Journal of Instruction-Level Parallelism 1 (1999) Submitted 9/98; published 10/99

Performance Limits of Trace Caches

M att Postiff postiffm@eecs.umich.edu
Gary Tyson tyson@eecs.umich.edu
Trevor Mudge tnm@eecs.umich.edu

Advanced Computer Architecture Laboratory, EECS Department
University of Michigan
Ann Arbor, MI 48109-2122

Abstract

A growing number of studies have explored the ustace caches as a mechanism to
increase instruction fetch bandwidth. The traceheaic a memory structure that stores stat-
ically non-contiguous but dynamically adjacent mustions in contiguous memory
locations. When coupled with an aggressive tracmoltiple branch predictor, it can fetch
multiple basic blocks per cycle using a single-pdrtache structure. This paper compares
trace cache performance to the theoretical limitaothree-block fetch mechanism. The
three-block fetch mechanism is modeled by an ideali3-ported instruction cache with a
zero-latency alignment network. Several new metdos defined to formalize analysis of
the trace cache. These include fragmentation, dagibn, indexability, and efficiency met-
rics. We show that performance is more limited bprizh mispredictions than ability to
fetch multiple blocks per cycle. As branch predactiimproves, high duplication and the
resulting low efficiency are shown to be among thasons that the trace cache does not
reach its upper bound. Based on the shortcomingbefrace cache shown in this paper,
we identify some potential future research areas.

1. Introduction

Instruction supply is a key element in the perfonme of current superscalar processors.
Because of the large number of branch instructionthe typical instruction stream and the
small size of basic blocks, fetching through mu#ipranches per cycle is critical to high
performance processors. Traditional instruction headesigns cannot fetch past multiple
branches per cycle, and in particular through npldtitaken branches per cycle.

The trace cache fetch mechanism is a solution ¢optioblem of fetching past multiple
branches in a single cycle. It stores dynamicatljpaent instructions in a contiguous mem-
ory block and can do so with intervening branchrinstions. When it is coupled with a mul-
tiple-branch predictor, it can provide a high-bamndtlh mechanism to fetch multiple basic
blocks per cycle.

This paper presents a study of the limits of treaehe performance and their causes. The
goal is not to compare the trace cache againstr @bmpeting mechanisms or to introduce
any new features, but to study where current tigzhe configurations can improve.

The contributions of this study are:

e an examination of the limit of trace cache perfante based on an idealized
3-block fetch mechanism that is modeled by a 3qubiistruction cache with
a perfect instruction alignment network;

« adefinition of several metrics to aid in analysidrace cache performance;
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e astudy of the sources and extent of trace cawdfédiency;

« identification of branch mispredictions as beingnajor cause of low trace
cache performance; and

< identification of new research opportunities.

The rest of this paper is organized as follows.t®ac2 describes previous work and the
basic trace cache fetch mechanism. Section 3 intresl several metrics that we use to eval-
uate the trace cache. Section 4 provides informatio our simulation environment, and Sec-
tion 5 evaluates the limits of trace cache perfaraea Section 6 extends the results of
Section 5 by evaluating trace cache performanceiims of the metrics introduced in Sec-
tion 3. Section 7 concludes and presents somedutirections for trace cache research.

2. Related Work and the Trace Cache Fetch M echanism

Many caching technigques have been proposed to eehastruction fetch in superscalar
processors. The fill unit assembles multiple instimns from a single basic block for single-
cycle issue to a wide-issue processor [2, 4, 5k Wih unit in [2] is a post-decode cache for
CISC instructions which contains partially renanggdups of micro-operations. It was pri-
marily intended as a mechanism to allow a large Imemof micro-operations to be executed
concurrently on an out-of-order processor. In cowcfion with the decoded instruction
cache, this model reduces both the decoding andriigmcy checking necessary in the criti-
cal execution path. The fill unit of [4] is desightd eliminate complex dependency checking
logic in the processor’s critical path by assemdlinstructions into VLIW format and cach-
ing the result in a separate shadow cache. The mdi] is an extension for superscalar pro-
cessors with complex decoding requirements.

More recently, several fetch mechanisms have baepgsed to reduce the impact of
branches in the instruction stream. The collapdioffer [7] relies on multiple accesses to a
branch target buffer to produce the addresses mefmeetching multiple basic blocks in a
single cycle. The branch address cache [3] requrkghly interleaved instruction cache to
support multiple accesses per cycle. The tracee&chn extension of the fill unit and loop/
trace buffer [1] that attempts to collect noncontigs basic blocks from the dynamic
instruction stream into a single contiguous caclemory location [6, 8, 9, 10, 11, 12, 20].
The trace cache is compared to several of the pusvproposals in [8].

