in A registers. Both the
CRAY-1 and the decoupled architecture execute code that has
been modified in this way.
The workload for the decoupled architecture was generated

by manually splitting the object code for each kernel into two
instruction streams. Register reallocation was sometimes
necessary, because register S7 has special meaning in the
decoupled machine (see Section HI-A above). A new instruc-
tion, BFQ (branch from queue) was introduced by using a
CRAY-1 opcode that never appears in the Lawrence Liver-
more Loops. The processor that has the information to
determine the result of a branch was given the conditional
branch instruction from the original instruction stream; a BFQ
was inserted in its coprocessor code. Load and store instruc-
tions are placed so that they always follow the queue
discipline.

Performance has been calculated in millions of floating
point operations per s, or megaflops. The number of floating
point operations in each of the loops was determined by
actually counting the number of floating point operations
generated by CFT in each of the kernels, not by inspecting the
Fortran code. We have assumed a 12.5 ns clock period,
identical to that of the CRAY-1. Memory bank conflicts are
not considered.

V. PERFORMANCE COMPARISON TO CONVENTIONAL
ARCHITECTURES

A. CRA Y-J Comparison
The CRAY-1 instruction set is designed for efficient

pipeline processing. Being a register-register architecture,
only load and store instructions access memory. The rest of
the instructions take operands from registers. The CRAY-1
forces instructions to issue strictly in program order. If an
instruction is blocked from issuing due to a conflict, all
instructions following it in the instruction stream are also
blocked, even if they have no conflicts.

In the CRAY-1, only one parcel (16 bits) is read from the
instruction buffers per clock period. Many instructions are
only one parcel long, although the load, store, and branch
instructions are two. This means that the maximum instruction
issue rate of the CRAY-1 is one parcel per clock period. To
keep comparisons fair, we assume that each of the instruction
streams in the pipelined decoupled architecture we are
studying have the same constraint. Hence, although we often
talk about the limitation of one instruction per clock period, it
is actually one parcel per clock period in this paper.

Because the maximum rate of instruction issue is one of the
topics we are studying, we define the issue bound to be the
maximum CRAY-1 performance given the most favorable
data dependence conditions. That is, it assumes that the only
limitation is set by the maximum rate at which instructions can
be issued. The issue bound assumes that a one parcel
instructions consumes one clock period, a two parcel instruc-
tion consumes two clock periods, and a taken branch
consumes five clock periods. The loops that are vectorizable
are marked with an "'*."
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For the study in this section we assume unbounded queues
for the decoupled architecture. We show in the next section,
however, that in a decoupled architecture short queues are
sufficient to achieve performance very close to that given here.
For the functional units, we have assumed similar times as in
the CRAY-1 (e.g., floating point multiply takes seven clock
periods, floating point add six, etc.). We have also assumed
that one parcel is issued per clock period, again in accordance
with the CRAY-1. Obviously, in a decoupled machine two
instruction streams are processed in parallel, and therefore two
parcels may be issued simultaneously; as already pointed out,
this is one of the advantages of a decoupled architecture.

Table I shows the results of our initial simulations. Overall,
the decoupled computer gives a speedup of 1.56 as compared
to the scalar CRAY-1. Speedups for the vectorizable and
nonvectorizable loops are 1.72 and 1.40, respectively. This
confirms our earlier observation that the vectorizable loops
should provide better performance because of the indepen-
dence of the access and execution tasks. When compared to the
issue bound, we see that the issue bound can be exceeded by
some of the loops, and these tend to be vectorizable ones.

B. Sensitivity to Memory Path Length
One of the arguments for a decoupled architecture is a

reduced performance sensitivity to memory access delays. In
this section, we given simulation results that support this
claim. Figs. 7, 8, and 9 summarize a series of performance
simulations made with memory access time varying from 5
clock periods to 32 clock periods in increments of 3. For
reference, the CRAY-I has a memory access time of 11 clock
periods for scalar memory references. Shown on the graphs
are decoupled computer performance and CRAY-1 perform-
ance. For reference, the instruction issue bound is also shown.
Fig. 7(a) graphs performance over all 14 loops. Fig. 7(b)
shows the speedups for the decoupled computer as compared
to the original CRAY-1. Figs. 8 and 9 give separate
performance results for the vectorizable and the nonvectoriza-
ble loops, respectively.

Fig. 8 shows that the decoupled architecture is better than
the issue bound on the vectorizable loops. Fig. 9 shows that
for the nonvectorizable loops it falls below the issue bound, so
that on average, as shown in Fig. 7, the decoupled architecture
performs under the issue bound.

Fig. 7(b) shows that the speedup of the decoupled system
relative to the CRAY-I increases almost linearly with memory
path length. Thus the performance improvement for 5 clock
periods access time is 1.48 and it grows to a 2.54 speedup
when the access time is 32 clock periods. Fig 8(b) shows a
considerable speedup for the vectorizable loops, as expected.
Fig. 9(b) shows speedup for nonvectorizable loops that is not
as great as for the vectorizable loops, but is significant
nevertheless.
As expected, the performance drops with increasing mem-

ory path length. However, as Fig. 7 shows, the overall
performance penalty due to a long memory path is far lower
for the decoupled architecture than for the CRAY-1. As

