Adapting Cache Line Size to Application Behavior *

Alexander V. Veidenbaum , Weiyu Tang, Rajesh Gupta,
Alexandru Nicolau, Xiaomei Ji
Dept. of Information and Computer Science
444 Computer Science, Building 302
University of California Irvine
Irvine, CA 92697-3425
alexv@ics.uci.edu

Abstract

A cache line size has a significant effect on miss rate and
memory traffic. Today’s computers use a fixed line size,
typically 32B, which may not be optimal for a given ap-
plication. Optimal size may also change during applica-
tion execution. This paper describes a cache in which
the line (fetch) size is continuously adjusted by hard-
ware based on observed application accesses to the line.
The approach can improve the miss rate, even over the
optimal for the fixed line size, as well as significantly
reduce the memory traffic.

1 Introduction

A design of a computer system is an optimization prob-
lem involving of a number of dependent variables in
a very large design space. The variables include sys-
tem performance, hardware constraints, cost, and ar-
chitectural parameters. For general-purpose systems,
performance 1s evaluated with respect to a particular
benchmark program or program suite for a given set
of design parameters. To simplify the problem, depen-
dences between parameters are frequently ignored. A
fixed set of design parameters is selected for implemen-
tation based on achieved performance and adherence to
the constraints.

Designs are evaluated via a time-consuming opti-
mization process based on simulation and the design
space is never completely explored. The optimization
process searches the design space guided by manual pa-
rameter selection based on past experience. The re-
sulting design is ”optimized” for an average behavior

*This work was supported in part by the DARPA ITO under Grant
DABT63-98-C-0045.

of the benchmarks used. It thus comes as no surprise
that such a design is not optimal for a specific appli-
cation. However, the expectation is that the loss of
performance is small compared to optimal. Experience
has shown that this is not always the case. This leads
to design of special-purpose systems when a significant
gain in performance (or cost) can be made, as in DSP
or graphics applications.

Another problem with a set of ”fixed” design param-
eters is the fact that application behavior changes dur-
ing execution. Thus even within an application the opti-
mal parameter choice is not fixed but 1s time-dependent.
This leads to another form of performance loss, but
again the expectation is that the loss is small compared
to optimal. This time-domain aspect of performance
is much less understood and explored than the aver-
age performance, although it has been investigated in
the past at IBM and CSRD for network behavior and,
recently, by ourselves and [1], among others, for the
memory hierarchy.

The design of a memory hierarchy for high perfor-
mance, general-purpose systems is central to achieving
the desired performance levels. Its design parameters,
such as cache size, line size, associativity, fetch and
write policy, coherence mechanism, etc. are selected us-
ing the process sketched out above. Technological con-
straints usually play a primary role in the selection. It
is a well known fact in the application community that
a memory hierarchy can fail completely on some appli-
cations whose behavior is different from those present
in the workload used to optimize the design. However,
given the design approach that has to arrive at a fixed
set of parameters this is unavoidable.

An alternative approach is to allow a design parame-
ter to take on a range of values and provide a mechanism
for changing towards a more optimal parameter value
dynamically during execution. The same approach can
also be applied to an algorithm or a policy used by
hardware. A general term ”adaptivity” will be used to
refer to this dynamic approach. Adaptivity can poten-
tially allow each application to approach much closer an

optimal architecture/hardware configuration and thus
an optimal performance. It can also allow the system
resources to be better utilized and shared within and
across applications.

Adaptivity is not a new concept in computer systems
and has been applied before in various forms. Selected
examples of its use are:

Adaptive routing pioneered by ARPANET in com-
puter networks and, more recently, applied to multi-
processor interconnection networks [2, 3] to avoid con-
gestion and route messages faster to their destination.

Adaptive traffic throttling for interconnection net-
works [3]. [13] show that ”optimal” limit varies and
suggest admitting messages into the network adaptively
based on current network behavior.

Adaptive cache control or coherence protocol choice

were proposed and investigated in the FLASH and JUMP-

1 projects [5, 12].

Adapting branch history length in branch predictors
was proposed in [8] since optimal history length was
shown to vary significantly among programs.

Adaptive adjustment of data prefetch length in hard-
ware was shown to be advantageous [4], while in [6] the
prefetch lookahead distance was adjusted dynamically
either purely in hardware or with compiler assistance.
[10] is another version of selective prefetch, closest to
our work in many ways but also quite different. It 1s
summarized and compared to our approach in Sec. 6.