A diagram of the trace cache fetch mechanism isvehio Figure 1. The branch predictor
is either a multiple branch predictor [10] or adegpredictor [12]. The fill unit collects basic
blocks and builds traces for storage in the traaehe. It merges several basic blocks into a
single trace whereas earlier fill units stoppedhe first branch instruction. The trace cache
is backed up by a conventional instruction cachthincase of a trace miss.

The fetch engine simultaneously presents an addoe® trace cache, the conventional
instruction cache, and the branch prediction uifithe trace cache contains a trace starting
at the address that also agrees with the brandhigiren information, the trace cache signals
a hit and returns the trace. If the trace cache contaitrace at the address, but the branch
prediction information does not completely agrepagtial hit is indicated. Instruction cache
accesses occur in parallel with the trace cachis; ofi course, need not be the case if a
power-savings is required.

If the trace cache does not contain a trace beginat the specified address, it signals a
miss. The instruction cache then supplies the line aonhg the requested address to the
execution engine and the fill unit. The fill uniegins building a new trace.
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Figure 1: A fetch engine with a trace cache. Thaufiit can be filled speculatively, as shown ie th
diagram, or with traces formed from retired instiogs. Lines that cross are connected.

The trace cache fill unit continues to receive iinstions until one of the trace termina-
tion conditions is met. The tradermination policy’ determines when trace construction is
completed. A trace is terminated under any of tbkdofving conditions: 16 instructions, 3
basic blocks, or any trap, return, indirect jumpotier serializing instruction such as a cache
flush.

3. Trace Cache Metrics

In addition to the common metrics bit rate andIPC, we use other metrics to help us
analyze the trace cache. These fasgmentation, instructionduplication, efficiency, index-
ability, andretirement rate. Since performance is the reason for having aetiache in the
first place, IPC must be the metric of choice inetmining the best configuration, assuming
no degradation in cycle time. Fragmentation, dugtlimn, efficiency and indexability are
used to analyze why various configurations perfasrthey do. The remainder of this section
defines and explains these metrics.

3.1. Hit Rate

The hit rate metric measures the effectivenesti®titace cache in providing instructions
to the front end of the processor. It is importé&minote whether the trace cache hit rate is
computed using accesses and hits only on the doerescution path or if it is computed
without regard to the right or wrong execution pafhat is:

# hits or partial hits on correct execution pa (EQ. 1)
# accesses on correct execution path

Correct path hit rate=

# hits or partial hits on right or wrong p: (EQ. 2)

All path hit rate = -
path hit rate # accesses on right or wrong path

1. Also calledtrace selection or trace finalization policy.

3
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The all-path hit rate makes no distinction betweerrect and incorrect execution path.
There can be a significant difference between thesemetrics because of branch prediction
accuracy and processor pipeline width and depthilé\ite recognize this discrepancy in the
two ways of measuring hit rate, we will always shthe correct-path hit rate. It is generally
higher than the all-path hit rate.

3.2. Fragmentation

Like hit rate, fragmentation indicates how efficilgnthe trace cache stores instructions.
Fragmentation is a measure of storage utilizatidrictv describes the portion of the trace
cache that is unused because of traces shorterltdnstructions. It is essentially wasted
storage. Fragmentation is related directly to trece selection policy. More conservative
trace selection results in shorter traces, and thigher fragmentation. Rotenberg [12]
showed that average trace length was reduced bytegtd percent when backward branch
and call instructions were added to the trace teation conditions.

During a particular clock cycle, fragmentation fetratio of empty instruction slots to
total instruction slots, counting empty trace lindsverage fragmentation is computed by
summing the fragmentation values for each cycle dindding by the number of cycles. A
higher value for fragmentation indicates a lesgcafht trace cache; a conventional cache has
no fragmentation.

We defined fragmentation to include empty lines d&aese sometimes trace cache lines
cannot be used; that is, there are no basic blockeagments thastart at address X in the
benchmark, so location X in the trace cache isddrto be empty. Also, this definition of
fragmentation allows a more intuitive definition tiife efficiency metric (defined below).

3.3. Duplication

Another measure of instruction fetch capabilitydisplication. Duplication is a measure
of how efficiently the “un-fragmented” storage inettrace cache is used. Duplication is a
consequence of the method of indexing the tracheamnd is really an intended side effect.
In a conventional instruction cache, a particulastiuction can only appear once because
only the instruction address is used to index thehe. In a trace cache, the instruction
address along with branch prediction informatiomised to identify a trace, so a given block
may begin a trace and also appear as an interionbae of many traces in the trace cache.

Code duplication in the trace cache occurs becaysm®gram revisits a section of code.
It may be that conditional branch instructions he tode take different directions each time
they are executed, as can be the case with if-tiem-constructs. In such cases, duplication
is due to the multiple inclusion of fork and joinipts in the control flow graph. This is illus-
trated in Figure 2(A).

