
Wattch: A Framework for Architectural-Level Power Analysis and Optimizations

David Brooks Vivek Tiwari ’ Margaret Martonosi
Department of Electrical Engineering Intel Corporation Department of Electrical Engineering

Princeton University Princeton University
dbrooks@ee. princeton.edu vtiwari@scdt .intel.com mrm@ee. prince t on. edu

Abstract

Power dissipation and thermal issues are increasingly signif-
icant in modern processors. As a result, it is crucial that
power/performance tradeoffs be made more visible to chip
architects and even compiler writers, in addition to circuit
designers. Most existing power analysis tools achieve high
accuracy by calculating power estimates for designs only af-
ter layout or floorplanning are complete. In addition to be-
ing available only late in the design process, such tools are
often quite slow, which compounds the difficulty of running
them for a large space of design possibilities.

This paper presents Wattch, a framework for analyz-
ing and optimizing microprocessor power dissipation at the
architecture-level. Wattch is lOOOX or more faster than ex-
isting layout-level power tools, and yet maintains accuracy
within 10% of their estimates as verified using industry tools
on leading-edge designs. This paper presents several valida-
tions of Wattch’s accuracy. In addition, we present three
examples that demonstrate how architects or compiler writ-
ers might use Wattch to evaluate power consumption in their
design process.

We see Wattch as a complement to existing lower-level
tools; it allows architects to explore and cull the design space
early on, using faster, higher-level tools. It also opens up
the field of power-efficient computing to a wider range of
researchers by providing a power evaluation methodology
within the portable and familiar Simplescalar framework.

1 Introduction

Until recently, power dissipation was an issue that primar-
ily concerned designers of embedded or portable computer
systems. Increasingly, however, power issues are becoming
some of the primary design constraints for even very high-
end microprocessors. As clock rates and die sizes increase,
power dissipation is predicted to soon become the key limit-
ing factor on the performance of single-chip microprocessors
[13, 291. Already, current high-end microprocessors are be-
ginning to reach the limits of conventional air cooling tech-
niques. In addition to battery life and cooling concerns the
difficulties of delivering large and highly-varying amounts of
current onto the chip are also significant.

Voltage scaling and specialized circuit techniques have
been the main strategies for low-power design, and these
will continue to be important areas in the future. Unfortu-
nately, these techniques alone are not sufficient; higher-level
strategies for reducing power consumption are increasingly

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise. to republrsh. to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISCA 2000 Vancouver BC Canada
Copyright ACM 2000 1-581 13-232-8/00/6...$5.00

crucial. Architectural and software techniques-in addition
to lower-level circuit techniques-must play a major role in
creating power-efficient computer systems.

Research in the area of high-performance, power-efficient
computer architectures is still in its infancy. A major ob-
stacle for such research has been the lack of infrastructure
that analyzes and quantifies the power ramifications of dif-
ferent architectural choices. Creating such infrastructure
requires balancing the need for low-level detail and accu-
racy against the need for higher-level abstractions offering
simulator speed and portability.

This paper describes Wattch, an architectural simulator
that estimates CPU power consumption. Our power esti-
mates are based on a suite of parameterizable power models
for different hardware structures and on per-cycle resource
usage counts generated through cycle-level simulation. We
see Wattch’s power modeling infrastructure as a useful and
significant enabler of further research on architecture and
compiler approaches for power efficiency.

1.1 Prior Work

We discuss related research in two categories. First, we
touch on some relevant work on architecture-level techniques
for reducing power consumption, and second, we discuss re-
lated strategies for estimating power consumption at the
architectural level.

Prior work in architecture-level techniques for power re-
duction has mainly focused on caches [2, 16, 17, 271. This
focus can be attributed to two factors. First, embedded mi-
croprocessors, historically the main focus of low-power de-
sign, frequently devote a large portion of their power budget
to caches, in some cases up to 40% [20]. Second, since caches
are regular structures, they are somewhat easier to model
than other units, and thus, it can be easier to quantify power
savings in caches.

Some work on architecture-level power reduction has ad-
dressed other areas of the processor. For example, Manne
et al. showed how branch prediction confidence estimators
can be used to control branch speculation in order to re-
duce power consumption [18]. This work presents results in
terms of the amount of needIess speculative work saved per
pipeline stage, as an indicator of power savings. Other prior
work has discussed the power benefits of value-based clock
gating in integer ALUs [6]. In both of these prior papers, a
simple measure of the proposed strategy’s power effective-
ness can be offered by quantifying some type of work that
is “saved”. In one case, for example, this is the number
of fruitless speculative cycles that were saved; in the other
case, it is the number of result bits that need not be com-
puted. While such work-saved measures are accurate and
very useful for individual techniques, apples-to-apples com-
parisons of different power-saving techniques require a single
common power metric. This is our motivation for creating
an architecture-level power simulator.

83

http://princeton.edu
http://intel.com

Finally, there has been prior work on architecture-level
power estimation tools. For example, Chen et al. have de-
veloped a system-level power analysis tool for a combined,
single-chip 16-bit DSP and in-order 32-bit RISC micropro-
cessor [8]. In this model, capacitance data was generated
from switch-level simulation of the functional unit designs;
thus, the models are not parameterizable. This simulator
was demonstrated on short sequences of low-level assembly
code benchmarks, and does not model out-of-order hard-
ware, so it is difficult for us to compare the speed or accuracy
of our approach with this related work.

Config 1

1.2 Contributions of this Work

One of the major shortcomings in the area of architecture-
level power reduction is a high-level, parameterizable, sim-
ulator framework that can accurately quantify potential
power savings. Lower-level power tools such as PowerMzll
[28] and QuickPower [19] operate on the circuit and Verilog
level. While providing excellent accuracy, these types of
tools are not especially useful for making architectural deci-
sions. First, architects typically make decisions in the plan-
ning phase before the design has begun, but both of these
tools require complete HDL or circuit designs. Second, the
simulation runtime cost for these tools is unacceptably high
for architecture studies, in which the tradeoffs between many
hardware configurations must be considered. The point of
our work is not to compete with these lower-level tools, but
rather to expose the basics of power modeling at a higher-
level to architects and compiler writers. In a manner analo-
gous to the development of tools for cycle-level architectural
performance simulation, tools for architectural-level power
simulation will help open the power problem to a wider au-
dience.

This work’s goal is to demonstrate a fast, usefully-
accurate, high-level power simulator. We quantify the power
consumption of all the major units of the processor, param-
eterize them where possible, and show how these power es-
timates can be integrated into a high-level simulator. Our
results indicate that Wattch is orders of magnitude faster
than commercial low-level power modeling tools, while also
offering accuracy in power estimates to within 10% of lower-
level approaches. We hope that Wattch will help open the
salient details of industry designs to the broader academic
community interested in researching power-efficient archi-
tectures and software.