Much of the previous work mentioned above addressed
a specific problem via adaptivity although not always
via adaptive hardware. Adaptivity has received a lot
of attention recently with a drastic increase in VLSI
complexity and transistor count as well as advances in
reconfigurable logic. The research presented here ad-
dresses the use of automatic, dynamic, hardware adap-
tivity in the design of a first-level (L1) data cache. Tt is
a part of a more general effort, the Adaptive Memory
Reconfiguration and Management Project (AMRM) at
the University of California-Irvine, to apply adaptivity
to the design of a memory hierarchy. This paper, how-
ever, will only deal with the L1 data cache adaptivity.

There are several possible L1 cache parameters one
can dynamically adapt. They include cache size, line
size, write policy, write buffering, prefetching, etc. Some
of these are only adaptable in theory. For instance, the
cache size is largely determined by technology param-
eters and desired latency and can only be adaptively
decreased. This does not make a lot of sense, except
possibly as a mechanism to reduce its latency and, as a
result, increase the processor clock rate which the cache
largely determines, as proposed in [1]. Write policy can
be switched between write-through and write-back, in
fact the Intel Pentium®™ architecture [7] already al-
lows this on a per-page basis but not automatically.
However, the parameter that is likely to deliver a sig-

nificant performance improvement while being feasible
to implement adaptively is the cache line size. This pa-
per introduces a cache design with a hardware-adaptive
line size. To our knowledge, such an organization has
not been previously explored.

An automatic hardware adaptive system needs to
monitor system behavior and performance and modify
the hardware configuration based on the observed be-
havior. We chose to use past behavior to predict the
future hardware configuration for a given program and
adapt the configuration accordingly. In general, the ar-
chitecture for adaptivity requires the following capabil-
ities:

e An ability to modify hardware parameters dynam-

ically

e An ability to monitor performance as a function
of program execution and collect statistics

e An adaptivity algorithm that monitors the statis-
tics and decides when and how to change the hard-
ware configuration.

The goal of this research was to investigate the poten-
tial of such an L1 cache architecture, evaluate its per-
formance and design, and study alternatives. An ad-
ditional requirement was to seek an architecture that
did not have a significant hardware overhead and did
not affect the system clock rate. Such an architecture
is presented here and its performance evaluated using
execution-driven simulation of several standard bench-
marks and compared with a non-adaptive cache.

The rest of this paper is organized as follows. A
general system architecture, benchmarks used, and the
simulation environment are presented first. Cache be-
havior for non-adaptive system is shown next support-
ing the claim for the need to use adaptivity. A cache
architecture with adaptive cache line size is described
next, followed by the adaptivity algorithm and its var-
ious design alternatives. Lastly, the performance eval-
uation of the adaptive system is presented followed by
conclusions.

2 Experimental Methodology

The benchmark choice for performance evaluation con-
sists of selected SPEC92 and SPECY95 integer and floating-

point codes and an additional floating-point code, ARC3D.

The benchmark description and some execution statis-
tics are shown in Table 1. Except for GCC and ARC3D,
a complete benchmark is executed, traced, and simu-
lated. For GCC only subroutine CC1 and for ARC3D
only subroutine STEP are traced and simulated but
these account for most of the execution time. The four
SPEC95 codes were simulated for the first 500M refer-
ences only. ARC3D was chosen because it has a sig-
nificant fraction of memory accesses with long strides.

Program Input Instr | Memory
Name (M) (M)
GCC stmt.i 88 31
SC loadal 862.6 128.6
LI li-input.lsp 10,145 5,367
FPPPP natoms 1335.1 672.6
ARC3D - 64.2 24.2
APSI apsi.an 1324.1 500
IJPEG | specmun.ppm | 1718.5 500
PERL scrabbl.pl 1264.9 500
WAVE waveb.in 1481.8 500

Table 1: Benchmark Characteristics

Inputs for SPEC codes used are also listed in the ta-
ble. The benchmarks were compiled on an SGI system
for an R4000 processor using MIPSPro compilers with
the following flags: -n32 (MIPS-IIT instruction set, 32b
executable) and -O2 flag. They were used for execution-
driven cache and memory simulation of the architecture
described in this paper. The cache simulator was in-
voked and driven via MINT-3 [VeFo94] which models a
single-issue, statically-scheduled processor.

A system architecture used in this study consists of
a processor, the L1 cache with adaptive line size, and
memory. We are not modeling the execution timing
in this study and therefore the processor instruction
timing, lack of an L2 cache, blocking L1 cache behavior,
etc. are orthogonal to the study. Given the benchmarks
used and current processor implementations, a 16KB
cache is studied. The cache is direct-mapped and uses
a write-back policy. The line sizes ranges from 8 to 256
bytes.