Duplication may also occur because of a loop wHesgth is not an integer multiple of
the maximum trace cache line size. This caseustitated in Figure 2(B). If N is the number
of instructions that can fit in the trace cacheelim loop of L instructions will result in N/
GCD(L, N) trace lines being stored. In the case nghaeloop has one more instruction than
the trace cache line can hold (i.e. GCD(L, N) =da¢ch instruction will be stored N times,
and the trace cache will be swamped with N simi&drifted) trace lines. This pathological
case only occurs if the loop is executed N timesaiyically and could be avoided entirely if
the compiler tailored the loop to the particulaade cache configuration.
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We use the formula

= (total instructions- unique instructions (EQ. 3)

duplicatio - -
P total instructions

to capture the duplication in the trace cache. Ath fragmentation, the value we report
is an average across the benchmark cycle count iBhanalogous to the dynamic redun-
dancy factor reported in [13]. A higher duplicatiomdicates lower utilization of the trace
cache.

A conventional cache has no duplication, thouglaehe hierarchy may exhibit duplica-
tion due to cache inclusion. Duplication in thecacache is more serious than inclusion-
duplication because the duplicates appear in deimgmory structure instead of across sev-
eral levels of memory structures. Since the menstmycture must be larger than if it held no
duplicates, the access time of the structure isciased.

3.4. Efficiency

Fragmentation and duplication are important mettiezause they indicate how effi-
ciently a trace cache configuration can providetrinstion bandwidth to the processor. We
define

efficiency = ( 1- fragmentatiohx (1 — duplication (EQ. 4)

to be the single number that wraps this informatiogether. Efficiency represents the
fraction of the whole trace cache that is actualigring unique instructions as opposed to
simply (1 - duplication), which measures the fraatiof the utilized trace cache that stores
duplicate instructions. Combining equation (4) wi8) and the definition of fragmentation,
we arrive at a somewhat more intuitive definitiohedficiency:

uniqgue instructions (EQ. 5)

efficiency = - -
y total instruction slot

A A
\ Traces including A:
B C B ABC
7 DAB
CDA
Ij c BCD
Traces starting at A: D
ABD i
ACD
(A) (B)

Figure 2: Causes of duplication in the trace ca¢hg.illustrates duplication due to conditional
branches, while (B) shows a pathological case iff gdundancy (duplication) due to a backward
loop branch.
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Al | A2 | A3 | A4 | A5 | Bl | B2 |B3|B4|B5

El | E2 |[F1 |F2 |F3 |F4 |G1 | G2 | G3 | G4 | G5 | G6

Cl|C2|C3|B1|B2|B3|B4|B5

D1 | D2 | D3 |D4 |D5 |E1 | E2 |Gl | G2 | G3| G4 | G5 | G6

Figure 3: A 4-entry trace cache with fragmentatiof6+4+8+3) / (4*16) = 33% The duplication in
this example is (43 - 30) / (10+12+8+13) = 30% sittrere are 43 total instructions and 30 unique
instructions in the trace cache. The efficiencflis 0.33)*(1-0.30) = 30/(4*16) = 47%.

We include empty trace lines in the fragmentatioatme so that storage efficiency is
measured across the entire trace cache structigere=3 shows an example.

For a conventional instruction cache, the duplmatis zero and the fragmentation in the
steady state is zero. Therefore, the efficiencyhefinstruction cache is 1. There is no inter-
nal fragmentation of conventional cache lines, pattions of some cache lines could be
dynamically unused. We did not track the usageUdesqy of instructions within the cache
and so will not consider this special case anytfeirt

3.5. Indexability

Indexability provides information about the preserd traces even if they do not start a
trace line. Since trace lookup is anchored at thadress that starts the trace line, a miss may
occur because it is not possible to directly acéetxior blocks. In this case, the trace cache
performs worse than an idealized three-ported irtdton cache with perfect alignment
mechanism.

Specifically, we define indexability to be a mis#te that indicates how often a trace
starting address is simply not in the trace cachalla even at an interior block. When an
address is requested from the trace cache, we mgtuse the traditional indexing scheme
(chop the offset and tag bits) but we also exanewery set in the trace cache to determine if
some portion of a trace contains that addresso uch partial trace can be found, the index-
ability miss count is incremented. The indexabil@lue is lower than the correct-path miss
rate since it examines all the traces in the caghmore sophisticated indexing mechanism
that can access some internal blocks of tracesdcioybrove correct-path hit rates.

For a conventional instruction cache, the miss ratequal to the indexability because a
given instruction can only reside at one directbe@ssible location in the instruction cache.

We present indexability as a limit. It is not prigelly implementable since it requires
looking at all trace cache lines simultaneously éinding the longest match. It will show
how important proper trace-cache indexing is ta¢raache performance.