Figure 1 shows three possible usage flows for Wattch.
The left-most usage scenario applies to cases where the user
is interested in comparing several design configurations that
are achievable simply by varying parameters for hardware
structures that we have modeled. The middle usage sce-
nario is for software or compiler development, where a sin-
gle hardware configuration is used and several programs are
simulated and compared. The third usage scenario high-
lights Wattch’s modularity. Additional hardware modules
can be added to the simulator. In some cases, these hard-
ware models follow the template of a hardware structure we
already handle. For these cases (i.e., array structures) the
user can simply add a new instantiation of the model into
the simulator. For other types of new hardware, the model
will not fit any already developed, but it is relatively easy to
plug new models into the Wattch framework. In Section 4,
we demonstrate case studies in which the power simulator
can be used to perform these three types of power analysis.

Section 2 provides a detailed description of our power
modeling methodology and Section 3 describes the valida-
tion of the models against industrial data. Section 4 provides
three case studies detailing how Wattch can be used to per-

Additional Hardware?

Binary

Watts-1 Watts-2

h a y
Structure?

SimPower SimPower +II+

Custom
Structure?

Watts-1 Watts-2

Use Current Estimate Power
Models of Structure

SimPower

Scenario A: Scenario B:
Microarchitectural tradeoffs Compiler Optimizations

Figure 1: Three scenarios for using architecture-level power
analysis.

form microarchitectural tradeoff studies for low-power de-
signs, compiler tradeoffs for power, and hardware optimiza-
tions for low-power. In Section 5 we discuss future possibil-
ities for research in the area of power-efficient architectures
and provide conclusions.

2 Our Power Modeling Methodology

The foundations for our power modeling infrastructure are
parameterized power models of common structures present
in modern superscalar microprocessors. These power mod-
els can be integrated into a range of architectural simulators
to provide power estimates. In this work we have integrated
these power models into the Simplescalar architectural sim-
ulator [7].

Hardware
Gmflg

I CyclC-LevCI

Estimate

I *

Figure 2: Overall Structure of the Power Simulator.

Figure 2 illustrates the overall structure of Wattch and

84

the interface between the performance simulator and the
power models. In the following section we describe the power
models in detail. We have performed both low-level and
high-level validations of these models; we present these val-
idation results in Section 3.

2.1 Detailed Power Modeling Methodology

The main processor units that we model fall into four cate-
gories:

Array Structures: Data and instruction caches, cache
tag arrays, all register files, register alias table, branch
predictors, and large portions of the instruction win-
dow and load/store queue.

0 Fully Associative Content-Addressable Memories:
Instruction window/reorder buffer wakeup logic,
load/store order checks, and TLBs, for example.

0 Combinational Logic and Wires: Functional Units,
instruction window selection logic, dependency check
logic, and result buses.

0 Clocking: Clock buffers, clock wires, and capacitive
loads.

In CMOS microprocessors, dynamic power consumption
(Pd) is the main source of power consumption, and is de-
fined as: Pd = CV2daf. Here, c is the load capacitance,
Vdd is the supply voltage, and f is the clock frequency. The
activity factor, a, is a fraction between 0 and 1 indicating
how often clock ticks lead to switching activity on average.
Our model estimates C based on the circuit and the tran-
sistor sizings as described below. V d d and f depend on the
assumed process technology. In this work, we use the .35um
process technology parameters from [21].

The activity factor is related to the benchmark programs
being executed. For circuits that pre-charge and discharge
on every cycle (i.e., double-ended array bitlines) an a of
1 is used. The activity factors for certain critical subcir-
cuits (i.e., single-ended array bitlines) are measured from the
benchmark programs using the architectural simulator. The
vast majority of the nodes that have a large contribution to
the power dissipation fall under one of these two categories.
For subcircuits in which we are unable to measure activ-
ity factors with the simulator (such as the internal nodes of
the decoder) we assume a base activity factor of .5 (random
switching activity). Finally, our higher-level power modeling
selectively clock-gates unneeded units on each clock cycle,
effectively lowering the activity factor.

The power consumption of the units modeled depends
very much on the particular implementation, particularly on
the internal capacitances for the circuits that make up the
processor. We model these capacitances using assumptions
that are similar to those made by Wilton and Jouppi [30]
and Palacharla, Jouppi, and Smith [21] in which the authors
performed delay analysis on many of the units listed above.
In both of the above works, the authors reduced each of
the above units into stages and formed RC circuits for each
stage. This allowed them to estimate the delay for each
stage, and by summing these, the delay for the entire unit.

For our power analysis we perform similar steps, but with
two key differences. First, we are only interested in the
capacitance of each stage, rather than both Rand C. Second,
in our power analysis the power consumption of all paths
must be analyzed and summed together. In contrast, when
performing delay analysis, only the expected critical path is
of interest. Table 1 summarizes our capacitance formulas,
and the descriptions below elaborate on our approach.

Array Structures Our array structure power model is pa-
rameterized based on the number of rows (entries), columns
(width of each entry), and the number of read/write ports.
These parameters affect the size and number of decoders,
the number of wordlines, and the number of bitlines. In
addition, we use these parameters to estimate the length of
the pre-decode wires as well as the lengths of the array's
wordlines and bitlines.

For the array structures we model the power consump-
tion on the following stages: decoder, wordline drive, bit-
line discharge, and output drive (or sense amplifier). Here
we only discuss in detail the wordline drive and bitline dis-
charge. These two components form the bulk of the power
consumption in the array structures. Figure 3 shows a
schematic of the wordlines and bitlines in the array struc-
ture.

Node
Regfile Wordline -
Capacitance =

Regfile Bitline
Capacitance =

CAM Tagline
Capacitance =

CAM Matchline
Capacitance =

Result Bus
Capacitance =

Capacitance Equation
Cdi f f (WordLineDriver)
+ CC,,t,(CellAccess) * NumBitlines 1 " ~. + Cmetal * WordLineLength
Cdi f f (PreCharge)
+ Cd;fr(CellAccess) * NumWdlines --, , \ + Cmetal * BLLength
C,,t,(CompareEn) * NumberTags + Cdiff(CompareDriver) + Cmetal * TLLength
2 * Cdiff(CompareEn) * TagSize + c d i f f (MatchPreCharge) + Cdi f f (Match0R) ., , + Cmetal * MLLength
.5 * Cmetal * NumALU * ALUHeight) + Cmetal * (RegfileHeight)

Table 1: Equations for Capacitance of critical nodes.

Figure 3: Schematic of wordlines and bitlines in array struc-
ture.

Modeling the power consumption of the wordlines and
bitlines requires estimating the total capacitance on both of
these lines. The capacitance of the wordlines include three
main components. These three components are the diffusion
capacitance of the wordline driver, the gate capacitance of
the cell access transistor times the number of bitlines, and
the capacitance of the wordline's metal wire.

85

The bitline capacitance is computed similarly. The to-
tal capacitance is equal to the diffusion capacitance of the
pre-charge transistor, the diffusion capacitance of the cell
access transistor multiplied by the number of word lines,
and the metal capacitance of the bitline. The models that
we have created provide the option to use single-ended or
double-ended bitlines. In this work we assume that register
file array structures use single-ended bitlines and that cache
array structures use double-ended bitlines. Equations for
the wordline and bitline capacitance are shown in Table 1.

