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Abstract 

Power dissipation and thermal issues are increasingly signif- 
icant in modern processors. As a result, it is crucial that 
power/performance tradeoffs be made more visible to chip 
architects and even compiler writers, in addition to circuit 
designers. Most existing power analysis tools achieve high 
accuracy by calculating power estimates for designs only af- 
ter layout or floorplanning are complete. In addition to be- 
ing available only late in the design process, such tools are 
often quite slow, which compounds the difficulty of running 
them for a large space of design possibilities. 

This paper presents Wattch, a framework for analyz- 
ing and optimizing microprocessor power dissipation at the 
architecture-level. Wattch is lOOOX or more faster than ex- 
isting layout-level power tools, and yet maintains accuracy 
within 10% of their estimates as verified using industry tools 
on leading-edge designs. This paper presents several valida- 
tions of Wattch’s accuracy. In addition, we present three 
examples that demonstrate how architects or compiler writ- 
ers might use Wattch to evaluate power consumption in their 
design process. 

We see Wattch as a complement to existing lower-level 
tools; it allows architects to explore and cull the design space 
early on, using faster, higher-level tools. It also opens up 
the field of power-efficient computing to a wider range of 
researchers by providing a power evaluation methodology 
within the portable and familiar Simplescalar framework. 

1 Introduction 

Until recently, power dissipation was an issue that primar- 
ily concerned designers of embedded or portable computer 
systems. Increasingly, however, power issues are becoming 
some of the primary design constraints for even very high- 
end microprocessors. As clock rates and die sizes increase, 
power dissipation is predicted to soon become the key limit- 
ing factor on the performance of single-chip microprocessors 
[13, 291. Already, current high-end microprocessors are be- 
ginning to reach the limits of conventional air cooling tech- 
niques. In addition to battery life and cooling concerns the 
difficulties of delivering large and highly-varying amounts of 
current onto the chip are also significant. 

Voltage scaling and specialized circuit techniques have 
been the main strategies for low-power design, and these 
will continue to be important areas in the future. Unfortu- 
nately, these techniques alone are not sufficient; higher-level 
strategies for reducing power consumption are increasingly 
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crucial. Architectural and software techniques-in addition 
to lower-level circuit techniques-must play a major role in 
creating power-efficient computer systems. 

Research in the area of high-performance, power-efficient 
computer architectures is still in its infancy. A major ob- 
stacle for such research has been the lack of infrastructure 
that analyzes and quantifies the power ramifications of dif- 
ferent architectural choices. Creating such infrastructure 
requires balancing the need for low-level detail and accu- 
racy against the need for higher-level abstractions offering 
simulator speed and portability. 

This paper describes Wattch, an architectural simulator 
that estimates CPU power consumption. Our power esti- 
mates are based on a suite of parameterizable power models 
for different hardware structures and on per-cycle resource 
usage counts generated through cycle-level simulation. We 
see Wattch’s power modeling infrastructure as a useful and 
significant enabler of further research on architecture and 
compiler approaches for power efficiency. 

1.1 Prior Work 

We discuss related research in two categories. First, we 
touch on some relevant work on architecture-level techniques 
for reducing power consumption, and second, we discuss re- 
lated strategies for estimating power consumption at the 
architectural level. 

Prior work in architecture-level techniques for power re- 
duction has mainly focused on caches [2, 16, 17, 271. This 
focus can be attributed to two factors. First, embedded mi- 
croprocessors, historically the main focus of low-power de- 
sign, frequently devote a large portion of their power budget 
to caches, in some cases up to 40% [20]. Second, since caches 
are regular structures, they are somewhat easier to model 
than other units, and thus, it can be easier to quantify power 
savings in caches. 

Some work on architecture-level power reduction has ad- 
dressed other areas of the processor. For example, Manne 
et al. showed how branch prediction confidence estimators 
can be used to control branch speculation in order to re- 
duce power consumption [18]. This work presents results in 
terms of the amount of needIess speculative work saved per 
pipeline stage, as an indicator of power savings. Other prior 
work has discussed the power benefits of value-based clock 
gating in integer ALUs [6]. In both of these prior papers, a 
simple measure of the proposed strategy’s power effective- 
ness can be offered by quantifying some type of work that 
is “saved”. In one case, for example, this is the number 
of fruitless speculative cycles that were saved; in the other 
case, it is the number of result bits that need not be com- 
puted. While such work-saved measures are accurate and 
very useful for individual techniques, apples-to-apples com- 
parisons of different power-saving techniques require a single 
common power metric. This is our motivation for creating 
an architecture-level power simulator. 
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Finally, there has been prior work on architecture-level 
power estimation tools. For example, Chen et al. have de- 
veloped a system-level power analysis tool for a combined, 
single-chip 16-bit DSP and in-order 32-bit RISC micropro- 
cessor [8].  In this model, capacitance data was generated 
from switch-level simulation of the functional unit designs; 
thus, the models are not parameterizable. This simulator 
was demonstrated on short sequences of low-level assembly 
code benchmarks, and does not model out-of-order hard- 
ware, so it is difficult for us to compare the speed or accuracy 
of our approach with this related work. 

Config 1 

1.2 Contributions of this Work 

One of the major shortcomings in the area of architecture- 
level power reduction is a high-level, parameterizable, sim- 
ulator framework that can accurately quantify potential 
power savings. Lower-level power tools such as PowerMzll 
[28] and QuickPower [19] operate on the circuit and Verilog 
level. While providing excellent accuracy, these types of 
tools are not especially useful for making architectural deci- 
sions. First, architects typically make decisions in the plan- 
ning phase before the design has begun, but both of these 
tools require complete HDL or circuit designs. Second, the 
simulation runtime cost for these tools is unacceptably high 
for architecture studies, in which the tradeoffs between many 
hardware configurations must be considered. The point of 
our work is not to compete with these lower-level tools, but 
rather to expose the basics of power modeling at a higher- 
level to architects and compiler writers. In a manner analo- 
gous to the development of tools for cycle-level architectural 
performance simulation, tools for architectural-level power 
simulation will help open the power problem to a wider au- 
dience. 

This work’s goal is to demonstrate a fast, usefully- 
accurate, high-level power simulator. We quantify the power 
consumption of all the major units of the processor, param- 
eterize them where possible, and show how these power es- 
timates can be integrated into a high-level simulator. Our 
results indicate that Wattch is orders of magnitude faster 
than commercial low-level power modeling tools, while also 
offering accuracy in power estimates to  within 10% of lower- 
level approaches. We hope that Wattch will help open the 
salient details of industry designs to the broader academic 
community interested in researching power-efficient archi- 
tectures and software. 