3.6. Trading off Fragmentation, Duplication, and I PC

There is a fundamental trade-off to be made betwberperformance metrics introduced
above. The constrained trace selection policy noeretl in Section 3.2 will serve as a good
example. It was noted in [12] that the averagedri@ngth is reduced by conservative trace
selection, that is, adding trace termination cowodi$. While shorter traces mean that frag-
mentation will increase, our simulation results whihhat duplication decreases correspond-
ingly. This is to be expected because the termimatdf traces on backward branches
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eliminates duplication due to loops. Thus fragmg&ataincreases but duplication decreases,
resulting in little change in overall efficiencyuhermore, the trace cache hit rate increased
under constrained trace selection but we obsemeadii simulations that in some cases over-
all performance actually decreased because of duedse in fetch bandwidth due to the
shorter traces. These metrics will be discussedane detail in Section 6.

3.7. Retirement Rate

The previous metrics evaluate how effectively ttecé cache structure stores traces and
how it provides instructions to the front end op@cessor. The goal of the retirement rate
metric is to evaluate the effects of employingact cache on other processor resources. The
increased fetch bandwidth made possible by incaiog a trace cache will require addi-
tional resources at later stages of the pipelif®C Imeasures do not show the pipeline
resource requirements of those instructions, wmay be squashed prior to retirement (i.e.
the wrong path instructions). Retirement fFaie the ratio of the number of instruction
fetched into the pipeline to the number retired:

total instructions retired, (EQ. 6)

retirement rate= - -
total instructions fetched

Retirement rate is one measure of the amount afljpip resources wasted due to wrong-
path instructions. Retirement rate is a functiorbdnch prediction accuracy, pipeline depth
(or branch resolution time) and issue width. Retiemt rate will be considered in Section
5.2.

4. Simulation Environment

Simulation results were obtained with a modifiedsien of the sim-outorder simulator
from the SimpleScalar tools [14]. For all experinsgrthe SPEC95 integer benchmarks were
run on the input sets listed in Table 1. The beratnbinaries provided in the SimpleScalar
distribution are used in these experiments. Thegams were compiled with GNU GCC
2.6.2, GNU GAS 2.5, and GNU GLD 2.5 with maximuntiagpzation (-O3). Loop unrolling
was enabled (-funroll-loops). The simulator paraengtcommon across all configurations
simulated are shown in Table 2.

Instructions
Benchmark Input Set Insts (M) per Branch
compress 30000 g 2131 121 5.0
gcc regclass.i 124 5.5
go 9 9 null.in 133 6.6
ijpeg specmun.ppm 124 11.1
li boyer.lsp 174 4.4
m88ksim dcrand.train.lit 48 4.4
perl jumble.pl < jumble.in 74 5.1
vortex vortex.in 154 6.3

Table 1: Benchmarks and data sets used. All bendtsnaere simulated to
completion (some were scaled down from traininguit)p

2. We will call it a “rate” even though it is a rat in keeping with common usage.
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Parameter Value Budget

L1 instruction cache 256 sets, 64-byte line, 4-wayaziative, 1-cycle access/ 64 KB
throughput/blocking (actually 128-byte line of S&ts)

L1 data cache 512 sets, 32-byte line, 4-way assw@eiat-cycle access/ 64 KB
throughput/blocking

L2 unified cache 2048 sets, 128-byte line, 4-wayakdive, 6-cycle access 1 MB

Memory Latency 50 cycles for the first 8 bytes, Tleyeach 8 bytes thereafter

Branch Predictor 16-bit gshare accessed three tppegycle; perfect RAS

Trace Cache 2-way associative, 1-cycle hit latefing, size fixed at a

maximum of 16 instructions, partial hits and pa$iseciativ-
ity; 1-cycle fill unit delay

Fetch queue 128 entries
Width 16 instructions per cycle
Function Units 16 symmetric (each can do all intiuts)
RUU/LSQ sizes 512/256
Table 2: Configuration parameters common acrossialllations, unless otherwise

noted.

To stress the fetch engine, the processor’s execuwngine is very aggressive. There are
16 of each of the five types of function units égér ALU, integer multiplier, memory port,
floating point ALU and floating point multiplier)The instruction cache simulated was
128KB, but SimpleScalar instructions are 64 bitsgposo this is effectively a 64KB cache of
conventional 32-bit instructions. We will quote &ll instruction cache and trace cache sizes
as if SimpleScalar instructions were 32-bits.

The trace cache is simulated with 64 and 1024 aatbis 2-way associative in both
cases. With 64 sets and 16 instructions, there6drda6*4*2 = 8KB of instruction storage.
For the 1024-set trace cache, there is 1024*16*4*228KB of storage. Traces are finalized
on instruction boundaries when any of the followicmwnditions are met: 1) 16 instructions;
2) three branches; or 3) trap or indirect jump iastion. Branch prediction information is
used as part of the tag match instead of as paheofndex into the trace cache to determine
the longest matching trace for path associativitg @artial hits. This assumes that branch
prediction lookup and trace cache lookup cannotpleapin series in a single cycle, which
would be necessary if the branch predictions weseduas part of the trace cache index and
the fetch mechanism were not pipelined.