Multiple ports on the array structure will increase the
power consumption in three ways. First, there will be more
capacitance on the wordlines because each additional port
requires an additional transistor connection. Second, each
additional port requires up to two additional bitlines (bit
and bit’), each of which must precharge/evaluate on every
cycle. Finally, each core cell becomes larger which leads to
longer word and bitlines, incurring additional wire capaci-
tance.

Transistor sizing plays an important role in the amount
of capacitance within the various structures. We use the
transistor sizings of [21,30] wherever sizes are noted. Gener-
ally, transistors in array structures are kept relatively small
to reduce the area. In our model, certain critical transistors
are automatically sized based on the model parameters to
achieve reasonable delays. For example, the wordline driver
transistor is critical for driving the wordline high in a short
amount of time. The width of this transistor is scaled based
on the amount of capacitance on the wordlines. Because
of the length of the word and bitlines, the internal wiring
capacitance of these structures is significant.

Our analysis is similar to Wilton and Jouppi’s study of
cache array structures [30]. That work analyzes the access
and cycle times for on-chip caches. We modify the analysis
to take into account multi-ported array structures such as
the register alias table, register file, etc. In addition, Kam-
ble and Ghose developed power models for cache arrays to
study power optimizations within caches [17] and Zyuban
and Kogge studied low-power circuit techniques for register
file structures [32].

The physical implementation of some array structures
may be very different from the logical structure. For exam-
ple, caches may be banked in order to provide reasonable
delays. In this work we estimate the physical implementa-
tions for cache structures using the help of the Cacti tool
[30]. Cacti is a tool developed to determine delay-optimal
cache hardware configurations given cache parameters such
as size, block size, and associativity. We perform similar
analysis on branch prediction structures to make them as
square as possible in the physical implementation.

CAM Structures Our analysis of the CAM structures is
very similar to that for array structures. However, in the
CAM structure we model taglines and matchlines instead of
bitlines and wordlines. Equations for the CAM tagline and
matchline capacitance are shown in Table 1. Again we use a
parameterized model which can be extended to the various
CAM structures in the processor. We take into account the
number of rows (number of tags), columns (number of bits
per tag to match), and ports on the CAM. The analysis
is similar to that for the array structures and follows the
methodology taken in [21].

As an example, Figure 4 depicts the core cell of the in-
struction wakeup logic which we model in our CPU as a form
of the CAM structure. As described above, the key sizing
parameters in this CAM are: (i) the issue/commit width of
the machine (number of match or tag lines in each core cell,
depicted by the parameter W in the figure), (ii) the instruc-

TagW Tag1 Dsts’ RAM Data Tagl’ TsgW ’ - ..

Ready

Figure 4: Core cell of wakeup logic modeled as a CAM.

tion window size (which impacts the CAM’s overall height)
and (iii) the physical register tag size which equals logarithm
base 2 of instruction window size (which impacts the CAM’s
width). Vertically, each core cell is replicated Instruction-
Windowsize times. Horizontally, the number of cells will
equal the number of bits in the physical register tag; they
share a common wide-OR for the final match which signals
that the instruction is ready to issue. We also model the
wordlines which are used to write new tag values into the
CAM structure; for simplicity, these lines are omitted from
the figure.

Complex Logic Blocks Two of the larger complex logic
blocks that we consider are the instruction selection logic
(in the instruction window) and the dependency check logic
(in the register renaming unit). We model circuit structures
based on the selection logic described in [21] and the depen-
dency check logic in [3].

We model the power consumption of result buses by es-
timating the length of the result buses using the same as-
sumptions about functional unit height made in [22]. These
lengths are multiplied by the metal capacitance per unit
length. This equation is shown in Table 1.

Modeling the power consumption of the functional units
(ALUs) at this high level would be difficult. Previous work
has investigated the power consumption of various func-
tional units [4, 311. We scale the power numbers from these
combinational structures for process and frequency in order
to estimate the power consumption of the functional units.

Clocking The clocking network on high performance mi-
croprocessors can be the most significant source of power
consumption. We consider three sources of clock power con-
sumption:

Global Clock Metal Lines: Long metal lines route the
clock throughout the processor. We model a modi-
fied H-tree network in which the global clock signal
is routed to all portions of the chip using equivalent
length metal wires and buffers in order to reduce clock
skew. This is similar to that used in the Alpha 21264

Global Clock Buffers: Very large transistors are used
to drive the clock throughout the processor in a timely
manner. We estimate the size and number of these
transistors from [lo, 51.

Clock Loading: We consider both explicit and implicit
clock loading. Explicit clock loads are the values of the
gate capacitances of pre-charge transistors and other
nodes that are directly connected to the clock within
the units that we model. Implicit clock loads include

P O I .

86

the load on the clock network due to pipeline regis-
ters. Here we use the number of pipeline stages in the
machine and estimate the number of registers required
per pipestage.

The models described above were implemented as a C
program using the cacti tool [30] as a starting point. These
models use Simplescalar's' hardware configuration parame-
ters as inputs to compute the power consumption values for
the various units in the processor. A summary of major
hardware structures and the type of model used for each is
given in Table 2.

Hardware Structure
Instruction Cache
Wakeup Logic
Issue Selection Logic
Instruction window
Branch Predictor
Register File
Translation Lookaside Buffer
Load/Store Queue
Data Cache
Integer Functional Units
FP Functional Units
Global Clock

-Model TfPe
Cache Array (2x bitlines)
CAM _ . ~ ~ ~

Complex combinational
Array/CAM
Cache Array (2x bitlines)
Array (lx bitlines)
Array/CAM
Array/CAM
Cache Array (2x bitlines)
Complex combinational
Complex combinational
Clock

Table 2: Common CPU hardware structures and the model
type used by Wattch.

2.2 SimpleScalar Interface

The power models are interfaced with Simplescalar, which
keeps track of which units are accessed per cycle and records
the total energy consumed for an application. We use a
modified version of Simplescalar's sim-outorder to collect
results.

Simplescalar provides a simulation environment for mod-
ern out-of-order processors with 5-stage pipelines: fetch, de-
code, issue, writeback, and commit. Speculative execution
is also supported. The simulated processor contains a uni-
fied active instruction list, issue queue, and rename register
file in one unit called the reservation update unit (RUU)
[26]. Separate banks of 32 integer and floating point regis-
ters make up the architected register file and are only written
on commit. We have extended Simplescalar to provide for a
variable number of additional pipestages between fetch and
issue bringing the number of pipestages more in line with
current microprocessors. In this study, we assume three ad-
ditional pipestages between fetch and issue, and seven cycles
of mispredict penalty.

Our power-oriented modifications track which units are
accessed on each cycle and how. For example, if a particular
cycle involves reading the instruction cache, selecting some
ready instructions from the RUU, reading on two ports of
the register file, and performing two integer additions, then
the power models for each of these units will be invoked.
Some of the power models vary the estimated power based
on the number of ports used, as described in Section 2.2.1.
As with most simulation frameworks, we hope that broader
distribution of the framework will lead users to create an
even richer variety of power modeling modules over time.

