
Combining Branch Predictors

Scott McFarling

June 1993

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

One of the key factors determining computer performance is the degree to
which the implementation can take advantage of instruction-level paral-
lelism. Perhaps the most critical limit to this parallelism is the presence of
conditional branches that determine which instructions need to be executed
next. To increase parallelism, several authors have suggested ways of
predicting the direction of conditional branches with hardware that uses the
history of previous branches. The different proposed predictors take advan-
tage of different observed patterns in branch behavior. This paper presents
a method of combining the advantages of these different types of predictors.
The new method uses a history mechanism to keep track of which predictor
is most accurate for each branch so that the most accurate predictor can be
used. In addition, this paper describes a method of increasing the usefulness
of branch history by hashing it together with the branch address. Together,
these new techniques are shown to outperform previously known approaches
both in terms of maximum prediction accuracy and the prediction accuracy
for a given predictor size. Specifically, prediction accuracy reaches 98.1%
correct versus 97.1% correct for the most accurate previously known ap-
proach. Also, this new approach is typically at least a factor of two smaller
than other schemes for a given prediction accuracy. Finally, this new ap-
proach allows predictors with a single level of history array access to outper-
form schemes with multiple levels of history for all but the largest predictor
sizes.

Copyright 1993 Digital Equipment Corporation

i

1 Introduction

In the search for ever higher levels of performance, recent machine designs have made use
of increasing degrees of instruction level parallelism. For example, both superscalar and
superpipelining techniques are becoming increasingly popular. With both these techniques,
branch instructions are increasingly important in determining overall machine performance.
This trend is likely to continue as the use of superscalar and superpipelining increases
especially if speculative execution becomes popular.

Moreover, some of the compiler assisted techniques for minimizing branch cost in early
RISC designs are becoming less appropriate. In particular, delayed branches are decreas-
ingly effective as the number of delay slots to fill increases. Also, multiple implementations
of an architecture with different superscalar or superpipelining choices make the use of de-
lay slots problematic[Sit93]. Together, these trends increase the importance of hardware
methods of reducing branch cost.

The branch performance problem can be divided into two subproblems. First, a predic-
tion of the branch direction is needed. Second, for taken branches, the instructions from the
branch target must be available for execution with minimal delay. One way to provide the
target instructions quickly is to use a Branch Target Buffer, which is a special instruction
cache designed to store the target instructions. This paper focuses on predicting branch
directions. The alternatives available for providing target instructions will not be discussed.
The reader is referred to Lee and Smith[LS84] for more information.

Hardware branch prediction strategies have been studied extensively. The most well
known technique, referred to here as bimodal branch prediction, makes a prediction based
on the direction the branch went the last few times it was executed. More recent work
has shown that significantly more accurate predictions can be made by utilizing more
branch history. One method, considers the history of each branch independently and takes
advantage of repetitive patterns. Since the histories are independent, we will refer to it
as local branch prediction. Another technique uses the combined history of all recent
branches in making a prediction. This technique will be referred to as global branch
prediction. Each of these different branch prediction strategies have distinct advantages.
The bimodal technique works well when each branch is strongly biased in a particular
direction. The local technique works well for branches with simple repetitive patterns. The
global technique works particularly well when the direction taken by sequentially executed
branches is highly correlated.

This paper introduces a new technique that allows the distinct advantages of different
branch predictors to be combined. The technique uses multiple branch predictors and selects
the one which is performing best for each branch. This approach is shown to provide more
accurate predictions than any one predictor alone. This paper also shows a method of
increasing the utility of branch history by hashing it together with the branch address.

The organization of this paper is as follows. First, Section 2 discusses previous work
in branch prediction. Later sections describe in detail the prediction methods found useful

1

in combination and will evaluate them quantitatively to provide a basis for evaluating the
new techniques. Sections 3, 4, and 5 review the bimodal, local, and global predictors.
Section 6 discusses predictors indexed by both global history and branch address infor-
mation. Section 7 discusses hashing global history and branch address information before
indexing the predictor. Section 8 describes the technique for combining multiple predictors.
Section 9 gives some concluding remarks. Section 10 gives some suggestions for future
work. Finally, Appendix A presents some additional comparisons to variations of the local
prediction method.