4.1. The Branch Predictor

The branch predictor used for all non-perfect siatigins is a 16-bit gshare predictor
where the shift register value is XORed with theés PC bits and indexes a%entry table
of two-bit counters. When multiple branches arenggoredicted per cycle, it is accessed the
required number of times in series, as if the hanbwcould be accessed that many times in
one cycle.

The branch predictor uses speculative history imf@tion. All wrong-path history bits
are squashed once a mis-prediction has been itehtifhis is done because neither specula-
tive update nor non-speculative update alone pmvitt best performance [16]. The reason
for this is that trace cache processing enablesidenable speculation, resulting in non-
speculative history that is too old, or speculativstory that contains too many history bits
from the wrong path. The solution is to maintaiesplative history which is squashed when
a mis-prediction occurs. This method provides thens prediction accuracy regardless of

8
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the amount of speculation performed by the processd is at least as accurate as specula-
tive or non-speculative update alone. Of coursis ith not practical because it requires the
saturating counters to be re-adjusted to theirespaitor to the misprediction. It is a simula-
tion ideal.

5. Limits of Trace Cache Performance

The trace cache strives for the performance oftahfenechanism that can fetch three
basic blocks per cycle without a multi-ported insttion cache. Most previous studies have
compared trace cache performance to the performahsequential fetching mechanisms,
i.e. a fetch engine that can fetch up to one brg®&0Q.1) or up to 3 branches where the first
two are predicted not taken (SEQ.3) [8]. While thighlights the performance improvement
of fetching non-contiguous blocks over fetchingyaéquential blocks, it is not a true upper
bound to performance. This study compares tracbeperformance to the theoretical limit
of a three-block fetch mechanism equivalent to @ealized three-ported instruction cache
with a perfect alignment network. This cache caovjae three non-contiguous blocks each
cycle and merge them for placement into a fetcHdyuf block is defined in the same way as
for the trace cache). The latency of the merge afjp@m is not counted in our simulations. We
call it NONSEQ.3 to conform to previous terminology similar NONSEQ.3 baseline is
used in [9].

A lower bound on trace cache performance is a shigbck fetch mechanism equivalent
to a conventional instruction cache. It can fetghta the first branch or up to some maxi-
mum number of instructions (16 in these simulatjorihe next two subsections show the
results of the limit simulations for gshare andfpet branch prediction.

5.1. Gsharevs. Perfect Branch Prediction - 1 and 3 block fetch

Table 3 shows the performance of 1- and 3-blockHetngines. The left half of the table
presents data for configurations with a gshare thapredictor as described in Section 4.1.
The right half shows speedup when using perfechdhigprediction. The first two columns in
each portion of the table show the IPC for the @orional instruction cache and the 3-
ported instruction cache, respectively. The thimumns show the potential speedup of
employing a trace cache. We also include the brameldiction accuracy for the gshare con-
figurations.

Because the branch predictor uses speculativerlisthich is corrected after a wrong
path is encountered, the 3-block fetch engine aiays perform better than the 1-block
mechanism. The benchmarks with very good brancldipten (li, m88ksim, and vortex)
achieve significant performance improvements in 3hglock case—50% or more—indicat-
ing that the trace cache can provide significanfqgrenance benefit for these programs. The
other configurations (ccl, compress95, go, andgjmffer from lower prediction accuracy
and cannot take advantage of the two extra blo&tscpcle because there are many wrong-
path instructions that must be squashed. As thio8khcase is the limit of performance for
the trace cache modeled, the trace cache can golside a performance benefit of around
20% for these programs. These results are moremigtic than previously-published data
would suggest [8], though no previous study hasshthe true 3-block fetch limit.

As can be seen from the data on the right sideabld 3, there is potential for significant
improvement in trace cache performance when brameliction is perfect—often 60% or
more improvement in IPC.
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Fetch 1 Fetch 3 Branch FBeItgskl Fl?aeltg?k3
SPEC95 Block Block Percent . Per cent
Predict IPC IPC
Program IPC IPC Increase o fect fect Increase
gshare gshare 0 pertec pertec
BP BP
ccl 2.64 3.35 27% 93.27% 4.80 9.59 100%
compress 3.22 3.74 16% 94.75% 5.31 8.80 66%
go 2.50 2.81 13% 86.12% 5.75 7.94 38%
ijpeg 5.59 7.01 25% 93.93% 7.59 10.74 42%
li 3.47 5.48 58% 97.01% 4.40 10.15 131%
m88ksim 4.17 10.41 150% 99.82% 4.25 11.03 159%
perl 3.69 4.63 26% 98.55% 5.08 8.64 70%
vortex 4.56 6.75 48% 98.89% 5.80 9.31 61%

Table 3: The performance of fetching 1 block or 8dKs under gshare and perfect
branch prediction.