Section 4.1 describes further details of the baseline hard-
ware parameters selected and the benchmarks we use.

2.2.1 Conditional Clocking Styles

One key issue that arises in estimating power concerns how
to scale power consumption for multi-ported hardware units.
Current CPU designs increasingly use conditional clocking
to disable all or part of a hardware unit to reduce power con-
sumption when it is not needed. In this work we consider
three different options for clock gating to disable unused re-
sources in multi-ported hardware. (More options can clearly
be developed later; we give these as initial examples.)

The first and simplest clock gating style assumes the full
modeled power will be consumed if any accesses occur in
a given cycle, and zero power consumption otherwise. For
example, a multi-ported register file would be modeled as
drawing full power even if only one port is used. This as-
sumption is realistic for many current CPUs that choose
not to use ggressive conditional clocking. The second pos-
sibility asstme, that if only a portion of a unit's ports are
accessed, the power is scaled linearly. For example, if two
ports of a 4-port register file are used in a given cycle, the
power estimate returned will be one-half of the power if four
ports are used. Wattch tracks how many ports are used on
each hardware structure per cycle and scales power numbers
accordingly. In practice, it may be impossible to totally shut
off the power to a unit or port when it is not needed, so a
small fraction of its total power may still be active. With
this in mind, we also present a third option in which power
is scaled linearly with port or unit usage, except that un-
used units dissipate 10% of their maximum power, rather
than drawing zero power. This number was chosen as it
represents a typical turnoff figure for industrial clock-gated
circuits.

W All or Nothing Clk Gating
0 Linear Clk Gating w/ 10%

Linear Clk Gating 40
35

gi 30

s ;:
15
10

5
0

Figure 5: Power consumption of benchmarks with condi-
tional clocking on multi-ported hardware. The first bar as-
sumes simple clock gating where a unit is fully on if any of
its ports are accessed on that cycle, or fully off otherwise.
The second bar assumes clock gating where the power scales
linearly with port usage, and disabled ports consume 10%
of their maximum power. The third bar assumes ideal clock
gating where the power scales linearly with port usage as in
the second bar, but disabled units are entirely shut off.

Figure 5 shows the power dissipation for the eight
SPECint95 and four of the SPECfp95 benchmarks for the
three styles of conditional clocking. The maximum power for
this configuration (similar to the 21264) was 58.4W. Future
processors are likely to move towards the more aggressive
style to reduce the average power dissipation. We expect
that there will be more variability in the power consump-
tion of the benchmarks when more clock gating is used.

87

This assumption is supported by this figure: For the simple
clock gating style, the maximum variations of the bench-
marks from the average is 36%. The variations for the more
advanced clock gating techniques are 54% and 66%. The
amount of clock gating in current processors falls somewhere
between the styles that we consider.

Wordline (w)
Bitline (r)
Bitline (w)

2.2.2 Simulation Speed

Wattch is intended to run with overheads only moderately
larger than other Simplescalar simulators. It first computes
the base power dissipation for each unit a t program startup,
which is a one-time cost. These base power costs are then
scaled with per-unit access counts. For arithmetic units, we
only charge power for the units that would be used each
cycle; a cycle that performs two integer additions will not
be charged for the multiply unit. In addition to the access
counts, the simulator also scales power estimates for multi-
ported hardware based on the style of clock gating chosen
from the options given in Section 2.2.1.

Our simulation speed measurements are for our modi-
fied version of SimpleScalar/AXP’s sim-outorder running on
a Pentium-I1 450MHz PC using RedHat Linux version 6.0.
The simulation speed of sim-outorder without power model-
ing was approximately 105K instructions per second. With
our current methodology which updates the power statistics
every cycle according to access counts, we see roughly a 30%
overhead on average compared to performance simulation
alone. That is, our simulation speed drops to roughly 80K
instructions per second. Given the ability to gauge power
at a fairly high level, we feel this overhead is quite tolera-
ble. It can be further reduced, however, by updating power
statistics every few cycles. This would require loosening the
accuracy of the port count statistics and the statistics on
the usage of different functional units.

As a comparison to lower level tools, running PowerMill
on a 64-bit adder for 100 test vectors takes approximately
one hour. In the same amount of time, Wattch can simulate
a full CPU running roughly 280M Simplescalar instructions
and generate both power and performance estimates.

-6.37 0.79 -10.68 -7.99
2.82 -10.58 -19.59 -10.91
-10.96 -10.60 7.98 -5.96

3 Model Validation

Validating the power models is crucial because fast power
simulation is only useful if it is reasonably accurate. In this
paper we provide three methods of validation. The first is a
low-level check to compare the capacitance values generated
from our model with those of real circuits. The second vali-
dation level aims at quantifying the relative accuracy of our
model. Namely, we compare the relative power weights that
our model generates with experimentally-measured results
from published works on industry chips. The final validation
technique seeks to quantify the absolute magnitude accuracy
of our models. With this method we compare the maximum
processor power reported in published works with the power
results of similar processor organizations generated from our
models.

3.1 Validation 1: Model Capacitance vs. Physical

The parameterized power models presented in Section 2.1
obtain power dissipation estimates by calculating the ca-
pacitance values on critical nodes within common circuits.
Thus, a low-level method for validating the models is to com-
pare the capacitance value computed by the model, against
circuit design tool calculations of capacitance values for in-
dustry schematics.

Schematics

In this section, we describe this type of validation for
a 128-entry, 64-bit wide register file structure with 8 read
ports and 6 write ports. The physical register file schematic
was selected from the actual design for one of Intel’s IA-64
products. This type of large array structure is common in
modern microprocessors and hence provides a good sample
for our study.

Table 3 presents the results for validating the register
file. We studied both the read and write nodes for the bit-
lines and wordlines in the register file. The table breaks
down the capacitance for each of these into gate capaci-
tance, diffusion capacitance, and interconnect capacitance.
For each entry, we present the percentage difference between
the capacitance value estimated from a circuit-level capaci-
tance extraction tool and the one calculated by our model.
Most of the capacitance error rates are within +/-lo%. The
largest sources of error were within the interconnect capaci-
tance. There are two reasons for this. First, the capacitance
of polysilicon wires is difficult to model, because the lengths
of these wires vary with the physical layout. Second, it is dif-
ficult to match the exact lengths of the interconnects in the
physical schematic with the modeled nodes. For example,
the wire in the bitline node in the physical schematic may
extend beyond the length of the edge of the array structure,
whereas our model assumes that the wire ends directly on
the array boundary. Still, the total capacitance values are
within 6-11% for the four nodes that were studied.

Array structures comprise roughly 50% of the total mod-
eled chip power dissipation. We are currently performing
similar low-level validation on other hardware structures
such as CAM arrays. We expect that the results will be
similar, since the methodology for modeling these units is
identical.

