
ECS 154B

Computer Architecture II

Winter 2009

Multi-Cycle MIPS

5.5

Adapted from slides by Mary Jane Irwin, Penn State



3

Reasons for Multi-cycle Operation

• Single cycle CPU wasteful

– Clock period must accommodate slowest instruction

– Multiple functional units (memory, adders)

• Multiple cycle CPU better

– Clock period is determined by longest operation

– Instructions can take a different number of clock 

cycles to complete

– Functional units can be shared

• Reduces chip area

• However, only one use per clock cycle

– Prepares you for introduction of pipelining



5

Multi-cycle Approach

• Let instructions take more than one clock cycle

– Break instruction into steps that occur in one cycle

• Balance steps to minimize clock period

• Each resource used only once per step

– Not all instructions need every step

• Reuse resources to save chip area

– ALU used to

• calculate PC+4

• memory address

• branch destination

• instruction operation

– Single memory for instructions and data



6

Multi-cycle Approach

• Single cycle CPU

• Multi-cycle CPU

– Requires state elements to hold intermediate values

State

element

State

element
Combinational

logic

clock

one clock cycle or instruction

State

Element

A

Combinational

logic

State

Element

B

…

State

Element

N-1

Combinational

logic

State

Element

N

clock

one instruction

…

one clock cycle



8

Multi-cycle Approach

• Each cycle must
– Store values needed in a later cycle of the current instruction in 

an internal register. All except IR hold data for one clock cycle.

IR – Instruction Register MDR – Memory Data Register

A, B – Register File data ALUOut – ALU Result Register

– Store values needed by subsequent instructions in the register 
file or memory 

Address

Read Data

(Instr. or Data)

Memory

P
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A
B

A
L

U
O

u
t



10

Multi-cycle Control

• New control signals needed
– PCWriteCond is set during a beq instruction

• Formerly called Branch signal

– PCWrite is set to write PC
• Unconditional write signal needed during Fetch cycle

– IorD controls what address is used for the memory
• PC holds address for fetch cycle

• ALUOut holds address for memory access instructions

– IRWrite controls when the IR is written

– ALUSrcA control one input to ALU
• rs register for most operations

• PC for branch instructions

• Old ALUSrc renamed ALUSrcB and expanded



11

Multi-cycle Control and Datapath

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



12

Multi-cycle Steps

• Instruction Fetch

• Decode and Register Fetch

• Execution

• Memory Access

• Write Register File



14

(1) Instruction Fetch Cycle

• Read instruction from memory

– IR = M[PC]

• Increment PC using ALU

– PC = PC + 4

• Control signals must

– Select memory address source

– Enable memory reading

– Enable PC and IR write

– Select PC source

– Select ALU input as PC and constant 4

– Select ALU operation (addition)



15

Instruction Fetch

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



17

(2) Decode and Register Fetch Cycle

• Read register values

– A = R[rs], B = R[rt]

• Compute branch destination

– ALUOut = PC + sign extended immediate value

• Prepare for next step based on instruction

• Control signals must

– Select ALU inputs as PC and immediate value

– Select ALU operation (addition)



18

Decode and Register Fetch

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



20

(3) Execution Cycle

• Functionality varies with instructions
– Memory reference

• Compute address

• ALUOut = A + sign extended immediate

– R-type

• Compute operation

• ALUOut = A op B

– Branch

• Store new PC if needed

• PC = ALUOut

• ALUOut contains branch destination from previous cycle

• Control signals will depend on instruction type
– Mem/R-type: Select ALU input and operation

– Branch: Select PC source and set PC write control signal if 
needed



21

Execute Branch

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



23

(4) Memory Access Cycle

• Functionality varies with instructions

– Memory reference

• Read memory (lw) or write memory (sw)

• MDR = M[ALUOut] or M[ALUOut] = B

– R-type

• Write result to register file

• R[rd] = ALUOut

• Control signals will depend on instruction type

– Memory reference

• Enable memory read or write

• Select memory address

– R-type

• Select register file write address and data

• Enable register file write



24

R-Type “Memory Access”

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



26

(5) Write Register File Cycle

• Only used by load instructions

• Write memory value to register

– Reg[rt] = MDR

• Control signals must

– Enable register file write

– Select register file write address and data



27

lw Write Registers

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1