Gshare Branch Prediction - Fetching 1to 5blocks Perfect Branch Prediction - Fetching 1 to 5 blocks

[ perfectBP, 1-block IC @ perfectBP, 2-block IC [0 perfectBP, 3-block IC
O perfectBP, 4-block IC W perfectBP, 5-block IC

o
(=2}

perl

—
Q
o

o
@
R=3

Benchmark

compre5595

ijpeg
m88ksim

perl

vortex
compress95
ma88ksim
vortex

Benchmark

(A (B)

Figure 4: Performance of n-block fetch mechanismden (A) gshare and (B) perfect branch pre-
diction. The perfect predictor shows the perfornepotential of a multi-block fetch mechanism.
The portion of the bar labeled ‘Wasted’ indicatestiuctions that were fetched but never retired.

In summary, Table 3 shows that when branch preaficiccuracy is high, the perfor-
mance potential of fetching multiple blocks per leyis significant, i.e. 50% or more. When
branch prediction accuracy is low, fetching muléigblocks only helps performance up to
about 20%. Performance is limited more by branadption than the inability to fetch mul-
tiple blocks per cycle. Nevertheless, as branchigt®n improves, a mechanism like the
trace cache that can fetch multiple blocks pereym®comes more beneficial.

5.2. Gsharevs. Perfect Branch Prediction - 1 to 5 block fetch

The graphs in Figure 4 show a superset of the mhafable 3. To highlight the resource
allocation required to support the greater numienstructions fetched by more aggressive
configurations, Figure 4(A) shows the performanéeonfigurations which fetch one, two,
three, four, and five blocks per cycle. The machmetherwise configured as shown in Table
2. The dark upper portion of the bars indicatennstions that are fetched but later squashed
because of branch mis-predictions. Figure 4(B)nsilar but uses perfect branch prediction,
S0 no instructions are squashed.

10
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Fetch 1 Fetch 2Block | Fetch3Block | Fetch 4Block | Fetch 5Block
SPEC95 | Block gshare gshare gshare gshare gshare
Program Retirement Retirement Retirement Retirement Retirement
Rate Rate Rate Rate Rate
Overall Overall, Extra | Overall, Extra | Overall, Extra | Overall, Extra
ccl 65% 45% 19% | 37% 7% 33% 1% 31% 3%
compress 62% 40% 13% 33% 1% 31% 1% 30% 0%
go 46% 29% 6% 24% 3% 23% 2% 22% 2%
ijpeg 78% 62% 32% | 57% 17% | 54% 5% 52% 2%
li 82% 62% 41% | 48% 12% | 42% 3% 39% 1%
m88ksim 98% 97% 95% | 95% 91% | 94% 85% | 93% 16%
perl 78% 56%  25% | 43% 1% 38% 0% 36% 1%
vortex 90% 82% 66% | 76% 31% | 74% 22% | 73% 20%

Table 4: Retirement rates for 1- to 5-block fetcmfigurations in Figure 4(A). The
overall retirement rate is computed as definedeot®n 3. The extra retirement rate
shows the retirement rate of the extra instructifiished by that configuration
compared to the previous column.

Table 4 examines the data in Figure 4(A) by showhyretirement rates for each of the
configurations. As the machine fetches past mommtbhnes, the retirement rate decreases
monotonically. The retirement rate decreases rgpadter the first and second branches, then
less so after the third and fourth branches; thieenment rate of ccl, for example, falls from
65% to 31%. These results suggest that while tipalidity of the front end of the pipeline
has dramatically increased with the additional kkbéetched, the resource utilization at the
backend of the machine is very low because of theprediction accuracy.

Another interesting metric is the retirement rafetlte extra instructions brought in by
the second, third, fourth, and fifth blocks. The®ed number in the columns of Table 4
shows the value of this special retirement rate. &ample, the overall retirement rate of
ccl is 45% for the 2-block fetch configuration. @M9% of the additional instructions
brought in by the second block are actually retir@dly vortex and m88ksim exhibit extra-
instruction-retirement-rates of more than 60% frome first to the second block because
their branch prediction accuracy is so high. Thieeotbenchmarks generally exhibit rates of
25% or less. As we proceed to three blocks we beedtirement rate of the extra instruc-
tions fall below 1 in 10 for most programs. This ane that only 1/10th of the pipeline
resources are being constructively utilized forraxinstructions. Other work has taken
advantage of this to reduce power consumption lyfetching these instructions [19]. Addi-
tional instructions that could be brought in byrace cache are simply not useful.

The performance of perfect branch prediction inUfay4(B) saturates after 3 branches
per cycle primarily because of data-dependencetdititins in the backend. Function unit
contention is not a significant cause of this léwvgloff of performance because the average
IPC never goes above 11. As expected, mispredicBoavery time dominates delays due to
data dependencies in the gshare configurations.