Primary performance metrics used in the paper are
a cache miss rate and a memory-to-L1 data fetch traffic
volume, either averaged over the execution of a program
or shown in the time domain. In the latter case, each
data value corresponds to an average behavior during a
fixed interval of N memory references. N is chosen for
presentation purposes only to make data graphs read-
able. The two main metrics are augmented with statis-
tics specific to line size adaptivity.

3 Lack of "Optimal” Cache Line size

It has been shown in the past that an optimal line size,
the size producing minimal miss rate, varies from bench-
mark to benchmark. To demonstrate this for our bench-
mark suite and support the claimed need for adaptiv-
ity, a 16K cache with a fixed line size ranging from 8 to
256Bytes 1s simulated. Similar results for SPEC95 have
been shown in [9]. For each benchmark, the ”optimal”
miss rate was determined and a normalized miss rate

-

r

[}
1

O B16 032 064 126 m256
200 A
i
Q
130 {
£
o100]
T
450
=z
D' T T
gec fompe 0 soooarc3d ipeg perl wave apsi

Figure 1: Normalized miss rate difference Ay

difference Ay was computed for all possible line sizes
as

Ay = HeMert 4 100%

o

The normalized miss rate difference for all benchmarks
is shown in Figure 3. A missing bar indicates a 0%
difference and corresponds to the optimal line size.
The results show that there is no single, ”optimal”
line size for all benchmarks. In fact, an optimum may
even be outside the range of line sizes chosen for the
study. The loss of performance compared to ”optimal”
can be significant. Consider a 32Byte line typical of
today’s processors, such as Pentium or DEC Alpha. A
large miss rate reduction is possible in this case: 100%

for SC and 25% for FPPPP, PERL, and WAVE.

Figure 2: Distribution of optimal line size in ”time”

Next, consider the intra-benchmark cache behavior.
In each interval of 100K memory references a line size
resulting in minimal miss rate is determined. Figure 2
shows the resulting distribution of optimal sizes in the
”time-domain” for GCC. As can be seen in the figure,
no single ”optimal” line size exists within a benchmark
as well. The optimal size is 32B in approximately half

of the intervals, but it is 16B about 15% of the time
and 64B approximately 30% of the time. Even 128B
line 1s optimal a fraction of the time. Results for other
benchmarks are not shown for lack of space, but their
behavior is similar and strongly supports the need for
adaptivity within a benchmark.

4 A Cache Organization with Adaptive Line Size

Given the need and possible performance advantages of
adapting the cache line size, an architecture that can
support the adaptivity is described next. The architec-
ture has many parameters that can significantly influ-
ence performance. Qur a-priori concerns were an in-
crease 1n tag lookup time and the memory bandwidth
and thus our choices described below are primarily in-
fluenced by the desire to keep these low.

As in the case of cache size, the line size is a built-
in hardware parameter. It determines the RAM size
used and the data path width, both of which are opti-
mized for some fixed line size. Thus it cannot be ”re-
configured” in a standard sense as this would require
changing the width of RAM blocks or redundancy and
multiplexing. Instead, our approach is to have a cache
with a small, ”physical line, say 8Bytes (1 word), but to
fetch and replace a variable number of words simultane-
ously as a ”virtual line”. The MIPS R3000 architecture
[11] had a cache implementation with such a variable-
size line, but the line size could only be set at hardware
reset or power-up. A similar underlying hardware ar-
chitecture is assumed, but allowing the line size to be
changed dynamically for each (virtual) line in the L1
cache.

The issues to be resolved in the design of such a
cache are:

e when to change the size

e how to change it

e what information to keep and where

e statistics needed to make the change decision

We propose to change the size on line replacement
and either reduce or increase the size as follows:

e reduce the size if some fetched words were unused

e increase the size if an ”adjacent” line was present
in the cache. The ”adjacent” line is a line of the
same size that would be part of a larger-size line.

To make the decision, the virtual line usage statistics
will be kept while 1t is in the L1 cache. Thus they
reflect the line behavior from a latest miss fetch to the
subsequent replacement. In particular, for each word in
the line, its usage will be monitored with a counter while
in the cache. An additional bit monitors the presence of

the adjacent line during the line’s residence in the cache.
On line replacement, the statistics are used to decide
what the line size should be next time it is fetched.
The change can only be 2z or 1/2z of the current size
in this paper.