2 Related Work

Branch performance issues have been studied extensively. J. E. Smith[Smi81] presented
several hardware schemes for predicting branch directions including the bimodal scheme
that will be described in Section 3. Lee and A. J. Smith[LS84] evaluated several branch
prediction schemes. In addition, they showed how branch target buffers can be used to
reduce the pipeline delays normally encountered when branches are taken. McFarling and
Hennessy[MH86] compared various hardware and software approaches to reducing branch
cost including using profile information. Hwu, Conte, and Chang[HCC89] performed a
similar study for a wider range of pipeline lengths. Fisher and Freudenberger[FF92] studied
the stability of profile information across separate runs of a program. Both the local and
global branch prediction schemes were described by Yeh and Patt[YP92, YP93]. Pan, So,
and Rahmeh[PSR92] described how both global history and branch address information can
be used in one predictor. Ball and Larus[BL93] describe several techniques for guessing
the most common branches directions at compile time using static information. Several
studies[Wal91, JW89, LW93] have looked at the implications of branches on available
instruction level parallelism. These studies show that branch prediction errors are a critical
factor determining the amount of local parallelism that can be exploited.

3 Bimodal Branch Prediction

The behavior of typical branches is far from random. Most branches are either usually
taken or usually not taken. Bimodal branch prediction takes advantage of this bimodal
distribution of branch behavior and attempts to distinguish usually taken from usually not-
taken branches. There are a number of ways this can be done. Perhaps the simplest approach
is shown in Figure 1. The figure shows a table of counters indexed by the low order address
bits in the program counter. Each counter is two bits long. For each taken branch, the
appropriate counter is incremented. Likewise for each not-taken branch, the appropriate
counter is decremented. In addition, the counter is saturating. In other words, the counter
is not decremented past zero, nor is it incremented past three. The most significant bit
determines the prediction. Repeatedly taken branches will be predicted to be taken, and

2

Taken

PC

Counts

predictTaken

Figure 1: Bimodal Predictor Structure

repeatedly not-taken branches will be predicted to be not-taken. By using a 2-bit counter,
the predictor can tolerate a branch going an unusual direction one time and keep predicting
the usual branch direction.

For large counter tables, each branch will map to a unique counter. For smaller tables,
multiple branches may share the same counter, resulting in degraded prediction accuracy.
One alternate implementation is to store a tag with each counter and use a set-associative
lookup to match counters with branches. For a fixed number of counters, a set-associative
table has better performance. However, once the size of tags is accounted for, a simple
array of counters often has better performance for a given predictor size. This would not
be the case if the tags were already needed to support a branch target buffer.

To compare various branch prediction strategies, we will use the SPEC’89 benchmarks
[SPE90] shown in Figure 2. These benchmarks include a mix of symbolic and numeric
applications. However, to limit simulation time, only the first 10 million instructions from
each benchmark was simulated. Execution traces were obtained on a DECstation 5000
using the pixie tracing facility[Kil86, Smi91]. Finally, all counters are initially set as if all
previous branches were taken.

Figure 3 shows the average conditional branch prediction accuracy of bimodal predic-
tion. The number plotted is the average accuracy across the SPEC’89 benchmarks with each
benchmark simulated for 10 million instructions. The accuracy increases with predictor
size since fewer branches share counters as the number of counters increases. However,
prediction accuracy saturates at 93.5% correct once each branch maps to a unique counter.
A set-associative predictor would saturate at the same accuracy.

3

benchmark description
doduc Monte Carlo simulation
eqntott conversion from equation to truth table
espress minimization of boolean functions
fpppp quantum chemistry calculations
gcc GNU C compiler
li lisp interpreter
mat300 matrix multiplication
nasa7 NASA Ames FORTRAN Kernels
spice circuit simulation
tomcatv vectorized mesh generation

Figure 2: SPEC Benchmarks Used for Evaluation

� � bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�

� �
� � � � � �

Figure 3: Bimodal Predictor Performance

4

4 Local Branch Prediction

One way to improve on bimodal prediction is to recognize that many branches execute
repetitive patterns. Perhaps the most common example of this behavior is loop control
branches. Consider the following example:

for (i=1; i<=4; i++) f g

If the loop test is done at the end of the body, the corresponding branch will execute
the pattern (1110)n, where 1 and 0 represent taken and not taken respectively, and n is the
number of times the loop is executed. Clearly, if we knew the direction this branch had
gone on the previous three executions, then we could always be able to predict the next
branch direction.