Figure 1 shows three possible usage flows for Wattch. 
The left-most usage scenario applies to cases where the user 
is interested in comparing several design configurations that 
are achievable simply by varying parameters for hardware 
structures that we have modeled. The middle usage sce- 
nario is for software or compiler development, where a sin- 
gle hardware configuration is used and several programs are 
simulated and compared. The third usage scenario high- 
lights Wattch’s modularity. Additional hardware modules 
can be added to the simulator. In some cases, these hard- 
ware models follow the template of a hardware structure we 
already handle. For these cases (i.e., array structures) the 
user can simply add a new instantiation of the model into 
the simulator. For other types of new hardware, the model 
will not fit any already developed, but it is relatively easy to 
plug new models into the Wattch framework. In Section 4, 
we demonstrate case studies in which the power simulator 
can be used to perform these three types of power analysis. 

Section 2 provides a detailed description of our power 
modeling methodology and Section 3 describes the valida- 
tion of the models against industrial data. Section 4 provides 
three case studies detailing how Wattch can be used to per- 

Additional Hardware? 

Binary 

Watts-1 Watts-2 

h a y  
Structure? 

SimPower SimPower +II+ 

Custom 
Structure? 

Watts-1 Watts-2 

Use Current Estimate Power 
Models of Structure 

SimPower 

Scenario A: Scenario B: 
Microarchitectural tradeoffs Compiler Optimizations 

Figure 1: Three scenarios for using architecture-level power 
analysis. 

form microarchitectural tradeoff studies for low-power de- 
signs, compiler tradeoffs for power, and hardware optimiza- 
tions for low-power. In Section 5 we discuss future possibil- 
ities for research in the area of power-efficient architectures 
and provide conclusions. 

2 Our Power Modeling Methodology 

The foundations for our power modeling infrastructure are 
parameterized power models of common structures present 
in modern superscalar microprocessors. These power mod- 
els can be integrated into a range of architectural simulators 
to provide power estimates. In this work we have integrated 
these power models into the Simplescalar architectural sim- 
ulator [7]. 

Hardware 
Gmflg 

I CyclC-LevCI 

Estimate 

I *  

Figure 2: Overall Structure of the Power Simulator. 

Figure 2 illustrates the overall structure of Wattch and 
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the interface between the performance simulator and the 
power models. In the following section we describe the power 
models in detail. We have performed both low-level and 
high-level validations of these models; we present these val- 
idation results in Section 3. 

2.1 Detailed Power Modeling Methodology 

The main processor units that we model fall into four cate- 
gories: 

Array Structures: Data and instruction caches, cache 
tag arrays, all register files, register alias table, branch 
predictors, and large portions of the instruction win- 
dow and load/store queue. 

0 Fully Associative Content-Addressable Memories: 
Instruction window/reorder buffer wakeup logic, 
load/store order checks, and TLBs, for example. 

0 Combinational Logic and Wires: Functional Units, 
instruction window selection logic, dependency check 
logic, and result buses. 

0 Clocking: Clock buffers, clock wires, and capacitive 
loads. 

In CMOS microprocessors, dynamic power consumption 
(Pd) is the main source of power consumption, and is de- 
fined as: Pd = CV2daf. Here, c is the load capacitance, 
Vdd is the supply voltage, and f is the clock frequency. The 
activity factor, a, is a fraction between 0 and 1 indicating 
how often clock ticks lead to switching activity on average. 
Our model estimates C based on the circuit and the tran- 
sistor sizings as described below. V d d  and f depend on the 
assumed process technology. In this work, we use the .35um 
process technology parameters from [21]. 

The activity factor is related to the benchmark programs 
being executed. For circuits that pre-charge and discharge 
on every cycle (i.e., double-ended array bitlines) an a of 
1 is used. The activity factors for certain critical subcir- 
cuits (i.e., single-ended array bitlines) are measured from the 
benchmark programs using the architectural simulator. The 
vast majority of the nodes that have a large contribution to 
the power dissipation fall under one of these two categories. 
For subcircuits in which we are unable to measure activ- 
ity factors with the simulator (such as the internal nodes of 
the decoder) we assume a base activity factor of .5 (random 
switching activity). Finally, our higher-level power modeling 
selectively clock-gates unneeded units on each clock cycle, 
effectively lowering the activity factor. 

The power consumption of the units modeled depends 
very much on the particular implementation, particularly on 
the internal capacitances for the circuits that make up the 
processor. We model these capacitances using assumptions 
that are similar to those made by Wilton and Jouppi [30] 
and Palacharla, Jouppi, and Smith [21] in which the authors 
performed delay analysis on many of the units listed above. 
In both of the above works, the authors reduced each of 
the above units into stages and formed RC circuits for each 
stage. This allowed them to estimate the delay for each 
stage, and by summing these, the delay for the entire unit. 

For our power analysis we perform similar steps, but with 
two key differences. First, we are only interested in the 
capacitance of each stage, rather than both Rand C. Second, 
in our power analysis the power consumption of all paths 
must be analyzed and summed together. In contrast, when 
performing delay analysis, only the expected critical path is 
of interest. Table 1 summarizes our capacitance formulas, 
and the descriptions below elaborate on our approach. 

Array Structures Our array structure power model is pa- 
rameterized based on the number of rows (entries), columns 
(width of each entry), and the number of read/write ports. 
These parameters affect the size and number of decoders, 
the number of wordlines, and the number of bitlines. In 
addition, we use these parameters to estimate the length of 
the pre-decode wires as well as the lengths of the array's 
wordlines and bitlines. 

For the array structures we model the power consump- 
tion on the following stages: decoder, wordline drive, bit- 
line discharge, and output drive (or sense amplifier). Here 
we only discuss in detail the wordline drive and bitline dis- 
charge. These two components form the bulk of the power 
consumption in the array structures. Figure 3 shows a 
schematic of the wordlines and bitlines in the array struc- 
ture. 