3.2 Validation 2: Relative power consumption by struc-

Comparing low-level capacitance values is the most precise
means of validating a power simulator. Unfortunately, we
have access to only one set of industrial hardware designs
and capacitance values. To validate our models against
other chips, we present a second high-level set of valida-
tion data. This data compares relative power of different
hardware structures predicted by our model against pub-
lished power breakdown numbers available for several high-
end microprocessors. The downside to this comparison is
that we have no way of knowing, whether the design style
we model for each unit matches the design style that they
actually use. In spite of this downside, it is reassuring to see
that these power breakdowns track quite well. As shown in
Tables 4 and 5, the relative power breakdown numbers for
our models are within 10-13% on average of reported data.

Tables 4 and 5 compare breakdowns of Wattch’s power
consumption for different hardware structures, with those
from published data for the Intel Pentium Pro@ and Alpha

ture

88

Hardware Structure
Instruction Fetch
Register Alias Table
Reservation Stations
Reorder Buffer
Integer Exec. Unit
Data Cache Unit
Memory Order Buffer
Floating Point Exec. Unit
Global Clock
Branch Target Buffer

inm-
16 MEM
16 FP
64-INT
64-FP
8
4
4
4
4
3 Int
3 FP

N/A
5 12x2
N/A
NIA
NIB
32 entry

Intel Data I Model

Instr . Window(s)

Table 4: Comparison between Modeled and Reported Power
Breakdowns for the Pentium Prom.

20 INT
15 FP

Out-of-Order Issue Logic

Floating Point Exec. Unit
Integer Exec. Unit

11.7%

Table 5: Comparison between Modeled and Reported Power
Breakdowns for the Alpha 21264.

Local History Table
Local Predict
Global History Register
Global Predict
Choice Predict
BTB

21264 CPUs [13, 181. This power consumption is shown
for “maximum power” operation, when all of the units are
fully active. This mode of operation represents our static
power estimates; we assume all of the ports on all of the
units are fully active, with maximum switching activity. We
did not actually modify SimpleScalar’s internal structure to
resemble these processors. Instead we used the static power
estimates from our models for the hardware configurations of
the processors. The parameter configurations for our models
are set based on published Intel and Alpha 21264 parameters
[13, 141.

The power breakdowns track fairly well. For example,
the Intel data in Table 4 is an exact or near match for several
units. These include the data caches, instruction fetch and
out-of-order control logic. The average difference between
the power consumption of our modeled structures and the
reported data was 13.3% for the Intel processor.

The relative power proportions for the Alpha 21264 are
again similar to the reported data, with an average difference
of 10.7%.

One unit which shows some inaccuracy in our current
model is the global clock power for the Intel processor; our
model predicts it to be 10% of total chip power, while the
published data suggests it is less: 8%. This difference could
be because the clock power model we use is based on an
aggressive H-tree style that was used in Alpha 21264 [lo],
but not in the Intel processor.

The Alpha 21264 has a significantly higher percentage of
total clock power than Intel: 34% for the Alpha compared
to 8% for the Intel processor. The main reason for this large
difference is simply the method of accounting that is used
for clock power by this two companies. The clock power cat-
egory for 21264 includes all clock capacitance including the
clock nodes within individual units. On the other hand, the
Intel method for clock power accounting only counts clock
power as the global clock network. Clock nodes that are
internal to various hardware structures are counted towards

1024x10 N/A
1024x3 512x4

4096x2 N/A
4096x2 N/A
1K entry 512 entry
2-way 4-way

12 N/A

the power dissipation of those units. When we model these
two different chips, we adjust our clock power accounting
method to match that of the respective company’s data re-
porting.

Finally, note that the power proportions we discuss here
are normalized to the hardware structures that we consider.
For example, since we do not model Intel’s complex x86 to
micro-op decoding, we do not report the instruction decode
unit power consumption, which consumes 14% of the chip
power.

Feature Size .35um .35um
Vdd 2.2v 3.3v
MHz 600 200

3.3 Validation 3: Max power consumption for three CPUs

.35um
3.3v
200

Processor I Abha

Physical Registers 2~80-1NT I 72-FP
Memory Order Queue
Fetch width per cycle
Decode width per cycle
Issue width per cycle
Commit width per cycle
Functional Units

32
4
4
6
4
4 Int
2 F P

ch Predictil

entium El-EZ-l
20 UOPS

40 UOPs

20
3
6
3
3
4 Int
1 FP

which we compare the published maximum power numbers
for three commercial microprocessors with the values pro-
duced by our models for similar configurations. This allows
us to evaluate both the relative and absolute accuracy of our
power models. While such a comparison is difficult without
exact process parameter information, general power trends
can be seen based on the hardware organizations of these
machines. Table 6 describes the details of the three proces-
sors that we consider.

Figure 6 shows the results for the maximum power dis-
sipation for the three processors that we considered. In
all three cases, Wattch’s modeled power consumption was
less than the reported power consumptions, on average 30%
lower. There are a few reasons for this systematic under-
estimation. First, we have concentrated on the units that

2-way

2-way

89

100 - Model - Reported

70 ///

I I

Pentium Pro MIPS RlOK Alpha 21264

Figure 6: Maximum power numbers for three processors:
Model and Reported.

are most immediately important for architects to consider,
neglecting 1/0 circuitry, fuse and test circuits, and other
miscellaneous logic. Second, circuit implementation tech-
niques, transistor sizings, and process parameters will vary
from company to company. On the other hand, the models
are general enough that they could be tuned to a particular
processor’s implementation details. Although these results
can and will be improved on, it is reassuring to see that
the trends already track published data for several high-end
commercial processors.

3.4 Validation: Summary

We have presented details on the power models and sim-
ulator infrastructure required to perform architectural-level
power analysis. We have verified these power models against
industrial circuits and found our results to be generally
within 10% for low-level capacitance estimates. We have
also shown the relative accuracy of the models, which is es-
pecially important for architectural and compiler research
on tradeoffs between different structures, is within 10-13%
on average.

One limitation of our models is that they do not nec-
essarily model all of the miscellaneous logic present in real
microprocessors. Furthermore, different circuit design styles
can lead to different results. Hence, the power models will
not necessarily predict maximum power dissipation of cus-
tom microprocessors. The methodology for modeling this
extra logic or other circuit design styles is the same as what
we have done thus far; there is no inherent limitation to the
models that prevents this additional hardware from being
considered. Another limitation of the models is that the
most up-to-date industrial fabrication data is not available
in the public-domain, which can lead to variations in the
results. The models will be most accurate when comparing
CPUs of similar fabrication technology. This is reasonable
for architects considering tradeoffs on a particular design
problem, where the fab technology is likely to be a fixed
factor.

4 Case Studies

In this section, we provide three case studies that demon-
strate how Wattch can be used to perform architectural or
compiler research. When performing power studies, a vari-
ety of metrics are important depending on the goals. Our
simulator provides results for several of these metrics:

Power: The average and maximum per-cycle power
consumption of the processor are important because

power translates directly into heat. With on-chip
thermal sensors, techniques such as instruction cache
throttling can be used to reduce the number of cy-
cles in which the power consumption is significantly
above the average [23]. Large cycle-by-cycle swings in
the power dissipation (i.e.] power glitches) are also im-
portant because they cause reliability problems. Our
cycle-level power simulator is capable of analyzing
these types of problems.