A branch prediction method close to one developed by Yeh and Patt[YP92] that can
take advantage of this type of pattern is shown in Figure 4. The figure shows a branch
predictor that uses two tables. The first table records the history of recent branches. Many
different organizations are possible for this table. In this paper, we will assume that it is
simply an array indexed by the low-order bits of the branch address. Yeh and Patt assumed
a set-associative branch history table. As with bimodal prediction, a simple array avoids
the need to store tags but does suffer from degraded performance when multiple branches
map to the same table entry, especially with smaller table sizes.

Each history table entry records the direction taken by the most recent n branches whose
addresses map to this entry, where n is the length of the entry in bits. The second table is
an array of 2-bit counters identical to those used for bimodal branch prediction. However,
here they are indexed by the branch history stored in the first table. In this paper, this
approach is referred to as local branch prediction because the history used is local to the
current branch. In Yeh and Patt’s nomenclature this method is referred to as a per-address
scheme.

Consider again the simple loop example above. Let’s assume that this is the only branch
in the program. In this case, there will be a history table entry that stores the history of
this branch only and the counter table will reflect solely the behavior of this branch. With
3 bits of history and 23 counters, the local branch predictor will be able determine the
current iteration and always make the correct prediction after some initial settling of the
counter values. If there are more branches in the program, a local predictor can suffer from
two kinds of contention. First, the branch history may reflect a mix of histories of all the
branches that map to each history entry. Second, since there is only one counter array for all
branches, there may be conflict between patterns. For example, if there is another branch
that typically executes the pattern (0110)n instead of (1110)n, there will be contention when
the branch history is (110). However, with 4 bits of history and 24 counters, this contention
can be avoided. Note however, that if the first pattern is executed a large number of times
followed by a large number of executions of the second pattern, then only 3 bits of history
are needed since the counters dynamically adjust to the more recent patterns.

5

PC

CountsHistory

Taken predictTaken

Figure 4: Local History Predictor Structure

Figure 5 shows the performance of local branch prediction as a function of the predictor
size. For simplicity, we assume that the number of history and count array entries are the
same. See Appendix A for a discussion of some alternatives. For very small predictors, the
local scheme is actually worse than the bimodal scheme. If there is excessive contention
for history entries, then storing this history is of no value. However, above about 128
bytes, the local predictor has significantly better performance. For large predictors, the
accuracy approaches 97.1% correct, with less than half as many misspredictions as the
bimodal scheme.

5 Global Branch Prediction

In the local branch prediction scheme, the only patterns considered are those of the current
branch. Another scheme proposed by Yeh and Patt[YP92] is able to take advantage of other
recent branches to make a prediction. One implementation of such an approach is shown
in Figure 6. A single shift register GR, records the direction taken by the most recent n
conditional branches. Since the branch history is global to all branches, this strategy is
called global branch prediction in this paper.

Global branch prediction is able to take advantage of two types of patterns. First,
the direction take by the current branch may depend strongly on other recent branches.
Consider the example below:

if (x<1) : : :
if (x>1) : : :

Using global history prediction, we are able to base the prediction for the second if
on the direction taken by the first if. If (x<1), we know that the second if will not be

6

� � local
� � bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�
�

�

�

�

�

� �
� � � � � �

Figure 5: Local History Predictor Performance

Taken

Taken GR

Counts

predictTaken

Figure 6: Global History Predictor Structure

7

taken. If (x�1) then we don’t know conclusively which way this branch will be taken,
but the probability may well be skewed one direction or the other. If so, we should be
able to make a better prediction than if we had no information about the value of x. Pan,
So, and Rahmeh[PSR92] showed several examples of neighboring branches in the SPEC
benchmarks with conditions that are correlated in this way.

A second way that global branch prediction can be effective is by duplicating the
behavior of local branch prediction. This can occur when the global history includes all the
local history needed to make an accurate prediction. Consider the example:

for (i=0; i<100; i++)
for (j=0; j<3; j++)

After the initial startup time, the conditional branches have the following behavior,
assuming GR is shifted to the left:

test value GR result
j<3 j=1 1101 taken
j<3 j=2 1011 taken
j<3 j=3 0111 not taken

i<100 1110 usually taken

Here the global history is able to both distinguish which of the two branches is being
executed and what the current value of j is. Thus, the prediction accuracy here would be as
good as that of local prediction.