This approach thus requires an additional memory
to keep the statistics for each line. In memory we need:

e current virtual line size - log2 L, where L is the
number of line sizes used

e a counter for tracking the rate of change

Each ”physical” line, e. g. each 8B word, in the
cache needs the following items added to the standard
tag:

e current virtual line size
e 7adjacent” bit
e the usage counter

One concern is the effect on system clock and any
additional delays caused by adaptivity. Our approach
minimizes these effects by adjusting the line size on re-
placement only. Thus the tag look up is not affected and
can still be done in under a single clock cycle. There-
fore, hit access time is not affected. Miss access time 1s
a different story and will depend on how we use the line
size information from memory. Finally, an additional
memory traffic is generated on replacing a clean line
when its size changes because it needs to be updated in
memory. The effect of this on total memory traffic is
shown later in the paper.

Finally, an initial or default virtual line size needs to
be defined for cold starts. This line size can potentially
have an effect on performance, but it should not be a
significant one as it is only used on cold starts. However,
as with some of the other choices we made in designing
this architecture, it possible to set the initial line size
per benchmark with compiler’s help. It is also possible
to rely more heavily on the default size to eliminate
the need to update the size in memory more frequently.
We will not pursue these issues further in the paper,
however.

4.1 Line Size Adaptivity Algorithm

The algorithm and some of the alternatives possible in
its design are discussed next. It is assumed that a tag is
associated with each 8B word in cache and the mapping
function to find the addressed word is a standard one.
The current line size (3bits), the adjacent bit, and the
saturating use counter (2 bits) are added to each tag.
The line size can range from 8B to 256B and can only
be increased/decreased by a factor of two. None of the
above has an effect on the tag lookup and thus the hit
case is not discussed here.

Given cache miss address Addr

1. Lookup cache tag at Addr
Returns l5: line size of entry eq at Addr
2. Start miss fetch for line e; at Addr and its size [y
3. If 11 Z 12 Then
4. For each line e; to be replaced Do
5. Get an entry e; for this line and 1t length ;
6. Perform line_size_analysis(e;, {;)
7. If size changes or line is modified Then
8. Write back to memory End
End

9. Else /*decide on the next size for line: */
10. decrease_line_size_request (e3)

End
11. If adjacent cache line of same size is present Then
12. Set adjacent bit for e; and its adjacent line

End

Figure 3: The adaptivity algorithm

The algorithm shown in Figure 3 follows the general
outline of the discussion above. It starts by issuing the
miss fetch request. The line size 1s not known until
the data arrives. During the miss fetch one can read
and store in a buffer of maximum line size the line(s)
which will be replaced and complete the replacement
process when the miss fetch data arrives. The actions
taken at line replacement are discussed below. Several
alternatives in the design of the algorithm are shown
and explained in the text below.

A problem not present in the fixed-size case 1s re-
placement when the size of the miss line is different
from the size of a line(s) to be replaced. Different line
size reconfiguration decisions are made depending on
the relationship between the miss line and the replaced
line sizes. Omne or more lines may be replaced, if the
incoming line size is larger than or equal to the existing
line size. Every cache line to be replaced is analyzed
and its next line size selected using a line size analysis
algorithm shown in Figure 4. When the miss line size is
smaller than the line being replaced, there is a choice of
replacing the entire existing line or replacing only half
of it and leaving the other half in the cache. In the for-
mer case, cache under-utilization may occur since half
of the cache entry may remain unused. In the latter
case, half of the existing line stays in the cache but a
change in the line size occurs not based on the line’s
behavior. The latter approach is used in the algorithm
(line 10) to conserve the memory bandwidth.

The line size analysis algorithm (Figure 4) consists

Input: line e of size { (words wq ... wi—1)

1. If all of the words wg...w;/2_1 OR

all of the wy/5...w;_1 are not used Then

2. decrease_line_size_request(e)
3. If the adjacent line is in the cache Then
4. Reset its adjacent bit
End

5. Elseif adjacent bit is set AND
6. adjacent cache line is not in cache AND
7. most of the entries have low usage

Then
8. increase_line_size_request(e)

End

Figure 4: Next line size analysis algorithm

of two parts. First, the word usage in each half of the
line is checked. The future line size is changed to 1/2x,
if one of the halves is not used and the adjacent line
is reset not to grow if it is in the cache. Otherwise,
if the adjacent line has been present in the cache at
some point then line size needs to be increased. If the
adjacent line is in the cache the increase action can be
delayed until its replacement. If not, given a low usage
of the words in the line its size is increased to 2X. This
last check 1s made in an attempt to reduce frequent line
size changes if the miss rate on the line is already high.
The actual test is 7if 50% of the word usage counters
are < 27.