Node 
Regfile Wordline - 
Capacitance = 

Regfile Bitline 
Capacitance = 

CAM Tagline 
Capacitance = 

CAM Matchline 
Capacitance = 

Result Bus 
Capacitance = 

Capacitance Equation 
Cdi f f (WordLineDriver) 
+ CC,,t,(CellAccess) * NumBitlines 1 " ~. + Cmetal * WordLineLength 
Cdi f f  (PreCharge) 
+ Cd;fr(CellAccess) * NumWdlines --, , \ + Cmetal * BLLength 
C,,t,(CompareEn) * NumberTags + Cdiff(CompareDriver) + Cmetal * TLLength 
2 * Cdiff(CompareEn) * TagSize + c d i  f  f  (MatchPreCharge) + Cdi f f (Match0R)  ., , + Cmetal * MLLength 
.5 * Cmetal * NumALU * ALUHeight) + Cmetal * (RegfileHeight) 

Table 1: Equations for Capacitance of critical nodes. 

Figure 3: Schematic of wordlines and bitlines in array struc- 
ture. 

Modeling the power consumption of the wordlines and 
bitlines requires estimating the total capacitance on both of 
these lines. The capacitance of the wordlines include three 
main components. These three components are the diffusion 
capacitance of the wordline driver, the gate capacitance of 
the cell access transistor times the number of bitlines, and 
the capacitance of the wordline's metal wire. 
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The bitline capacitance is computed similarly. The to- 
tal capacitance is equal to the diffusion capacitance of the 
pre-charge transistor, the diffusion capacitance of the cell 
access transistor multiplied by the number of word lines, 
and the metal capacitance of the bitline. The models that 
we have created provide the option to use single-ended or 
double-ended bitlines. In this work we assume that register 
file array structures use single-ended bitlines and that cache 
array structures use double-ended bitlines. Equations for 
the wordline and bitline capacitance are shown in Table 1. 

Multiple ports on the array structure will increase the 
power consumption in three ways. First, there will be more 
capacitance on the wordlines because each additional port 
requires an additional transistor connection. Second, each 
additional port requires up to two additional bitlines (bit 
and bit’), each of which must precharge/evaluate on every 
cycle. Finally, each core cell becomes larger which leads to 
longer word and bitlines, incurring additional wire capaci- 
tance. 

Transistor sizing plays an important role in the amount 
of capacitance within the various structures. We use the 
transistor sizings of [21,30] wherever sizes are noted. Gener- 
ally, transistors in array structures are kept relatively small 
to reduce the area. In our model, certain critical transistors 
are automatically sized based on the model parameters to 
achieve reasonable delays. For example, the wordline driver 
transistor is critical for driving the wordline high in a short 
amount of time. The width of this transistor is scaled based 
on the amount of capacitance on the wordlines. Because 
of the length of the word and bitlines, the internal wiring 
capacitance of these structures is significant. 

Our analysis is similar to Wilton and Jouppi’s study of 
cache array structures [30]. That work analyzes the access 
and cycle times for on-chip caches. We modify the analysis 
to take into account multi-ported array structures such as 
the register alias table, register file, etc. In addition, Kam- 
ble and Ghose developed power models for cache arrays to 
study power optimizations within caches [17] and Zyuban 
and Kogge studied low-power circuit techniques for register 
file structures [32]. 

The physical implementation of some array structures 
may be very different from the logical structure. For exam- 
ple, caches may be banked in order to provide reasonable 
delays. In this work we estimate the physical implementa- 
tions for cache structures using the help of the Cacti tool 
[30]. Cacti is a tool developed to determine delay-optimal 
cache hardware configurations given cache parameters such 
as size, block size, and associativity. We perform similar 
analysis on branch prediction structures to make them as 
square as possible in the physical implementation. 

CAM Structures Our analysis of the CAM structures is 
very similar to that for array structures. However, in the 
CAM structure we model taglines and matchlines instead of 
bitlines and wordlines. Equations for the CAM tagline and 
matchline capacitance are shown in Table 1. Again we use a 
parameterized model which can be extended to the various 
CAM structures in the processor. We take into account the 
number of rows (number of tags), columns (number of bits 
per tag to match), and ports on the CAM. The analysis 
is similar to that for the array structures and follows the 
methodology taken in [21]. 

As an example, Figure 4 depicts the core cell of the in- 
struction wakeup logic which we model in our CPU as a form 
of the CAM structure. As described above, the key sizing 
parameters in this CAM are: (i) the issue/commit width of 
the machine (number of match or tag lines in each core cell, 
depicted by the parameter W in the figure), (ii) the instruc- 

TagW Tag1 Dsts’ RAM Data Tagl’ TsgW ’ - .. 

Ready 

Figure 4: Core cell of wakeup logic modeled as a CAM. 

tion window size (which impacts the CAM’s overall height) 
and (iii) the physical register tag size which equals logarithm 
base 2 of instruction window size (which impacts the CAM’s 
width). Vertically, each core cell is replicated Instruction- 
Windowsize times. Horizontally, the number of cells will 
equal the number of bits in the physical register tag; they 
share a common wide-OR for the final match which signals 
that the instruction is ready to issue. We also model the 
wordlines which are used to  write new tag values into the 
CAM structure; for simplicity, these lines are omitted from 
the figure. 

Complex Logic Blocks Two of the larger complex logic 
blocks that we consider are the instruction selection logic 
(in the instruction window) and the dependency check logic 
(in the register renaming unit). We model circuit structures 
based on the selection logic described in [21] and the depen- 
dency check logic in [3]. 

We model the power consumption of result buses by es- 
timating the length of the result buses using the same as- 
sumptions about functional unit height made in [22]. These 
lengths are multiplied by the metal capacitance per unit 
length. This equation is shown in Table 1. 

Modeling the power consumption of the functional units 
(ALUs) at  this high level would be difficult. Previous work 
has investigated the power consumption of various func- 
tional units [4, 311. We scale the power numbers from these 
combinational structures for process and frequency in order 
to estimate the power consumption of the functional units. 

Clocking The clocking network on high performance mi- 
croprocessors can be the most significant source of power 
consumption. We consider three sources of clock power con- 
sumption: 

Global Clock Metal Lines: Long metal lines route the 
clock throughout the processor. We model a modi- 
fied H-tree network in which the global clock signal 
is routed to all portions of the chip using equivalent 
length metal wires and buffers in order to reduce clock 
skew. This is similar to that used in the Alpha 21264 

Global Clock Buffers: Very large transistors are used 
to drive the clock throughout the processor in a timely 
manner. We estimate the size and number of these 
transistors from [lo,  51. 

Clock Loading: We consider both explicit and implicit 
clock loading. Explicit clock loads are the values of the 
gate capacitances of pre-charge transistors and other 
nodes that are directly connected to the clock within 
the units that we model. Implicit clock loads include 

P O I .  
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the load on the clock network due to pipeline regis- 
ters. Here we use the number of pipeline stages in the 
machine and estimate the number of registers required 
per pipestage. 