Performance: The performance ramifications of an ar-
chitectural proposal, whether positive or negative, are
important for any architecture study. With Wattch,
performance is measured in terms of number of cycles
for program execution.

Energy: The overall energy consumption of a program
is equal to power dissipation multiplied by the execu-
tion time. Overall energy consumption is important
for portable and embedded processors, where battery
life is a key concern.

Energy-Delay Product:
proposed by Gonzalez and Horowitz [12], multiplies en-
ergy consumption and overall delay into a single met-
ric. This produces a metric that does not give unwar-
ranted preference to solutions that are either (1) very
low-energy but very slow, or (2) very fast but very high
power.

The energy-delay product, .

In the following subsections we present three case stud-
ies which demonstrate how the simulator infrastructure can
be used for architecture and compiler research studies. The
case studies illustrate the three possibilities shown in Figure
1. The main point of these case studies is to demonstrate
the methodology for rapid exploration of these ideas, rather
than to give details on each of the examples themselves. Be-
fore getting into the case studies, we explain our simulation
methodology, baseline hardware configuration, and bench-
marks.

4.1 Simulation Model Parameters

Unless stated otherwise, our results in this section model
a processor with the configuration parameters shown in
Table 7. These baseline configuration parameters roughly
match those of the Alpha 21264 processor. The main dif-
ference is that the 21264 has a separate active list, issue
queue, and rename register file while the Simplescalar sim-
ulator uses a unified instruction window called an RUU. For
technology parameters, we use the process parameters for
a .35um process at 6OOMHz. In this section, we use Sec-
tion 2.2.1’s aggressive clock gating style (linear scaling with
number of active ports) for all results.

4.1.1 Benchmark Applications

We chose to evaluate our ideas on programs from the
SPECint95 and SPECfp95 benchmark suites. SPEC95 pro-
grams are representative of a wide mix of current integer and
floating-point codes. We have compiled the benchmarks for
the Alpha instruction set using the Compaq Alpha cc com-
piler with the following optimization options as specified by
the SPEC Makefile: -migrate -stdl - 0 5 -if0 -nonshared.

For each program, we simulate 200M instructions. We
select a 200M instruction window not at the beginning of
the program by using warmup periods as discussed in [24].

90

Parameter I Value

L1 data-cache

L1 instruction-cache

L2

Memory
TLBs

Processor Core
RUU size I 64 instructions

;
32B blocks, 1 cycle latency
64K, 2-way (LRU)
32B blocks, 1 cycle latency
Unified, 2M, 4-way (LRU)
32B blocks, 12-cycle latency
100 cycles
128 entry, fully associative
30-cycle miss latency

LSQ size
Fetch Queue Size
Fetch width
Decode width
Issue width
Commit width
Functional Units

Branch Predictor

32 instructions
8 instructions
4 instructions/cycle
4 instructions/cycle
4 instructions/cycle (out-of-order)
4 instructions/cycle (in-order)
4 Integer ALUs
1 integer multiply/divide
1 FP add, 1 FP multiply
1 FP dividelsart

BTB
Return-address stack

, I

Branch Prediction
I Combined, Bimodal 4K table

2-Level 1K table, lObit history
4K chooser
1024-entry, 2-way
32-entry

4.2 A Microarchitectural Exploration

One important application of Wattch is for microarchitec-
tural tradeoff studies that account for both performance and
power. For example, users may be interested in evaluat-
ing sizing tradeoffs between different hardware structures.
Clearly, the architectural decisions made when power is con-
sidered may differ from those based solely on performance.
One possible study which we consider in this section is to
evaluate size tradeoffs between the RUU and data cache.
This example demonstrates scenario A from Figure 1. The
baseline processor configuration is that from Table 7 and our
simulations vary the sizes of the RUU and D-cache. For all
simulations, the Load/Store Queue is set to half the size of
the RUU. We have collected these results for the SPECint95
and several of the SPECfp95 benchmarks. As we will dis-
cuss below, the results typically fall into two main categories
of behavior, and we present results for one representative
benchmark from each category: gcc and turb3d.

Figures 7 ,8 and 9 show the results for the gcc benchmark.
The three graphs show performance (in instructions per cy-
cle), average power dissipation, and energy-delay product
for the benchmark. Similarly, Figures 10, 11 and 12 show
the same results for the turb3d benchmark.

The IPC graphs show that gcc gets significant perfor-
mance benefit from increasing the data cache size. It only
begins to level off a t roughly 64KB. In contrast, turbdd gets
relatively little performance benefit from increasing the data
cache size, but is highly sensitive to increases in the RUU
size.

Although the performance contours are fairly different
for these two benchmarks, the power contours shown in Fig-
ures 8 and 11 are quite similar. Both show steady increases

in average power as the size of either unit is increased.
Despite the similarity in the average power graph, the

two benchmarks do have strikingly different energy charac-
teristics, as shown in Figures 9 and 12. The energy-delay
product combines performance and power consumption into
a single metric in which lower values are considered bet-
ter both from a power and performance standpoint. The
energy-delay product curve for gcc reaches its optimal point
for moderate (64KB) caches and small RUUs. This indi-
cates that although large caches continue to offer gcc small
performance improvements, their contribdtion to increased
power begins to outweigh the performance increase. RUU
size offers little benefit to gcc from either a performance or
energy-delay standpoint.

For turbdd, energy-delay increases monotonically with
cache size, reflecting the fact that larger caches draw more
power and yet offer this benchmark little performance im-
provement in return. Moderate-sized RUU’s offer the opti-
mal energy-delay for turbdd, but the valley in the graph is
not as pronounced as for gcc.

Overall, the point of this case study is to demonstrate
how the power simulator and the resulting graphs shown
can help explore tradeoff points taking into account both
power and performance related metrics.

4.3

This section gives an example of how a high-level power sim-
ulation can be of use to compiler writers as well. We con-
sider a simple case study which examines the effects of loop
unrolling on processor power dissipation. Loop unrolling is
a well-known compiler technique that extends the size of
loop bodies by replicating the body n times, where n is the
unrolling factor. The loop exit condition is adjusted accord-
ingly. In this section, we consider a simple matrix multiply
benchmark with 200x200 entry matrices. We have used the
Compaq Alpha cc compiler to unroll the main loops in the
benchmark, and we consider several unrolling factors.

Figures 13 shows the results for the execution time and
power/energy results for loop unrolling. As one would hope,
the execution time and the number of total instructions com-
mitted decreases. This is because loop unrolling reduces
loop overhead and address calculation instructions. The
power results are more complicated, however, which makes
the tradeoffs interesting in a power-aware compiler.