The trace cache, which is limited above by the &klfetch case, suffers from the same
branch prediction limitation. It can provide higlegk bandwidth, but the overall processor
performance is most limited by the branch predictio

11
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Figure 5: Trace cache performance with perfect dgrediction and perfect indexability.

5.3. Trace Cachevs. Limit Cases

We have already noted that trace cache performancs fall between the 1- and 3-block
fetch cases. Figure 5 demonstrates this for bottags and perfect branch prediction, with
the exception of the compress. Compress exhibith®y pathological behavior and per-
forms better than the upper bound. This is becalusdotal instruction capacity of the trace
cache plus instruction cache is larger than thérirsion capacity in the 3-block configura-
tion, which just has the instruction cache. Theuless that the trace cache configuration
exhibits fewer capacity misses to the second leaehe and thus suffers less from memory
latency. We also found that go would perform patigatally if the branch prediction was
worse (82.70% instead of the present 86.12%). Ehixecause go has a large working set of
instruction paths that exceed the capacity of eardarge (128KB) trace cache. A 2MB trace
cache was simulated and found to eliminate thiblen. Still, the performance of go is lim-
ited more by branch prediction than anything ebs®the difference between 1- and 3-block
fetch is only 13%.

Figure 5(A) further shows that the trace cache came close to the upper bound when
branch prediction is not perfect, demonstratingt ttree trace cache is, for the most part,
achieving its goal of 3-block performance with agle-ported memory.

In the case of perfect prediction, Figure 5(B), sex that the 128KB trace cache gener-
ally falls short of ideal by 20% or more. This igmsificant because as branch prediction
improves, it appears that the trace cache is fglfarther below its upper bound. Thus the
trace cache cannot take full advantage of futungromements in branch prediction. We also
simulated a 2MB trace cache (not shown) and founad for the large benchmarks like gcc,
go, and vortex, the trace cache still fell shortred limit case by more than 10%. Apparently
imperfect branch prediction hides some other deficies in the trace cache. Reasons for this
are examined in the next section.

6. Efficiency and Indexability Results

The results presented in Section 5 show that tcaehe performance does not achieve
the theoretical limit of 3 block/cycle fetch witkedect branch prediction. This section uses
the previously defined metrics to analyze why tiight be the case.

12
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Figure 6: Trace cache duplication, fragmentatia, traces, efficiency, and hit rate for several
8KB and 128KB configurations with perfect indexéil

The graphs in Figure 6 show the duplication, fragtation and efficiency of a trace
cache as associativity and size are varied. Fig(#¢ $hows that duplication of instructions
in the trace cache grows from 30%-50% up to 75%-988bassociativity and size are
increased. Increasing the size of the trace cachmadiically increases the duplication. For
very large trace caches, an instruction may reside) or more locations.
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Similarly, Figure 6(B) shows that fragmentation geaily increases for the larger trace
caches. For the smaller benchmarks such as compreasd m88ksim, this is primarily due
to many trace cache slots which are unused throufgtihe benchmark run—there are simply
not enough unique trace starting addresses taatilie trace cache. This is particularly evi-
dent for compress, which uses only a couple ofarslots very heavily throughout the bench-
mark run and leaves many trace slots unused. Fangbthe other larger programs, which
have a large number of paths, we see that the feagaion does not generally increase as
the trace cache increases in size from 8 to 128KB.

For compress, li, and m88ksim, fragmentation is egyally improved as associativity
increases from 2 to 4. This is to be expected beeamy unused traces in the 2-way associa-
tive cache can be utilized in the 4-way cache facés which are competing for the more
heavily used trace starting addresses. In othedsjothe additional flexibility afforded by
extra associativity allows the trace cache to usmes locations that would otherwise be
blank. This is shown in Figure 6(C). The larger bemarks generally use up all the traces
regardless of the associativity and size. In sunymtue trace cache loses 20% to 30% of its
capacity due to empty and short traces.

The overall efficiency is rarely above 40% and floe 128KB configuration is generally
between 20% and 35% as shown in Figure 6(D). Cdytaime trace cache is designed to
trade-off space efficiency for increased fetch baiuth, but such low storage efficiency is
remarkable. The low efficiency is primarily causieygl code duplication. When associativity
is increased, the efficiency gain possible becafsg#ecreased fragmentation is outweighed
by increased duplication.