Finally, there are several alternatives as to when
the actual increase or decrease in the line size occurs.
It does not have to occur immediately when one of
the two functions, decrease_line_size_request(e) or in-
crease_line_size_request(e) , is invoked. This decision
has an effect on performance. Several possible choices
are described next, but other possibilities exist as well.

e Change the line size immediately (direct). Line
size adapts fast, but thrashing may occur.

e Change the line size only after N consecutive in-
crease or decrease requests to prevent thrashing.
An up-down counter or a finite-state machine can
be used to implement this with the state stored in
memory.

e Increase the line size immediately but decrease the
line size only after N consecutive decrease requests
(inc-fast). This alternative works better than the
previous two. Line size 1s increased immediately
to exploit spatial locality and delayed line size de-
crease can prevent loss of spatial locality from ran-

dom events such as conflict misses. A drawback of
this alternative 1s an increase in bandwidth due to
delay in line size decrease.

e Similarly, a decr-fast algorithm can be defined which
decreases the line size immediately, while increas-
ing the size after N consecutive increase requests.

e Apply the inc-fast for a small line size and the decr-
fast mechanism for the large line size (partial-fast).

The last alternative was found to be the most effec-
tive in bandwidth reduction. The performance results
presented in the next section were obtained using the
partial-fast mechanism with N=2.

5 Performance Evaluation

£ -
4 -
40 -
% -
23
w25]
it
S0
15 -
10+
5-
E|-

0236 @126 064 032 W16 08

gee fopop 0 sco arcad ipeq perl wawe apsi

Figure 5: Miss rate vs initial adaptive line size

Let us start by presenting the miss rates for the
adaptive case as a function of initial line size. The re-
sults shown in Figure 5 clearly demonstrate the adap-
tivity working: the miss rates are almost independent
of the initial line size. The miss rate for each bench-
mark does not have a distinct minimum as in the case
of fixed-size lines. This indicates that the initial adap-
tive line size selection is not important, although the
smallest size should, perhaps, be avoided (more on this
below).

The miss rate is not always improved by adaptivity,
however. Figure 6 shows the miss rate for 32B fixed, op-
timal fixed, and 256B adaptive line sizes. In GCC and
PERL the miss rate is lower than in the optimal fixed
case. In LI and ARC3D it is slightly worse, while other
benchmarks have a miss rate noticeably worse than op-
timal.

The reason lies in the nature of the (partial-fast)
algorithm used. It is trying to avoid thrashing and pre-
vent frequent line size increase. The worst results in the

401 B fived-32 Bfived-opt Or-258

N |] el [
oo fopen B =0 arc3d ipen perl wave apsi

Figure 6: Miss rate

adaptive case are obtained for WAVE, APSI, and SC:
benchmarks which in the fixed case achieve best per-
formance with a 256B line. To investigate the effect,
the inc-fast algorithm was used instead, which grows
the line size immediately but decreases it slowly. The
performance of some benchmarks became comparable
to the fixed case, others improved, although not suffi-
ciently.

70
gec —~—
o F |
fpppp
50 rarc3d - |
ﬁ upet]; -
perl e
2 O fwae |
& 30 r 1
>
<
005 e g
0 1 1 1 1
8 16 32 64 128 256

Figure 7: Average line size for adaptive organization

To understand the reasons for the behavior of the
adaptive cache under the part-fast algorithm, the av-
erage line size observed during program execution is
shown Figure 7. The average line size is between 10
and 20Bytes. Overall, the optimal line size 1s also flat
vis a vis the initial line size for all benchmarks. This is
another indication that the adaptivity is working well.

Still, one would expect the average line size for bench-
marks such as SC and FPPPP to become larger with
adaptivity since larger fixed size line have lower miss

rate. It does not happen primarily for two reasons: the
forced decrease in the line size when a shorter line is
miss fetched and a limited definition of adaptivity and
allowed line growth.

14

Line size change rate

g L L L L
8 16 32 64 128 256

Figure 8: % misses producing line size change in GCC

While the average line size may be relatively con-
stant with adaptivity, it does not mean that size change
1s infrequent or that the line size is approximately the
same throughout program execution. Figure 8 shows
the frequency of line size change during the execution of
GCC. It 1s measured as a fraction of miss fetches result-
ing in replacement with a size change. The adjustment
is frequent, with over 20% of all the lines replaced, ei-
ther increasing or decreasing on replacement. As can be
expected, the relative number of increases vs decreases
changes with the initial virtual line size.