Figure 7 compares the performance of the global prediction with local and bimodal
branch prediction. The plot shows that the global scheme is significantly less effective than
the local scheme for a fixed size predictor. It is only better than the bimodal scheme above
1KB.

We can understand this behavior intuitively by looking at the information content of the
counter table index. For small predictors, the bimodal scheme is relatively good. Here, the
branch address bits used in the bimodal scheme efficiently distinguish different branches.
As the number of counters doubles, roughly half as many branches will share the same
counter. Informally, we can say that the information content of the address bits is high.
For large counter tables, this is no longer true. As more counters are added, eventually
each frequent branch will map to a unique counter. Thus, the information content in each
additional address bit declines to zero for increasingly large counter tables.

The information content of the global history register begins relatively small, but it
continues to grow for larger sizes. To understand why, consider the history one might
expect when a particular branch is executed. Since over 90% of the time each branch goes
the same direction, the sequence of previous branches and the directions taken by these
branches will tend to be highly repetitive for any one branch, but perhaps very different
for other branches. This behavior allows a global predictor to identify different branches.
However as Figure 7 suggests, that the global history is less efficient at this than the branch

8

 global
� � local
� � bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�
�

�

�

�

�

� �
� � � � � �

Figure 7: Global History Predictor Performance

address. On the other hand, the global history register can capture more information than
just identifying which branch is current, and thus for sufficiently large predictors it does
better than bimodal prediction.

6 Global Predictor with Index Selection

As discussed in the previous section, global history information is less efficient at identifying
the current branch than simply using the branch address. This suggests that a more efficient
prediction might be made using both the branch address and the global history. Such
a scheme was proposed by Pan, So, and Rahmeh[PSR92]. Their approach is shown in
Figure 8. Here the counter table is indexed with a concatenation of global history and
branch address bits.

The performance of global prediction with selected address bits (gselect) is shown in
Figure 9. With the bit selection approach, there is a tradeoff between using more history
bits or more address bits. For a predictor table with 2K counters, we could use anywhere
from 1 to (K-1) address bits. Rather than show all these possibilities, Figure 9 only shows
the performance of the predictor of the given size with with the best accuracy across the
benchmarks (gselect-best).

As we would expect, gselect-best performs better than either bimodal or global pre-
diction since both are essentially degenerate cases. For small sizes, gselect-best parallels
the performance of bimodal prediction. However, once there are enough address bits to
identify most branches, more global history bits are used, resulting in significantly better

9

Taken

Taken

PC

Counts

predictTaken

GR

n

m n+m

Figure 8: Global History Predictor with Index Selection

� � gselect-best

 global
� � local
� � bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

� �
� � � � � �

Figure 9: Global History with Index Selection Performance

10

prediction results than the bimodal scheme. The gselect-best method also significantly
outperforms simple global prediction for most predictor sizes because the branch address
bits more efficiently identify the branch.

For predictor sizes less than 1KB, gselect-best also outperforms local prediction. The
global schemes have the advantage that the storage space required for global history is
negligible. Moreover, even for larger predictors, the accuracies are close. This is especially
interesting since gselect requires only a single array access whereas local prediction requires
two array accesses in sequence. This suggests that a gselect predictor should have less delay
and be easier to pipeline than a local predictor.

7 Global History with Index Sharing

In the discussion of global prediction, we described how global history information weakly
identifies the current branch. This suggests that there is a lot of redundancy in the counter
index used by gselect. If there are enough address bits to identify the branch, we can expect
the frequent global history combinations to be rather sparse. We can take advantage of
this effect by hashing the branch address and the global history together. In particular, we
can expect the exclusive OR of the branch address with the global history to have more
information than either component alone. Moreover, since more address bits and global
history bits are in use, there is reason to expect better predictions than gselect. Consider
the following simple example where there are only two branches and each branch has only
two common global histories:

Branch Global gselect gshare
Address History 4/4 8/8

00000000 00000001 00000001 00000001
00000000 00000000 00000000 00000000
11111111 00000000 11110000 11111111
11111111 10000000 11110000 01111111

Strategy gselect 4/4 concatenates the low order 4 bits of both the branch address and
the global history. We will call the strategy of exclusive ORing branch address and global
history gshare. Strategy gshare 8/8 uses the bit-wise exclusive OR of all 8 bits of both the
branch address and the global history. Comparing gshare 8/8 and gselect 4/4 shows that
only gshare is able to separate all four cases. The gselect predictor can’t take advantage of
the distinguishing history in the upper four bits.