TABLE I
PERFORMANCE COMPARISON OF A DECOUPLED ARCHITECTURE AND

THE CRAY-1 PERFORMANCE IS MEASURED IN MEGAFLOPS

Issue Performance Performance
Loop Bound CRAY-1 Decoupled Speedup

1* 15.98 7.79 15.92 2.04
2* 14.28 11.98 22.36 1.87
3* 11.42 6.15 11.30 1.84
4 8.31 4.22 7.85 1.86
5 13.72 7.74 9.98 1.29
6 13.72 7.49 10.19 1.36
7* 27.19 15.74 22.73 1.44
8 20.06 14.14 25.05 1.77
9* 20.53 14.09 23.26 1.65
10* 10.72 7.11 11.36 1.60
11 5.33 2.96 3.79 1.28
12* 5.33 2.96 4.65 1.57
13 9.44 5.98 6.49 1.09
14 14.56 8.03 9.44 1.17

Mean 13.61 8.31 13.17 1.56
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independent of the memory access delay over the range
studied. For the nonvectorizable loops there is increased
sensitivity to memory access delay, but the overall perform-
ance remains better than with the CRAY-1 (as shown by the
speedup curve).
As an interesting aside, we see that reducing the CRAY-1

memory access time to five clock periods results in a

performance improvement of only 10.23 percent. This indi-
cates the kind of improvement that could be achieved if a data
cache were used (assuming a 100 percent hit rate).

VI. SIMULATION STUDY OF QUEUE LENGTHS

An important design parameter of a decoupled architecture
is the depth of the various architectural queues. We now

consider the importance of queue lengths as a function of
memory access path length. For the purpose of the simulation,
most of the queues that appear in the decoupled architecture

Fig. 9. Performance and speedup for the seven nonvectorizable loops. (a)
Performance. (b) Speedup.

described in Section II have been grouped in pairs, according
to their function. The only exception is the LDQ. Thus, four
sets of experiments were run varying the queue lengths of each
of the following groupings:

AEBQ-EABQ
AECPQ-EACPQ
SDQ-SAQ
LDQ.

When the length of a particular queue pair (or the LDQ) is
varied, the other queues are assumed to be of unbounded
length.
The above partitioning was done for obvious reasons. For

example, an address in the SAQ is matched with an operand in
the SDQ when sent to memory, and having different length
store queues is probably not justified. One could perhaps find
some justification for making the branch queues different
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Fig. 10. Performance versus queue lengths for various memory access times
(in clock periods).

lengths because one would expect most branches to be
determined by the A-processor. Therefore, the AEBQ might
be more active than the EABQ.

Notice that the initial length of most queues is one, with the
exception of the LDQ that begins at two. Some instructions,
e.g., "SI <- LDQ + LDQ," may require two operands
from the LDQ. Using a length of one queue would result in
deadlock.

Fig. 10 shows performance as a function of queue length for
various memory path lengths. For copy queues, no perform-

ance improvement has been observed for queue depth greater
than one, independent of the memory path length. The branch
queues behave similarly for memory path lengths up to 11
clock periods. For longer memory paths there is an advantage
in increasing the number of stages in the queue. This appears
to indicate that in some of the loops the A-processor runs more

than one iteration ahead of the E-processor when the memory
path exceeds 11 clock periods. And when the memory access

time becomes 29 clock periods, the A-processor is running as

much as three loop iterations ahead. For a few of the kernels
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this is a significant advantage. However, the mean perform-
ance does not gain more than 9.2 percent even for the longest
memory path simulated (32).

For store queues, performance becomes increasingly depen-
dent on the availability of a second queue stage as the memory
path gets longer. No significant speedup has been observed for
deeper store queues.

The simulation results for the load queue are the most
interesting. For a short memory path (five clock periods), two
stages are sufficient. However, as the memory access time
gets longer, performance becomes critically dependent on the
depth of the LDQ.

For a given memory path length one can optimize the
various queue depths. For example, with memory access time
11 clock periods, as in the CRAY-1, one might choose the
following queue depths:

AEBQ-EABQ: 1
AECPQ-EACPQ: 1
SDQ-SAQ: 2
LDQ: 4.

The above queue lengths are sufficient to achieve 90 pecent of
the maximum performance. Extending the LDQ to length 8
leads to 98 percent of the maximum performance. Such short
queues point to fairly simple and inexpensive implementations
of decoupled architectures.

VII. SUMMARY AND CONCLUSIONS
We have presented simulation results for a decoupled

access/execute architecture and compared them to the CRAY-
1. Overall, there is over a 50 percent improvement over the
scalar CRAY-1, assuming the same memory path as in the
CRAY-1. As the length of the memory path increases, the
performance improvement becomes greater. If the memory
access time grows to 32 clock periods, the improvement is
over two-and-one-half times.

The decoupled architecture also allows some of the loops to
surpass the instruction issue bound, the maximum possible
performance with a conventional pipelined implementation.
This tends to support the argument that a decoupled architec-
ture provides a means for avoiding the one instruction issue
per clock period bottleneck.
The performance simulations also show that loops that can

be executed with vector instructions show the greatest per-
formance improvements with the decoupled machine. Never-
theless, the improvements for the non-vectorizable loops are
still significant, and a decoupled architecture may still be
justified even if the architecture also supports vector instruc-
tions.
We have also presented a simulation study of architectural

queue lengths. It is shown that as the memory path increases
performance becomes critically dependent on the length of the
branch, store and load queues. The length of the load queue
has the greatest impact on performance. No performance
improvement has been observed for copy queues longer than
one stage, even for very long memory paths (up to 32 clock

periods). An important result of our study is that short queues
are sufficient to achieve performance close to the maximum
available with unbounded queues.
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