The overall performance of the trace cache is deireed by the hit rate and the length of
the trace lines referenced. Experiments in [12]éate that trace cache hit rates range from
60%-90%, and our experiments confirm this trendwidweer, previous experiments required
that the address in the fetch request must be édcit the first entry in some trace line. In
this study we also examine a trace structure incwhhis restriction is removed — the per-
fectly indexable trace cache. Figure 6(E) showshtiiheate when the complete trace cache is
searched for the fetch PC (traces can start anyavimstead of being anchored to the start of
the trace storage). When indexing the trace cashexpanded to any instruction in a trace
line, the hit rate increases to 90%-99% for mogtligations. Unfortunately there is a reduc-
tion in the average length of trace fetched from tiace line because many paths start from
some point in the middle of the trace line. Howewdis increase in hit rate demonstrates
that improved indexing methods can significantlgrisase the trace cache hit rate. This sug-
gests that current trace cache implementationsadaniss because new paths are identified.
Instead they miss because cache line allocatioitipslare naive.

7. Conclusion

In this paper, we have introduced several new rogfior evaluating the performance and
efficiency of trace cache implementations. By atilig these metrics, the functioning of a
trace cache can be better understood, enabling igehtify strengths and weaknesses of this
approach to increasing parallelism.

The performance of the trace cache configuratidodied in this paper suffer primarily
from low branch prediction accuracy. Less than 1@nof the additional instructions fetched
from a trace cache are retired. The trace cachepeoavide high bandwidth instruction fetch
but because of this a large number of branchesnafieght, reducing the efficiency of fetch-
ing useful instructions. It is not surprising thathigh bandwidth fetch mechanism would

14
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stress the branch predictor, but a retirement rafi@ in 10 for those extra instructions was
lower than we expected.

When perfect branch prediction is simulated, thecér cache is still not able to fetch
instructions at the rate of the 3-block limit casdis drop in issue rate is caused by missing
in the trace cache and by hitting trace lines twattain only part of the 3-block path. Further
study using the metrics defined herein revealsaieficies in the way the trace cache stores
traces. Low trace cache efficiency and poor indéikgbare the primary reasons for this
shortcoming.

This study has identified several potential aredieng trace cache performance can be
improved. These are:

» Branch prediction. Improvements in branch predittaccuracy will impact
overall performance of a trace cache the most.elbased predictors specifi-
cally tuned for trace cache design may be abldeatify new correlations
currently unexploited by conventional predictor8][IHowever, prediction
accuracy will still likely be the most limiting féar in overall performance of
a trace cache.

» Duplication. Since duplication in current configtions is 50% or more, con-
servative trace termination policies could be usaduce duplication due to
loops and fork-join points. Duplication can alsorbduced by adopting a
more restrictive placement algorithm in allocattrace lines. In our studies,
all trace paths are placed into the cache eachtlimeare executed. By using
a selection criteria to allocate trace cache emtoghe most useful paths (e.g.
those that have high ILP possibility due to fewadd&pendencies and good
branch prediction accuracy) duplication can be ceduvithout negatively
effecting performance.

» Fragmentation. This is caused mostly by a largalmer of short and empty
trace lines. A certain subset of these lines calefibén the instruction cache
without any performance penalty, and can thus ameehe efficiency of the
trace cache. Never-used trace slots are also depnahat should be
addressed. Fragmentation can also be effectiveliycerd by many compiler
transformations that increase average basic bliaek[$7]. In this study we
did not study the effects of optimizations suclsagerblock [22] or trace
scheduling [23] and predication [24]. These optetians should reduce frag-
mentation in the trace cache. It would be intengsto see if trace scheduling,
predication, and a single-ported instruction caefth a long line size is able
to provide the same performance benefit as a ttacke since branches are
eliminated and common paths can be scheduled cantidy. The software
trace cache is the only work we are aware of whidtiresses some of these
issues [21].

» Indexability. Measurements showed that often dgpested block is in the
trace cache but it cannot be reached since itas atterior block.

The gshare branch predictor used in this studyleviwerly optimistic, is still better than
the branch prediction that will be available in aoercial products on real programs. This
and the issues defined above lead us to questmantility of the trace cache as a mechanism
to fetch multiple blocks per cycle, at least in thext couple of generations of microproces-
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sors. A trace-cache-like structure whose “tracea®’ asingle block, however, would be use-
ful as a post-decode cache to save time and pawiaistruction decoding and renaming.

In this paper we have quantified the performanaimg possible due to wider instruction
issue. We see from the limit study utilizing petféécanch prediction and a perfect 3-block
issue mechanism that there is still more paralhel&svailable; however, current trace cache
designs suffer from wasted resource utilization godr branch prediction (relative to the
requirements of the wider issue). The fundamentablem is that the trace cache heavily
emphasizes the already important requirement faddaranch prediction because it requires
multiple predictions per cycle. The trace cachesdebminate the need for a multi-ported
cache structure but may instead require a multtgzbbranch prediction structure or a sin-
gle-ported structure with a complex selection medém (see [15], for example). Instead of
trying to fetch past multiple branches, we think iateresting avenue of related research
would be to de-emphasize branch prediction and fitieer means to increase performance.
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