160
gcc —-—

140 | s|c+
[

I fpppp |
120 ; ac -

Trafficratio

8 16 32 64 128 256
Figure 9: Fetch traffic ratio R} to same-size fixed case
The last performance metric presented is a normal-

ized memory fetch traffic ratio, R, for each line size [.
It is defined as

13
Rl = Zetert 4 100%

fized
RY is shown in Figure 9. As should be clear from the
above discussion, it was of great concern to us and influ-
enced our adaptive algorithm design a great deal. The
cache to memory ”traffic” counts the total number of
data bytes moved by miss fetches. The effect of adap-
tivity is very pronounced, it automatically reduces the
utilization of the memory interface, one of the critical
memory hierarchy resources.

The traffic i1s significantly reduced for all initial line
sizes, except 8B. For the 8Byte case, adaptive organi-
zation actually ends up using a larger line size and thus
generates more traffic. In general, starting at 32B ini-
tial line size, the total traffic is, on average, close to 1/2
of the traffic for the same fixed-size case. The results
are not entirely surprising given the average line size
observed for various codes (see Figure 7).

160
goc ——
140 | T
j o
120 + f;ggg e
ijpeg —x--
o 100} perl o 1
B wave
e 80 aps = |
E ———————— Komimemmmimem Koomrmemmmimem Koomrmimimmm Komrmemm e
F 60t 1
O 1 1 1 1
8 16 32 64 128 256

Figure 10: Fetch traffic ratio B3 to 32B fixed case

Next, consider the memory traffic for each initial
adaptive line size over a 32B fixed case, R3?, shown in
Figure 10. The traffic is quite flat for all benchmarks.
Except for one benchmark, IJPEG, the decrease is in
excess of 50% over the widely-used 32B line size.

Another view of the memory traffic reduction for
32B adaptive line size is shown in Figures 11 and 12
for ARC3D and GCC, respectively. The traffic changes
significantly within an application as well. The traffic
ratio to the 32B fixed line is computed and presented
for each time interval (100K memory references). The
decrease can be in excess of 50% over a significant por-
tion of application’s execution time. Large variations
are also observed from one interval to another in GCC,
showing the adaptivity adjustment to occur fast enough
to make an ”instantaneous” effect.

Trafficratio

20

0 1 1 1 1
0 50 100 150 200 250
0.1M Memory Access

Figure 11: Time-domain traffic ratio R3? for ARC3D

90

8| 0 4]
of
6of
s0fp |
40

Trafficratio

30

0l & 3 |
10+]

0 1 1 1 1 1 1
0 50 100 150 200 250 300 350
0.1M Memory Access

Figure 12: Time-domain traffic ratio R3? for GCC

6 Discussion

Design choices for caches with adaptive line size were al-
ready discussed in various earlier sections. This section
re-examines some of them in light of the performance
results obtained. The overall system architecture 1s re-
visited to discuss the effect of having an L2 cache.
Let’s start with the question of hardware overheads.
Much of the overall adaptivity design was influenced
by hardware choices to keep it implementable. The two
main sources of overhead in the cache itself are use coun-
ters and extra address bits in the tag due the ”physi-
cal” line size of 8B. The use counters simulated in this
study are only 2 bits. However, it appears that they
may not be really needed and a single "use” bit would
work equally well. The overhead of extra tag address
bits is higher. However, it can be significantly reduced
by setting the minimal line size to be 16B. This is quan-
tified 1n the next section. Finally, the current line size

stored in each physical line can be reduced to 1 bit by
marking just the start of each new line.

An important issue related to the timing is how the
replacement is done once the miss fetch is completed. If
one waits to know the incoming line size, then the cache
will be busy reading out and possibly writing back the
replaced line(s) after the fetch is completed. Ignoring
the expensive, brute-force approach of multi-porting the
cache, one can use a replacement buffer of the size equal
to maximum allowed line size. It can be filled from
the cache during the miss fetch assuming the maximum
size line is being replaced. Upon completion of the miss
fetch and determination of precisely which lines need
to be replaced, the replacement can proceed from the
replacement buffer. This largely eliminates the need to
access the cache except for setting some of the adjacent
bits. Those can likely be placed in a separate register(s)
rather than the tag itself to eliminate the need for this
extra access to the cache.

Overheads in the memory are harder to reduce be-
yond what is suggested above for the cache. The pri-
mary concern in memory is, perhaps, the additional
accesses needed to just adjust the size. They do not
appear to be numerous enough but further investiga-
tion is required. Overall, given the projected capacity
of DRAM chips in the next few years, the size should
not be a source for concern.