The models described above were implemented as a C 
program using the cacti tool [30] as a starting point. These 
models use Simplescalar's' hardware configuration parame- 
ters as inputs to compute the power consumption values for 
the various units in the processor. A summary of major 
hardware structures and the type of model used for each is 
given in Table 2. 

Hardware Structure 
Instruction Cache 
Wakeup Logic 
Issue Selection Logic 
Instruction window 
Branch Predictor 
Register File 
Translation Lookaside Buffer 
Load/Store Queue 
Data Cache 
Integer Functional Units 
FP Functional Units 
Global Clock 

-Model TfPe 
Cache Array (2x bitlines) 
CAM _ . ~ ~  ~ 

Complex combinational 
Array/CAM 
Cache Array (2x bitlines) 
Array ( lx  bitlines) 
Array/CAM 
Array/CAM 
Cache Array (2x bitlines) 
Complex combinational 
Complex combinational 
Clock 

Table 2: Common CPU hardware structures and the model 
type used by Wattch. 

2.2 SimpleScalar Interface 

The power models are interfaced with Simplescalar, which 
keeps track of which units are accessed per cycle and records 
the total energy consumed for an application. We use a 
modified version of Simplescalar's sim-outorder to collect 
results. 

Simplescalar provides a simulation environment for mod- 
ern out-of-order processors with 5-stage pipelines: fetch, de- 
code, issue, writeback, and commit. Speculative execution 
is also supported. The simulated processor contains a uni- 
fied active instruction list, issue queue, and rename register 
file in one unit called the reservation update unit (RUU) 
[26]. Separate banks of 32 integer and floating point regis- 
ters make up the architected register file and are only written 
on commit. We have extended Simplescalar to provide for a 
variable number of additional pipestages between fetch and 
issue bringing the number of pipestages more in line with 
current microprocessors. In this study, we assume three ad- 
ditional pipestages between fetch and issue, and seven cycles 
of mispredict penalty. 

Our power-oriented modifications track which units are 
accessed on each cycle and how. For example, if a particular 
cycle involves reading the instruction cache, selecting some 
ready instructions from the RUU, reading on two ports of 
the register file, and performing two integer additions, then 
the power models for each of these units will be invoked. 
Some of the power models vary the estimated power based 
on the number of ports used, as described in Section 2.2.1. 
As with most simulation frameworks, we hope that broader 
distribution of the framework will lead users to create an 
even richer variety of power modeling modules over time. 

Section 4.1 describes further details of the baseline hard- 
ware parameters selected and the benchmarks we use. 

2.2.1 Conditional Clocking Styles 

One key issue that arises in estimating power concerns how 
to scale power consumption for multi-ported hardware units. 
Current CPU designs increasingly use conditional clocking 
to disable all or part of a hardware unit to reduce power con- 
sumption when it is not needed. In this work we consider 
three different options for clock gating to disable unused re- 
sources in multi-ported hardware. (More options can clearly 
be developed later; we give these as initial examples.) 

The first and simplest clock gating style assumes the full 
modeled power will be consumed if any accesses occur in 
a given cycle, and zero power consumption otherwise. For 
example, a multi-ported register file would be modeled as 
drawing full power even if only one port is used. This as- 
sumption is realistic for many current CPUs that choose 
not to use ggressive conditional clocking. The second pos- 
sibility asstme, that if only a portion of a unit's ports are 
accessed, the power is scaled linearly. For example, if two 
ports of a 4-port register file are used in a given cycle, the 
power estimate returned will be one-half of the power if four 
ports are used. Wattch tracks how many ports are used on 
each hardware structure per cycle and scales power numbers 
accordingly. In practice, it may be impossible to totally shut 
off the power to a unit or port when it is not needed, so a 
small fraction of its total power may still be active. With 
this in mind, we also present a third option in which power 
is scaled linearly with port or unit usage, except that un- 
used units dissipate 10% of their maximum power, rather 
than drawing zero power. This number was chosen as it 
represents a typical turnoff figure for industrial clock-gated 
circuits. 

W All or Nothing Clk Gating 
0 Linear Clk Gating w/ 10% 

Linear Clk Gating 40 
35 

gi 30 

s ;: 
15 
10 

5 
0 

Figure 5: Power consumption of benchmarks with condi- 
tional clocking on multi-ported hardware. The first bar as- 
sumes simple clock gating where a unit is fully on if any of 
its ports are accessed on that cycle, or fully off otherwise. 
The second bar assumes clock gating where the power scales 
linearly with port usage, and disabled ports consume 10% 
of their maximum power. The third bar assumes ideal clock 
gating where the power scales linearly with port usage as in 
the second bar, but disabled units are entirely shut off. 

Figure 5 shows the power dissipation for the eight 
SPECint95 and four of the SPECfp95 benchmarks for the 
three styles of conditional clocking. The maximum power for 
this configuration (similar to the 21264) was 58.4W. Future 
processors are likely to move towards the more aggressive 
style to reduce the average power dissipation. We expect 
that there will be more variability in the power consump- 
tion of the benchmarks when more clock gating is used. 
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This assumption is supported by this figure: For the simple 
clock gating style, the maximum variations of the bench- 
marks from the average is 36%. The variations for the more 
advanced clock gating techniques are 54% and 66%. The 
amount of clock gating in current processors falls somewhere 
between the styles that we consider. 

Wordline (w) 
Bitline (r) 
Bitline (w) 

2.2.2 Simulation Speed 

Wattch is intended to run with overheads only moderately 
larger than other Simplescalar simulators. It first computes 
the base power dissipation for each unit a t  program startup, 
which is a one-time cost. These base power costs are then 
scaled with per-unit access counts. For arithmetic units, we 
only charge power for the units that would be used each 
cycle; a cycle that performs two integer additions will not 
be charged for the multiply unit. In addition to the access 
counts, the simulator also scales power estimates for multi- 
ported hardware based on the style of clock gating chosen 
from the options given in Section 2.2.1. 

Our simulation speed measurements are for our modi- 
fied version of SimpleScalar/AXP’s sim-outorder running on 
a Pentium-I1 450MHz PC using RedHat Linux version 6.0. 
The simulation speed of sim-outorder without power model- 
ing was approximately 105K instructions per second. With 
our current methodology which updates the power statistics 
every cycle according to access counts, we see roughly a 30% 
overhead on average compared to performance simulation 
alone. That is, our simulation speed drops to roughly 80K 
instructions per second. Given the ability to gauge power 
at a fairly high level, we feel this overhead is quite tolera- 
ble. It can be further reduced, however, by updating power 
statistics every few cycles. This would require loosening the 
accuracy of the port count statistics and the statistics on 
the usage of different functional units. 