As with gselect, we can choose to use fewer global history bits than branch address bits.
In this case, the global history bits are exclusive ORed with the higher order address bits.
Typically, the higher order address bits will be more sparse than the lower order bits.

Figure 10 shows the gshare predictor structure. Figure 11 compares the performance
of gshare with gselect. Figure 11 only shows the gshare predictor among the various
history length choices that has the best performance across the benchmarks (gshare-best).

11

PC

Counts

Taken predictTaken

GR

m

n n
XOR

Figure 10: Global History Predictor with Index Sharing

For predictor sizes of 256 bytes and over, gshare-best outperforms gselect-best by a small
margin. For smaller predictors, gshare underperforms gselect because there is already too
much contention for counters between different branches and adding global information
just makes it worse.

8 Combining Branch Predictors

The different branch prediction schemes we have presented have different advantages. A
natural question is whether the different advantages can be combined in a new branch
prediction method with better prediction accuracy. One such method is shown in Figure 12.
This combined predictor contains two predictors P1 and P2 that could be one of the
predictors discussed in the previous sections or indeed any kind of branch prediction
method. In addition, the combined predictor contains an additional counter array which
serves to select the best predictor to use. As before, we will use 2-bit up/down saturating
counters. Each counter keeps track of which predictor is more accurate for the branches
that share that counter. Specifically, using the notation P1c and P2c to denote whether
predictors P1 and P2 are correct respectively, the counter is incremented or decremented
by P1c-P2c as shown below:

P1c P2c P1c-P2c
0 0 0 (no change)
0 1 -1 (decrement counter)
1 0 1 (increment counter)
1 1 0 (no change)

12

� � gshare-best
� � gselect-best

 global

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�
� �

�

�

�

�
�

�

Figure 11: Global History with Index Sharing Performance

PC

Counts

P1c-P2c useP1

P1 P2

Figure 12: Combined Predictor Structure

13

 bimodal
 gshare
 bimodal/gshare

|
80

|
82

|
84

|
86

|
88

|
90

|
92

|
94

|
96

|
98

|
100

|

 Conditional Branch Prediction Accuracy (%)

doduc

eqntott

espress

fpppp

gcc

li

mat300

nasa7

spice

tomcatv

average

Figure 13: Combined Predictor Performance by Benchmark

One combination of branch predictors that is useful is bimodal/gshare. In this com-
bination, global information can be used if it is worthwhile, otherwise the usual branch
direction as predicted by the bimodal scheme can be used. Here, we assume gshare uses
the same number of history and address bits. This assumption maximizes the amount of
global information. Diluting the branch address information is less of a concern because the
bimodal prediction can always be used. Similarly, gshare performs significantly better here
than gselect since it uses more global information. Figure 13 shows how the bimodal/gshare
combination works on the SPEC’89 benchmarks. Here, all the benchmarks were run to
completion. Also, each predictor array has 1K counters. Thus, the combined predictor is
actually 3 times as large. As the graph shows, the combined predictor always does better
than either predictor alone. For example, with eqntott, gshare is much more effective than
bimodal and bimodal/gshare matches the performance of gshare. Figure 14 shows how
often each predictor was used in the bimodal/gshare combined predictor on these same
runs. For these sizes, the bimodal predictor is typically used more often. However, for
eqntott, the gshare predictor is more often used. Again the choice of predictors is made
branch by branch. In any one benchmark, many branches may use the bimodal prediction
while other branches use gshare. Figure 15 shows how using bimodal/gshare effects the
number of instructions between misspredicted branches. The combination increases this
measure significantly for some of the benchmarks, especially some of the less predictable
benchmarks like gcc.