The architecture used in this study did not have an
L2 cache. An interesting question is how to use adap-
tivity in the L1 cache in the presence of the L2 cache,
not to mention the question of using adaptivity in the
L2 itself. We feel that adaptivity would be less effec-
tive in L2 given the typically very low L2 miss rates
for standard benchmarks [HePa96]. But it may be that
it can allow a smaller L2 cache with adaptivity to have
the same performance as a larger, standard cache. Also,
for codes that cannot fit into the L2 cache the approach
may be worthwhile.

Regardless of the adaptivity in the L2 cache, the L2
can be used to keep the L1 line size instead of using the
memory. In fact, this may allow one to forgo keeping
any additional information in memory and start with
the default or average size whenever an L2 miss would
occur. As mentioned above, the best initial line size
choice appears to be one of the large line sizes. The
effect of periodically re-starting with a default value is
probably not significant.

The effect of adjusting the algorithm in Figure 3, line
10, to forgo the line size decrease when the incoming line
is smaller appears small. Qur preliminary results show
that this leads to increased memory traffic without a
noticeable improvement in miss rates.

Finally, let us compare and differentiate our work
with [KuWi98]. Their idea was to use a large, fixed-size
line but only fetch words predicted to be used. They

fetch a variable set of words in a 128B line, based on
which words were used on a previous fetch. A predictor
similar to 2-level branch history predictors [YePa91] is
used to record word usage. One way to compare this
with our approach 1s to say that we allow a variable
size line and predict the size of a line rather than which
words are used in a large, fixed-size line. Qur ”predic-
tor” is simpler and requires very little hardware. It also
incurs no lookup delay before a miss fetch can be is-
sued. Finally, we fetch a standard, contiguous line from
DRAM’s, not a random set of words.

We believe that our approach is more efficient in
avoiding conflicts and keeping more distinct lines in the
cache. This is important when associativity and size are
small. Possible improvements to the algorithm used so
far can lead to further performance increases if the miss
rate rather than the traffic reduction is targeted.

7 Possible Improvements

30 5
20 1

10 1

goo foppp I = arc3d ipeg wave apai

D I 1 1 I 1 1 I I 1
U netl

Miz= rate difference

Figure 13: Miss rate difference AMZ%: tag per 8B vs
16B

First, let us consider the performance of an adaptive
cache with a 16B ”physical” line. The advantage of this
organization is reduced cache tag overhead. The miss
rate difference, AMZS, for 256B adaptive line and 8B
and 16B ”physical” line sizes 1s computed as follows:

MLS _ a8
AMg® = === 4 100%
256

AMEC for the 256B adaptive line are shown in Fig-
ure 13. They clearly demonstrate that the performance
is improved when using a longer tagged line, except for
one benchmark. The relative difference can be signifi-
cant, up to 38%, with the average over 20%.

The traffic change due to the increase in the mini-
mal line size/transfer unit from 8B to 16B is shown in
Figure 14 as the relative traffic difference, ATg%:

716 _p8
AT = =250 4 100%

256
The traffic is increased indicating that our algorithm
often reduces the line size to its minimum. The rela-
tive difference can be significant, although under 50%,
and, given the improvement in miss rate may be toler-
ated. The 80% increase is in PERL, which also suffers
increased miss rate.

40
a0 1

|
L] —_ =
L L L
|

=
L

Mormalized trafic rate
[) el o () [y
[} =
L

——.
—_
L

|

gec foppp i soooarcdd jpeg petl wave apsi

=

Figure 14: Traffic difference AT3®: tag per 8B vs 16B

As mentioned above, other modifications to the algo-
rithm can further improve the miss rate. Three specific
changes were made which are briefly summarized next.
First, an adjacent line can be of equal or smaller size.
In the latter case 1t can be located anywhere in the ad-
Jacent ”half”. Second, a test to increase a line size has
a higher priority than a test to decrease the line size.
These changes increase the chances to discover adjacent
lines and double the line size. Lastly, when an incoming
line is smaller than an existing line in the cache, only
the exact part of the existing line to be occupied by the
incoming line is replaced. Multiple ”sub-lines” of a re-
placed line can thus remain in the cache increasing its
utilization and reducing conflict misses. Using a 256B
initial line size for the adaptive case, Figure 15 shows
the difference AMFSY, ., between the miss rate of the
new algorithm and the optimal miss rate of fixed line
size cache:

new —
A]\4fixed_opt -

Mnﬂ_Mfzzed_opt % 100%
fized_opt

For all but one benchmark, the new algorithm achieves
a better miss rate than the optimal fixed line size.