As a comparison to lower level tools, running PowerMill 
on a 64-bit adder for 100 test vectors takes approximately 
one hour. In the same amount of time, Wattch can simulate 
a full CPU running roughly 280M Simplescalar instructions 
and generate both power and performance estimates. 

-6.37 0.79 -10.68 -7.99 
2.82 -10.58 -19.59 -10.91 
-10.96 -10.60 7.98 -5.96 

3 Model Validation 

Validating the power models is crucial because fast power 
simulation is only useful if it is reasonably accurate. In this 
paper we provide three methods of validation. The first is a 
low-level check to compare the capacitance values generated 
from our model with those of real circuits. The second vali- 
dation level aims at quantifying the relative accuracy of our 
model. Namely, we compare the relative power weights that 
our model generates with experimentally-measured results 
from published works on industry chips. The final validation 
technique seeks to quantify the absolute magnitude accuracy 
of our models. With this method we compare the maximum 
processor power reported in published works with the power 
results of similar processor organizations generated from our 
models. 

3.1 Validation 1: Model Capacitance vs. Physical 

The parameterized power models presented in Section 2.1 
obtain power dissipation estimates by calculating the ca- 
pacitance values on critical nodes within common circuits. 
Thus, a low-level method for validating the models is to com- 
pare the capacitance value computed by the model, against 
circuit design tool calculations of capacitance values for in- 
dustry schematics. 

Schematics 

In this section, we describe this type of validation for 
a 128-entry, 64-bit wide register file structure with 8 read 
ports and 6 write ports. The physical register file schematic 
was selected from the actual design for one of Intel’s IA-64 
products. This type of large array structure is common in 
modern microprocessors and hence provides a good sample 
for our study. 

Table 3 presents the results for validating the register 
file. We studied both the read and write nodes for the bit- 
lines and wordlines in the register file. The table breaks 
down the capacitance for each of these into gate capaci- 
tance, diffusion capacitance, and interconnect capacitance. 
For each entry, we present the percentage difference between 
the capacitance value estimated from a circuit-level capaci- 
tance extraction tool and the one calculated by our model. 
Most of the capacitance error rates are within +/-lo%. The 
largest sources of error were within the interconnect capaci- 
tance. There are two reasons for this. First, the capacitance 
of polysilicon wires is difficult to model, because the lengths 
of these wires vary with the physical layout. Second, it is dif- 
ficult to match the exact lengths of the interconnects in the 
physical schematic with the modeled nodes. For example, 
the wire in the bitline node in the physical schematic may 
extend beyond the length of the edge of the array structure, 
whereas our model assumes that the wire ends directly on 
the array boundary. Still, the total capacitance values are 
within 6-11% for the four nodes that were studied. 

Array structures comprise roughly 50% of the total mod- 
eled chip power dissipation. We are currently performing 
similar low-level validation on other hardware structures 
such as CAM arrays. We expect that the results will be 
similar, since the methodology for modeling these units is 
identical. 

3.2 Validation 2: Relative power consumption by struc- 

Comparing low-level capacitance values is the most precise 
means of validating a power simulator. Unfortunately, we 
have access to only one set of industrial hardware designs 
and capacitance values. To validate our models against 
other chips, we present a second high-level set of valida- 
tion data. This data compares relative power of different 
hardware structures predicted by our model against pub- 
lished power breakdown numbers available for several high- 
end microprocessors. The downside to this comparison is 
that we have no way of knowing, whether the design style 
we model for each unit matches the design style that they 
actually use. In spite of this downside, it is reassuring to see 
that these power breakdowns track quite well. As shown in 
Tables 4 and 5, the relative power breakdown numbers for 
our models are within 10-13% on average of reported data. 

Tables 4 and 5 compare breakdowns of Wattch’s power 
consumption for different hardware structures, with those 
from published data for the Intel Pentium Pro@ and Alpha 
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Hardware Structure 
Instruction Fetch 
Register Alias Table 
Reservation Stations 
Reorder Buffer 
Integer Exec. Unit 
Data Cache Unit 
Memory Order Buffer 
Floating Point Exec. Unit 
Global Clock 
Branch Target Buffer 

inm- 
16 MEM 
16 FP 
64-INT 
64-FP 
8 
4 
4 
4 
4 
3 Int 
3 FP 

N/A 
5 12x2 
N/A 
NIA 
NIB 
32 entry 

Intel Data I Model 

Instr . Window(s) 

Table 4: Comparison between Modeled and Reported Power 
Breakdowns for the Pentium Prom. 

20 INT 
15 FP 

Out-of-Order Issue Logic 

Floating Point Exec. Unit 
Integer Exec. Unit 

11.7% 

Table 5: Comparison between Modeled and Reported Power 
Breakdowns for the Alpha 21264. 

Local History Table 
Local Predict 
Global History Register 
Global Predict 
Choice Predict 
BTB 

21264 CPUs [13, 181. This power consumption is shown 
for “maximum power” operation, when all of the units are 
fully active. This mode of operation represents our static 
power estimates; we assume all of the ports on all of the 
units are fully active, with maximum switching activity. We 
did not actually modify SimpleScalar’s internal structure to 
resemble these processors. Instead we used the static power 
estimates from our models for the hardware configurations of 
the processors. The parameter configurations for our models 
are set based on published Intel and Alpha 21264 parameters 
[13, 141. 

The power breakdowns track fairly well. For example, 
the Intel data in Table 4 is an exact or near match for several 
units. These include the data caches, instruction fetch and 
out-of-order control logic. The average difference between 
the power consumption of our modeled structures and the 
reported data was 13.3% for the Intel processor. 

The relative power proportions for the Alpha 21264 are 
again similar to the reported data, with an average difference 
of 10.7%. 

One unit which shows some inaccuracy in our current 
model is the global clock power for the Intel processor; our 
model predicts it to be 10% of total chip power, while the 
published data suggests it is less: 8%. This difference could 
be because the clock power model we use is based on an 
aggressive H-tree style that was used in Alpha 21264 [lo], 
but not in the Intel processor. 