Figure 14 shows a breakdown of the power dissipa-
tion of individual processor units normalized to the case
with no unrolling. There are two important side-effects
of loop unrolling. First, loop unrolling leads to decreased
branch predictor accuracy, because the branch predictor has
fewer branch accesses to “warm-up” the predictors and be-
cause mispredicting the final fall-through branch represents
a larger fraction of total predictions.

Another side-effect of loop unrolling is that removing
branches leads to a more efficient front-end. The fetch unit
is able to fetch large basic blocks without being interrupted
by taken branches. This, in turn, provides more work for
the renaming unit and fills up the RUU faster. In fact, with
this example the RUU becomes full for an average of 85% of
the execution cycles after we move from an unrolling factor
of 2 to 4. The fetch queue, which connects the fetch unit
to the renaming hardware is also affected, and is full for an
average of 73% of the cycles at an unrolling factor of 4.

Thus, the average fetch unit power dissipation decreases
for two reasons. First, because the branch prediction accu-
racy has decreased, there are more misprediction stall cycles
in which no instructions are fetched. The second reason is
that at larger unrolling factors, the fetch unit is stalled dur-

Power Analysis of Loop Unrolling

91

Figure 7: IPC for gcc. Figure 8: Power for gcc. Figure 9: Energy-Delay Product for gcc.

Figure 10: IPC for turb3d Figure 11: Power for turb3d.

ing cycles when the instruction queue ani RUU are full. The
reduced number of branch instructions also significantly re-
duces the power dissipation of the branch prediction hard-
ware. (Note that these stall cycles would increase the to-
tal energy required to run the full program, but this graph
shows average power.)

The renaming hardware, on the other hand, shows a
small increase in power dissipation at an unrolling factor of
two. This is because the front-end is operating at full-tilt,
sending more instructions to the renamer per cycle. As the
fetch unit starts to experience more stalls with unrolling fac-
tors of 4 and beyond, the renamer unit also begins to remain
idle more frequently, leading to lower power dissipation.

While the varied power trends in each unit are some-
what complicated, the overall picture is best seen in Figure
13. The total instruction count for the program continues
to decrease steadily for larger unrolling factors, even though
the execution time tends to level out after unrolling by four.
The combined effect of this is that energy-delay product con-
tinues to decrease slightly for larger unrolling factors, even
though execution time does not. Thus, a power-aware com-
piler might unroll more aggressively than other compilers.
This simple example is intended to highlight the fact that
design choices are slightly different when power metrics are
taken into account; Wattch is intended to help explore these
tradeoffs.

4.4 Memoing To Save Power

Another important application for the Wattch infrastructure
is in evaluating the potential hardware benefits of hardware
optimizations. In this section, we consider result memoing,

Figure 12: Energy-Delay Product for
turb3d.

a technique that [as been previously explored for perfor-
mance benefits 19, 251. Memoing is the idea of storing the
inputs and outputs of long-latency operations and re-using
the output if the same inputs are encountered again. The
memo table is looked up in parallel with the first cycle of
computation, and the computation halts if a hit is encoun-
tered. Thus memoing can reduce multi-cycle operations to
one-cycle when there is a hit in the memo table.

We consider the power and performance benefits of this
technique. Power consumption in the floating point units
is reduced during memo table hits. On the other hand,
the memo tables dissipate additional power. We base our
analysis on [9], which showed that a small 32-entry, 4-way
set associative table is capable of achieving reasonable hit
rates.

Azam et al. have investigated a similar technique for sav-
ing power within integer multipliers [l]. Their work did not
model the additional power dissipation of reads and writes
to the cache structure (only the tag comparison logic) and
concentrated on integer and multimedia benchmarks. The
point of this section is to demonstrate the methodology for
using Wattch to perform such a study.

We have inserted memo tables in parallel with the
floating-point and integer multipliers (4 cycles), the float-
ing point adder (4 cycles), and the floating point-divider
(16-cycles, unpipelined). Citron’s study examined the
SPECfp95, Perfect, and a selection of multimedia and DSP
applications finding that the multimedia applications have
the lowest local entropy in result values and hence the high-
est hit rates. Since Citron’s multimedia benchmarks were
not readily available, we have examined a selection of bench-
marks from the SPECfp95 suite. As in Citron’s work, we

92

14% 1

0.4

0.3

10% l 2 % 1 n

\
X

I

BPerformancc Speedup
Power Savings

0 Energy Savings
0 Energy-Delay Improvement

*
I I 0.8
a
E

0.7

-e- Exec. lime

+Total

+-Power
Instructions

+Energy *
Delay

1

7 0.9
a
2 0.8 -e- total

* rename 0.7

+ bpred

5 0.5 .-C icache

0.4

0.3
1 2 4 5 8

Unroll Factor

Figure 14: Detailed Breakdown of Power Dissipation.

do not enter “trivial” operations such as multiplyfdivide by
0/1 into the table, because we assume that simpler hardware
could recognize and capitalize on these opportunities.

The modifications to the power simulator infrastructure
for the new hardware were not complex. The behavior of
the memo tables was implemented and memo-tabZe-lookup
and memo-table-write routines were inserted in the simula-
tor pipeline. Both of these routines also serve as the access
counters for the memo tables. The memo tables were mod-
eled as simple cache array structures using the same power
models that the other array structures use.

Figure 15 shows the performance and power results for
the memoing technique. The benchmarks showed an aver-
age speedup of 1.7% and an average power improvement of
5.4%. The larger power benefits of the memoing techniques
are most likely due to the dynamically scheduled out-of-
order execution core of the simulated processor. In an out-
of-order processor, the delay of long-latency operations can
often be hidden by finding other instructions to execute, thus
the performance benefits of removing long-latency opera-
tions are not too large. However, stopping these operations
after one cycle of execution can have a significant impact on

8%

6%

4%

2%

0%
aPPlu fpppp hydro2d mgrid turbfd

Figure 15: Performance and Power Effects of Memoing Tech-
nique.

power dissipation. This is most apparent in mgrid, which
shows almost no performance benefit, but just over an 8%
power benefit.

5 Discussion and Conclusions

The goal of this work is to provide a simulator framework
that can be used to evaluate a wide range of architectural
and compiler techniques. Wattch has the benefit of low-level
validation against industry circuits, while opening up power
modeling to researchers at abstraction levels above circuits
and schematics.

Wattch still has room for improvement and we hope that
exposure and distribution to the architectural community
will lead to the development of additional modules. Addi-
tional accuracy validations are important, and we plan to
compare the models against lower-level tools on more de-
signs. Speed-accuracy tradeoffs for signal activity factors
are another area we will consider in the future.

Extensions to the simulator infrastructure and the
creation of additional modules are topics of future re-
search. The simulator infrastructure could be extended
to consider different hardware organization styles. Ad-
ditional power modules could be developed with differ-
ent circuit-implementation styles targeting different power-
performance targets. Modeling of off-chip communication
is also an important module to be developed. Additional
work can also focus on more automatic transistor sizing and
the effects of future process technologies, including leakage
power dissipation.