8 Conclusion

This paper presented a cache design in which the line
size adjusts dynamically based on application behavior.
A hardware algorithm to achieve this is based on moni-
toring the access to a given line and changing the future

goc fappn o s arc3dijped e
EI T T T T T I|_|I T 1
54 U nerl U apsi

Mi== rate difference

Figure 15: Miss rate difference AMFSY

ized_opt

line size accordingly. The size adjustment is computed
during line replacement based on what was observed
during the line’s current stay in the cache. The size is
kept in memory and takes effect on future fetches.

The performance results show that with adaptiv-
ity the miss rates are largely independent of the ini-
tial line size. The miss rate is improved in some of
the benchmarks even over the optimal for the fixed size
case. More importantly, the amount of memory traffic
is significantly decreased in all benchmarks compared
to fixed size case (except for 8B line). The traffic de-
creases by over 50% for an initial line size of 32B and
even more for larger line size. The best strategy for ap-
plying adaptivity is to use a large initial line size and
have the adaptivity decrease it as needed.

The results clearly show the feasibility of the adap-
tive approach. Hardware requirements of the approach
are modest and can be further improved by increasing
the physical line size. This also leads to significant im-
provement in miss rates, but the traffic increases as well.
Miss rates can be improved over the optimal fixed case
when traffic is not a concern.

References

[1] D. H. Albonesi, Dynamic IPC/Clock Rate Opti-
mization, Intl. Symposium on Computer Architec-
ture, pp. 282-292, June 1998.

[2] A. Chien and J. Kim, Planar Adaptive Rout-
ing: Low-cost Adaptive Networks for Multiproces-
sors, Intl. Symposium on Computer Architecture,

pp. 268-277, July 1992.
[3] W. J. Dally and H. Aoki, Deadlock-free adaptive

routing in multicomputer networks using virtual
channels, IFEFE Transactions on Parallel and Dis-
tributed Systems, vol. 4, pp. 466-475, Apr 1993.

[4] Fredrik Dahlgren, Michel Dubois and Per Sten-
strom, Fixed and Adaptive Sequential Prefetching
in Shared Memory Multiprocessors, [Intl. Confer-
ence on Parallel Processing, Aug, 1993.

[6] J. Kuskin et al, The Stanford FLASH Multipro-
cessor, Intl. Symposium on Computer Architecture,

pp. 302-313, April 1994.

[6] Edward H. Gornish and Alex Veidenbaum, An
Integrated Hardware/Software Data Prefetching
Scheme for Shared-Memory Multiprocessors, Intl.
Conference on Parallel Processing, Aug. 1994.

[7] Pentium”™™ Processor User’s Manual, Intel Corpo-
ration, 1993.

[8] T. Juan, S. Sanjeevan, and J. Navaro, Dynamic
History Length Fitting: a Third Level of Adap-
tivity for Branch Prediction, Intl. Symposium on
Computer Architecture, pp.155-166, July 1998.

[9] K. Inoue, K. Kai, and K. Marukami, High
Bandwidth, Variable Line-Size Cache Architecture
for Merged DRAM/Logic LSIs, Japanese IEICE
Transactions on Electronics, Vol. E81-C No. 9, pp.
1438-1447, September 1999.

[10] S. Kumar and C. Wilkerson, Exploiting Spa-
tial Locality in Data Caches Using Spatial Foot-
prints, [Intl. Symposium on Computer Architec-

ture,pp. 357-368, June 1998
[11] MIPS R3000 hardware manual, MIPS Corpora-

tion.

[12] T. Matsumoto, K. Nishimura, T. Kudoh, K. Hi-
raki, H. Amano, and H. Tanaka, Distributed
Shared Memory Architecture for JUMP-1: A
General-Purpose MPP Prototype, [Intl. Sympo-
stum on Parallel Architecures, Algorithms, and
Networks, pp. 131-137, June 1996.

[13] Steve Turner and Alex Veidenbaum, Scalability of
the Cedar System, Supercomputing, pp. 247-254,
1994.

[14] Jack E. Veenstra and Robert J. Fowler, MINT:
A Front End for Efficient Simulation of Shared-
Memory Multiprocessors, Intl. Workshop on Mod-
eling, Analysis and Simulation of Computer and
Telecommunication Systems , pp. 201-207, Jan.
1994.

[15] T.-Y. Yeh and Y. N. Patt, Two Level Adaptive
Training Branch Prediction, Intl. Symposium on
Microarchitecture, pp. 51-61, Nov. 1991.