The Alpha 21264 has a significantly higher percentage of 
total clock power than Intel: 34% for the Alpha compared 
to 8% for the Intel processor. The main reason for this large 
difference is simply the method of accounting that is used 
for clock power by this two companies. The clock power cat- 
egory for 21264 includes all clock capacitance including the 
clock nodes within individual units. On the other hand, the 
Intel method for clock power accounting only counts clock 
power as the global clock network. Clock nodes that are 
internal to various hardware structures are counted towards 

1024x10 N/A 
1024x3 512x4 

4096x2 N/A 
4096x2 N/A 
1K entry 512 entry 
2-way 4-way 

12 N/A 

the power dissipation of those units. When we model these 
two different chips, we adjust our clock power accounting 
method to match that of the respective company’s data re- 
porting. 

Finally, note that the power proportions we discuss here 
are normalized to the hardware structures that we consider. 
For example, since we do not model Intel’s complex x86 to 
micro-op decoding, we do not report the instruction decode 
unit power consumption, which consumes 14% of the chip 
power. 

Feature Size .35um .35um 
Vdd 2.2v 3.3v 
MHz 600 200 

3.3 Validation 3: Max power consumption for three CPUs 

.35um 
3.3v 
200 

Processor I Abha  

Physical Registers 2~80-1NT I 72-FP 
Memory Order Queue 
Fetch width per cycle 
Decode width per cycle 
Issue width per cycle 
Commit width per cycle 
Functional Units 

32 
4 
4 
6 
4 
4 Int 
2 F P  

ch Predictil 

entium El-EZ-l 
20 UOPS 

40 UOPs 

20 
3 
6 
3 
3 
4 Int 
1 FP 

which we compare the published maximum power numbers 
for three commercial microprocessors with the values pro- 
duced by our models for similar configurations. This allows 
us to evaluate both the relative and absolute accuracy of our 
power models. While such a comparison is difficult without 
exact process parameter information, general power trends 
can be seen based on the hardware organizations of these 
machines. Table 6 describes the details of the three proces- 
sors that we consider. 

Figure 6 shows the results for the maximum power dis- 
sipation for the three processors that we considered. In 
all three cases, Wattch’s modeled power consumption was 
less than the reported power consumptions, on average 30% 
lower. There are a few reasons for this systematic under- 
estimation. First, we have concentrated on the units that 

2-way 

2-way 
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Figure 6: Maximum power numbers for three processors: 
Model and Reported. 

are most immediately important for architects to consider, 
neglecting 1/0 circuitry, fuse and test circuits, and other 
miscellaneous logic. Second, circuit implementation tech- 
niques, transistor sizings, and process parameters will vary 
from company to company. On the other hand, the models 
are general enough that they could be tuned to a particular 
processor’s implementation details. Although these results 
can and will be improved on, it is reassuring to see that 
the trends already track published data for several high-end 
commercial processors. 

3.4 Validation: Summary 

We have presented details on the power models and sim- 
ulator infrastructure required to perform architectural-level 
power analysis. We have verified these power models against 
industrial circuits and found our results to be generally 
within 10% for low-level capacitance estimates. We have 
also shown the relative accuracy of the models, which is es- 
pecially important for architectural and compiler research 
on tradeoffs between different structures, is within 10-13% 
on average. 

One limitation of our models is that they do not nec- 
essarily model all of the miscellaneous logic present in real 
microprocessors. Furthermore, different circuit design styles 
can lead to different results. Hence, the power models will 
not necessarily predict maximum power dissipation of cus- 
tom microprocessors. The methodology for modeling this 
extra logic or other circuit design styles is the same as what 
we have done thus far; there is no inherent limitation to the 
models that prevents this additional hardware from being 
considered. Another limitation of the models is that the 
most up-to-date industrial fabrication data is not available 
in the public-domain, which can lead to variations in the 
results. The models will be most accurate when comparing 
CPUs of similar fabrication technology. This is reasonable 
for architects considering tradeoffs on a particular design 
problem, where the fab technology is likely to be a fixed 
factor. 

4 Case Studies 

In this section, we provide three case studies that demon- 
strate how Wattch can be used to perform architectural or 
compiler research. When performing power studies, a vari- 
ety of metrics are important depending on the goals. Our 
simulator provides results for several of these metrics: 

Power: The average and maximum per-cycle power 
consumption of the processor are important because 

power translates directly into heat. With on-chip 
thermal sensors, techniques such as instruction cache 
throttling can be used to reduce the number of cy- 
cles in which the power consumption is significantly 
above the average [23]. Large cycle-by-cycle swings in 
the power dissipation (i.e.] power glitches) are also im- 
portant because they cause reliability problems. Our 
cycle-level power simulator is capable of analyzing 
these types of problems. 

Performance: The performance ramifications of an ar- 
chitectural proposal, whether positive or negative, are 
important for any architecture study. With Wattch, 
performance is measured in terms of number of cycles 
for program execution. 

Energy: The overall energy consumption of a program 
is equal to power dissipation multiplied by the execu- 
tion time. Overall energy consumption is important 
for portable and embedded processors, where battery 
life is a key concern. 

Energy-Delay Product: 
proposed by Gonzalez and Horowitz [12], multiplies en- 
ergy consumption and overall delay into a single met- 
ric. This produces a metric that does not give unwar- 
ranted preference to solutions that are either (1) very 
low-energy but very slow, or (2) very fast but very high 
power. 

The energy-delay product, . 

In the following subsections we present three case stud- 
ies which demonstrate how the simulator infrastructure can 
be used for architecture and compiler research studies. The 
case studies illustrate the three possibilities shown in Figure 
1. The main point of these case studies is to demonstrate 
the methodology for rapid exploration of these ideas, rather 
than to give details on each of the examples themselves. Be- 
fore getting into the case studies, we explain our simulation 
methodology, baseline hardware configuration, and bench- 
marks. 

4.1 Simulation Model Parameters 

Unless stated otherwise, our results in this section model 
a processor with the configuration parameters shown in 
Table 7. These baseline configuration parameters roughly 
match those of the Alpha 21264 processor. The main dif- 
ference is that the 21264 has a separate active list, issue 
queue, and rename register file while the Simplescalar sim- 
ulator uses a unified instruction window called an RUU. For 
technology parameters, we use the process parameters for 
a .35um process at 6OOMHz. In this section, we use Sec- 
tion 2.2.1’s aggressive clock gating style (linear scaling with 
number of active ports) for all results. 

4.1.1 Benchmark Applications 

We chose to evaluate our ideas on programs from the 
SPECint95 and SPECfp95 benchmark suites. SPEC95 pro- 
grams are representative of a wide mix of current integer and 
floating-point codes. We have compiled the benchmarks for 
the Alpha instruction set using the Compaq Alpha cc com- 
piler with the following optimization options as specified by 
the SPEC Makefile: -migrate -stdl - 0 5  -if0 -nonshared. 