We see a wide range of power studies that can be per-
formed with Wattch. First, many old techniques may take
on a new light when power is considered as a metric. The
memoing case study described in Section 4.4 is one example
of this. Other interesting techniques to study with power as
a metric would be value-prediction [ll] and instruction pre-
processing [15]. The effects of the compiler techniques and
operating system control on power dissipation, including the
use of power dissipation as feedback in a profiling compiler,
are another possible research area. Finally, Wattch can be
used in power studies which explore techniques that focus on
micro-architectural solutions to lower-level power problems.
One example of this is dynamic thermal management tech-
niques to reduce power dissipation when thermal emergen-
cies occur due to high-power sections of applications. An-
other example would be the evaluation and development of
solutions for large, short-term, current spikes due to clock
gating, which can cause problems with chip reliability.

93

Exploring these classes of ideas in the power domain
will open up new research possibilities for architects. The
Wattch simulator infrastructure described in this paper of-
fers a starting point for such research efforts.

Acknowledgments

This work has been supported by research funding from the
National Science Foundation and Intel Corp. In addition,
Brooks currently receives support from a National Science
Foundation Graduate Fellowship and a Princeton University
Gordon Wu Fellowship.

References

[I] M. Azam, P. Franzon, W. Liu, and T. Conte. Low Power
Data Processing by Elimination of Redundant Computa-
tions. In Proc. of Znt'l Symposium on Low-Power Electronics
and Design, 1997.

[2] R. I. Bahar, G. Albera, and S. Manne. Power and perfor-
mance tradeoffs using various caching strategies. In Proc.
of Znt '1 Symposium on Low-Power Electronics and Design,
1998.

[3] B. Bishop, T. Kelliher, and M. Irwin. The Design of a Regis-
ter Renaming Unit. In Proc. of Great Lakes Symposium on

[4] M. Borah, R. Owens, and M. Irwin. Transistor sizing for low
power CMOS circuits. ZEEE Zhmsactions on Computer-
Aided Design of Integrated Circuits and Systems, 15(6):665-
71, 1996.

[5] W. J. Bowhill et al. Circuit Implementation of a 300-MHz 64-
bit Second-generation CMOS Alpha CPU. Digital Technical
Journal, 7(1):100-118, 1995.

[6] D. Brooks and M. Martonosi. Dynamically exploiting nar-
row width operands to improve processor power and perfor-
mance. In Proc. of the 5th Znt'l Symp. on High-Performance
Computer Architecture, Jan. 1999.

[7] D. Burger and T. M. Austin. The Simplescalar Tool Set,
Version 2.0. Computer Architecture News, pages 13-25, June
1997.

[8] R. Chen, M. Irwin, and R. Bajwa. An architectural level
power estimator. In Power-Driven Microarchitecture Work-
shop at ISCA25, 1998.

[9] D. Citron, D. Feitelson, and L. Rudolph. Accelerating multi-
media processing by implementing memoing in multiplica-
tion and division units. In Proceedings of the 8th Znt'l Conf.
on Architectural Support for Programming Languages and
Opemting Systems (ASPLOS- VZZZ), pages 252-261, Oct.
1998.

[lo] H. Fair and D. Bailey. Clocking Design and Analysis for a
6OOMHz Alpha Microprocessor. In ZSSCC Digest of Techni-
cal Papers, pages 398-399, February 1998.

Using value prediction to
increase the power of speculative execution hardware. ACM
Thnsactions on Computer Systems, Aug. 1998.

[12] R. Gonzalez and M. Horowitz. Energy Dissipation in Gen-
eral Purpose Microprocessors. ZEEE Journal of Solid-state

[I31 M. Gowan, L. Biro, and D. Jackson. Power considerations
in the design of the Alpha 21264 microprocessor. In 35th
Design Automation Conference, 1998.

[I41 L. Gwennap. Intel's P6 uses decoupled superscalar design.
Microprocessor Report, pages 9-15, Feb. 16, 1995.

[15] Q. Jacobson and J. Smith. Instruction pre-processing in
trace processors. In Proc. of the 5th Znt'l Symp. on High-
Performance Computer Architecture, Jan. 1999.

(161 M. G. Johnson Kin and W. H. Mangione-Smith. The filter
cache: An energy efficient memory structure. In Proc. of the
30th Znt? Symp. on Microarchitecture, Nov. 1997.

VLSI, 1999.

[ll] F. Gabbay and A. Mendelson.

Circuits, 31(9):1277-84, 1996.

[17] M. B. Kamble and K. Ghose. Analytical Energy Dissipation
Models for Low Power Caches. In Pmc. of Znt'l Symposium
on Low-Power Electronics and Design, 1997.

[I81 S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction. In Proc. of the
25th Znt? Symp. on Computer Architecture, pages 132-41,
June 1998.

[I91 Mentor Graphics Corporation, 1999.
[20] J. Montanaro et al. A 160-MHz, 32-b, 0.5W CMOS RISC

microprocessor. Digital Technical Journal, 9(2):49-62, 1996.
(211 S. Palacharla, N. Jouppi, and J. Smith. Complexity-Effective

Superscalar Processors. In Proc. of the 24th Int'l Symp. on
Computer Architecture, 1997.

[22] S. Palacharla, N. Jouppi, and J. Smith. Quantifying the
Complexity of Superscalar Processors. In Univ. of Wisconsin
Computer Science Tech. Report 1328, 1997.

Thermal management system for high
performance PowerPC microprocessors. In Proceedings of
CompCon '97, Feb. 1997.

[24] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Branch prediction, instruction-window size, and cache size:
Performance tradeoffs and simulation techniques. ZEEE
" a c t i o n s on Computers, 48(11):1260-810, Nov. 1999.

[25] A. Sodani and G. Sohi. Dynamic instruction reuse. In Proc.
of the 24th Znt'l Symp. on Computer Architecture, May 1997.

[26] G. S. Sohi and A. S. Vajapeyam. Instruction issue logic
for high-performance, interruptible pipelined processors. In
Proc. of the 14th Znt'l Symp. on Computer Architecture,
pages 27-34, June 1987.

[27] C. Su and A. Despain. Cache Designs for Energy Efficiency.
In Proceedings of the 28th Hawaii Znt'l Conference on Sys-
tem Science, 1995.

[23] H. Sanchez et al.

[28] Synopsys Corporation. Powermill Data Sheet, 1999.
[29] V. Tiwari et al. Reducing power in high-performance micro-

processors. In 35th Design Automation Conference, 1998.
[30] S. Wilton and N. Jouppi. An Enhanced Access and Cycle

Time Model for On-chip Caches. In WRL Research Report
93/5, DEC Western Research Laboratory, 1994.

[31] R. Zimmermann and W. Fichtner. Low-power logic styles:
CMOS versus pass-transistor logic. ZEEE Journal of Solid-
State Circuits, 32(7):1079-90, 1997.

[32] V. Zyuban and P. Kogge. The energy complexity of register
files. In Proc. of Znt'l Symposium on Low-Power Electronics
and Design, pages 305-310, 1998.

94