For each program, we simulate 200M instructions. We 
select a 200M instruction window not at the beginning of 
the program by using warmup periods as discussed in [24]. 
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Parameter I Value 

L1 data-cache 

L1 instruction-cache 

L2 

Memory 
TLBs 

Processor Core 
RUU size I 64 instructions 

; 
32B blocks, 1 cycle latency 
64K, 2-way (LRU) 
32B blocks, 1 cycle latency 
Unified, 2M, 4-way (LRU) 
32B blocks, 12-cycle latency 
100 cycles 
128 entry, fully associative 
30-cycle miss latency 

LSQ size 
Fetch Queue Size 
Fetch width 
Decode width 
Issue width 
Commit width 
Functional Units 

Branch Predictor 

32 instructions 
8 instructions 
4 instructions/cycle 
4 instructions/cycle 
4 instructions/cycle (out-of-order) 
4 instructions/cycle (in-order) 
4 Integer ALUs 
1 integer multiply/divide 
1 FP add, 1 FP multiply 
1 FP dividelsart 

BTB 
Return-address stack 

, I  

Branch Prediction 
I Combined, Bimodal 4K table 

2-Level 1K table, lObit history 
4K chooser 
1024-entry, 2-way 
32-entry 

4.2 A Microarchitectural Exploration 

One important application of Wattch is for microarchitec- 
tural tradeoff studies that account for both performance and 
power. For example, users may be interested in evaluat- 
ing sizing tradeoffs between different hardware structures. 
Clearly, the architectural decisions made when power is con- 
sidered may differ from those based solely on performance. 
One possible study which we consider in this section is to 
evaluate size tradeoffs between the RUU and data cache. 
This example demonstrates scenario A from Figure 1. The 
baseline processor configuration is that from Table 7 and our 
simulations vary the sizes of the RUU and D-cache. For all 
simulations, the Load/Store Queue is set to half the size of 
the RUU. We have collected these results for the SPECint95 
and several of the SPECfp95 benchmarks. As we will dis- 
cuss below, the results typically fall into two main categories 
of behavior, and we present results for one representative 
benchmark from each category: gcc and turb3d. 

Figures 7 ,8  and 9 show the results for the gcc benchmark. 
The three graphs show performance (in instructions per cy- 
cle), average power dissipation, and energy-delay product 
for the benchmark. Similarly, Figures 10, 11 and 12 show 
the same results for the turb3d benchmark. 

The IPC graphs show that gcc gets significant perfor- 
mance benefit from increasing the data cache size. It only 
begins to level off a t  roughly 64KB. In contrast, turbdd gets 
relatively little performance benefit from increasing the data 
cache size, but is highly sensitive to increases in the RUU 
size. 

Although the performance contours are fairly different 
for these two benchmarks, the power contours shown in Fig- 
ures 8 and 11 are quite similar. Both show steady increases 

in average power as the size of either unit is increased. 
Despite the similarity in the average power graph, the 

two benchmarks do have strikingly different energy charac- 
teristics, as shown in Figures 9 and 12. The energy-delay 
product combines performance and power consumption into 
a single metric in which lower values are considered bet- 
ter both from a power and performance standpoint. The 
energy-delay product curve for gcc reaches its optimal point 
for moderate (64KB) caches and small RUUs. This indi- 
cates that although large caches continue to offer gcc small 
performance improvements, their contribdtion to increased 
power begins to outweigh the performance increase. RUU 
size offers little benefit to gcc from either a performance or 
energy-delay standpoint. 

For turbdd, energy-delay increases monotonically with 
cache size, reflecting the fact that larger caches draw more 
power and yet offer this benchmark little performance im- 
provement in return. Moderate-sized RUU’s offer the opti- 
mal energy-delay for turbdd, but the valley in the graph is 
not as pronounced as for gcc. 

Overall, the point of this case study is to demonstrate 
how the power simulator and the resulting graphs shown 
can help explore tradeoff points taking into account both 
power and performance related metrics. 

4.3 

This section gives an example of how a high-level power sim- 
ulation can be of use to compiler writers as well. We con- 
sider a simple case study which examines the effects of loop 
unrolling on processor power dissipation. Loop unrolling is 
a well-known compiler technique that extends the size of 
loop bodies by replicating the body n times, where n is the 
unrolling factor. The loop exit condition is adjusted accord- 
ingly. In this section, we consider a simple matrix multiply 
benchmark with 200x200 entry matrices. We have used the 
Compaq Alpha cc compiler to unroll the main loops in the 
benchmark, and we consider several unrolling factors. 

Figures 13 shows the results for the execution time and 
power/energy results for loop unrolling. As one would hope, 
the execution time and the number of total instructions com- 
mitted decreases. This is because loop unrolling reduces 
loop overhead and address calculation instructions. The 
power results are more complicated, however, which makes 
the tradeoffs interesting in a power-aware compiler. 

Figure 14 shows a breakdown of the power dissipa- 
tion of individual processor units normalized to the case 
with no unrolling. There are two important side-effects 
of loop unrolling. First, loop unrolling leads to decreased 
branch predictor accuracy, because the branch predictor has 
fewer branch accesses to “warm-up” the predictors and be- 
cause mispredicting the final fall-through branch represents 
a larger fraction of total predictions. 

Another side-effect of loop unrolling is that removing 
branches leads to a more efficient front-end. The fetch unit 
is able to fetch large basic blocks without being interrupted 
by taken branches. This, in turn, provides more work for 
the renaming unit and fills up the RUU faster. In fact, with 
this example the RUU becomes full for an average of 85% of 
the execution cycles after we move from an unrolling factor 
of 2 to 4. The fetch queue, which connects the fetch unit 
to the renaming hardware is also affected, and is full for an 
average of 73% of the cycles at an unrolling factor of 4. 

Thus, the average fetch unit power dissipation decreases 
for two reasons. First, because the branch prediction accu- 
racy has decreased, there are more misprediction stall cycles 
in which no instructions are fetched. The second reason is 
that at larger unrolling factors, the fetch unit is stalled dur- 
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Figure 7: IPC for gcc. Figure 8: Power for gcc. Figure 9: Energy-Delay Product for gcc. 

Figure 10: IPC for turb3d Figure 11: Power for turb3d. 

ing cycles when the instruction queue ani RUU are full. The 
reduced number of branch instructions also significantly re- 
duces the power dissipation of the branch prediction hard- 
ware. (Note that these stall cycles would increase the to- 
tal energy required to run the full program, but this graph 
shows average power.) 

The renaming hardware, on the other hand, shows a 
small increase in power dissipation at an unrolling factor of 
two. This is because the front-end is operating at full-tilt, 
sending more instructions to the renamer per cycle. As the 
fetch unit starts to experience more stalls with unrolling fac- 
tors of 4 and beyond, the renamer unit also begins to remain 
idle more frequently, leading to lower power dissipation. 

While the varied power trends in each unit are some- 
what complicated, the overall picture is best seen in Figure 
13. The total instruction count for the program continues 
to decrease steadily for larger unrolling factors, even though 
the execution time tends to level out after unrolling by four. 
The combined effect of this is that energy-delay product con- 
tinues to decrease slightly for larger unrolling factors, even 
though execution time does not. Thus, a power-aware com- 
piler might unroll more aggressively than other compilers. 
This simple example is intended to highlight the fact that 
design choices are slightly different when power metrics are 
taken into account; Wattch is intended to help explore these 
tradeoffs. 

4.4 Memoing To Save Power 

Another important application for the Wattch infrastructure 
is in evaluating the potential hardware benefits of hardware 
optimizations. In this section, we consider result memoing, 

Figure 12: Energy-Delay Product for 
turb3d. 

a technique that [as been previously explored for perfor- 
mance benefits 19, 251. Memoing is the idea of storing the 
inputs and outputs of long-latency operations and re-using 
the output if the same inputs are encountered again. The 
memo table is looked up in parallel with the first cycle of 
computation, and the computation halts if a hit is encoun- 
tered. Thus memoing can reduce multi-cycle operations to 
one-cycle when there is a hit in the memo table. 

We consider the power and performance benefits of this 
technique. Power consumption in the floating point units 
is reduced during memo table hits. On the other hand, 
the memo tables dissipate additional power. We base our 
analysis on [9], which showed that a small 32-entry, 4-way 
set associative table is capable of achieving reasonable hit 
rates. 

Azam et al. have investigated a similar technique for sav- 
ing power within integer multipliers [l]. Their work did not 
model the additional power dissipation of reads and writes 
to the cache structure (only the tag comparison logic) and 
concentrated on integer and multimedia benchmarks. The 
point of this section is to demonstrate the methodology for 
using Wattch to perform such a study. 

We have inserted memo tables in parallel with the 
floating-point and integer multipliers (4 cycles), the float- 
ing point adder (4 cycles), and the floating point-divider 
(16-cycles, unpipelined). Citron’s study examined the 
SPECfp95, Perfect, and a selection of multimedia and DSP 
applications finding that the multimedia applications have 
the lowest local entropy in result values and hence the high- 
est hit rates. Since Citron’s multimedia benchmarks were 
not readily available, we have examined a selection of bench- 
marks from the SPECfp95 suite. As in Citron’s work, we 
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Figure 14: Detailed Breakdown of Power Dissipation. 

do not enter “trivial” operations such as multiplyfdivide by 
0/1 into the table, because we assume that simpler hardware 
could recognize and capitalize on these opportunities. 

The modifications to the power simulator infrastructure 
for the new hardware were not complex. The behavior of 
the memo tables was implemented and memo-tabZe-lookup 
and memo-table-write routines were inserted in the simula- 
tor pipeline. Both of these routines also serve as the access 
counters for the memo tables. The memo tables were mod- 
eled as simple cache array structures using the same power 
models that the other array structures use. 

Figure 15 shows the performance and power results for 
the memoing technique. The benchmarks showed an aver- 
age speedup of 1.7% and an average power improvement of 
5.4%. The larger power benefits of the memoing techniques 
are most likely due to the dynamically scheduled out-of- 
order execution core of the simulated processor. In an out- 
of-order processor, the delay of long-latency operations can 
often be hidden by finding other instructions to execute, thus 
the performance benefits of removing long-latency opera- 
tions are not too large. However, stopping these operations 
after one cycle of execution can have a significant impact on 

8% 

6% 

4% 

2% 

0% 
aPPlu fpppp hydro2d mgrid turbfd 

Figure 15: Performance and Power Effects of Memoing Tech- 
nique. 

power dissipation. This is most apparent in mgrid, which 
shows almost no performance benefit, but just over an 8% 
power benefit. 

5 Discussion and Conclusions 

The goal of this work is to provide a simulator framework 
that can be used to evaluate a wide range of architectural 
and compiler techniques. Wattch has the benefit of low-level 
validation against industry circuits, while opening up power 
modeling to researchers at abstraction levels above circuits 
and schematics. 

Wattch still has room for improvement and we hope that 
exposure and distribution to the architectural community 
will lead to the development of additional modules. Addi- 
tional accuracy validations are important, and we plan to 
compare the models against lower-level tools on more de- 
signs. Speed-accuracy tradeoffs for signal activity factors 
are another area we will consider in the future. 

Extensions to the simulator infrastructure and the 
creation of additional modules are topics of future re- 
search. The simulator infrastructure could be extended 
to consider different hardware organization styles. Ad- 
ditional power modules could be developed with differ- 
ent circuit-implementation styles targeting different power- 
performance targets. Modeling of off-chip communication 
is also an important module to be developed. Additional 
work can also focus on more automatic transistor sizing and 
the effects of future process technologies, including leakage 
power dissipation. 

We see a wide range of power studies that can be per- 
formed with Wattch. First, many old techniques may take 
on a new light when power is considered as a metric. The 
memoing case study described in Section 4.4 is one example 
of this. Other interesting techniques to study with power as 
a metric would be value-prediction [ll] and instruction pre- 
processing [15]. The effects of the compiler techniques and 
operating system control on power dissipation, including the 
use of power dissipation as feedback in a profiling compiler, 
are another possible research area. Finally, Wattch can be 
used in power studies which explore techniques that focus on 
micro-architectural solutions to lower-level power problems. 
One example of this is dynamic thermal management tech- 
niques to reduce power dissipation when thermal emergen- 
cies occur due to high-power sections of applications. An- 
other example would be the evaluation and development of 
solutions for large, short-term, current spikes due to clock 
gating, which can cause problems with chip reliability. 
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Exploring these classes of ideas in the power domain 
will open up new research possibilities for architects. The 
Wattch simulator infrastructure described in this paper of- 
fers a starting point for such research efforts. 
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