Figure 16 shows the combined predictor accuracy for a range of predictor sizes. As
earlier, only the average accuracy across the SPEC’89 benchmarks run for 10M instruc-
tions is shown. In this chart, we choose to display a bimodal/gshare predictor where the

14

|
0

|
20

|
40

|
60

|
80

|
100

|

 Fraction Predictions from bimodal (%)

doduc

eqntott

espress

fpppp

gcc

li

mat300

nasa7

spice

tomcatv

average

Figure 14: bimodal/gshare Predictor Performance by Benchmark

 bimodal
 gshare
 bimodal/gshare

|
10

| | | | | | | | |
100

| | | | | | | | |
1000

| | | | | | | | |
10000

||

 Instructions

doduc

eqntott

espress

fpppp

gcc

li

mat300

nasa7

spice

tomcatv

Figure 15: Instructions between Misspredicted Branches

15

� � bimodalN/gshareN+1
� � local/gshare
� � gselect-best
� � bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�
� �

�

�

�

�

�

�

�
�

�

�

�

�

�

� �
� � � � � �

Figure 16: Combined Predictor Performance by Size

gshare array contains twice as many counters (bimodalN/gshareN+1). This allows a more
direct comparison to gselect-best since the total predictor size is an integral number of
bytes. Predictor bimodalN/gshareN+1 also has slightly better performance since the pre-
dictor selection array cost is amortized over more predictor counters. The performance of
bimodalN/gshareN+1 is significantly better than gselect-best. The 1KB combined predictor
has nearly the same performance as a 16KB gselect-best predictor.

Figure 16 also shows the performance of a combined local/gshare predictor where it
outperforms bimodal/gshare. For this plot, all the local/gshare arrays have the same number
of entries. For sizes of 2KB and larger, the local/gshare predictor has better accuracy than
bimodalN/gshareN+1. For large arrays this accuracy approaches 98.1% correct. This result
is as we would expect since large local predictors subsume the information available to a
bimodal predictor.

9 Conclusions

In this paper, we have presented two new methods for improving branch prediction perfor-
mance. First, we showed that using the bit-wise exclusive OR of the global branch history
and the branch address to access predictor counters results in better performance for a given
counter array size. We also showed that the advantages of multiple branch predictors can
be combined by providing multiple predictors and by keeping track of which predictor is
more accurate for the current branch. These methods permit construction of predictors
that are more accurate for a given size than previously known methods. Also, combined

16

predictors using local and global branch information reach a prediction accuracy of 98.1%
as compared to 97.1% for the previously most accurate known scheme. The approaches
presented here should be increasingly useful as machine designers attempt to take advantage
of instruction level parallelism and miss-predicted branches become a critical performance
bottleneck.

10 Suggestions for Future Work

There are a number of ways this study could be extended to possibly find more accurate and
less costly branch predictors. First, there are a large number of parameters such as sizes,
associativities, and pipeline costs that were not fully explored here. Careful exploration
of this space might yield better predictors. Second, other sources of information such
as whether the branch target is forward or backward might be usefully added to increase
accuracy. Third, the typically sparse branch history might be compressed to reduce the
number of counters needed. Finally, a compiler with profile support might be able to reduce
or eliminate the need for branch predictors as described here. For example, previous work
has shown that using profile information to set a likely-taken bit in the branch results in
accuracy close to that of the bimodal scheme. Thus, for code optimized in this way, the
bimodal predictor in the bimodal/gshare scheme might be unnecessary. More elaborate
optimization might also eliminate the need for the gshare predictor as well. This might be
done with either more careful inspection of branch conditions or more elaborate profiling
of typical branch patterns. For example, branches with correlated conditions might be
detected with semantic analysis or by more elaborate profiling that could detect branch
correlation dynamically. This information might then be used to duplicate or restructure the
branches so that a simpler branch prediction method could take advantage of the correlation.
Furthermore, branch patterns caused by loops might be exploited by careful unrolling that
takes advantage of the typical iteration count detected either semantically or with more
elaborate profiling.

A Appendix

The local branch prediction scheme has a number of variations that were not discussed in
the Section 4. In this appendix, we will discuss two variations and show that the combined
predictor has better performance than these alternatives. First, similarly to the gselect
scheme, it is possible to index the counter array with both the branch address and the local
history. Again, there are a large number of possibilities. Figure 17 shows the family of
performance curves where the number of history bits used to index the counter array is
held constant. For example, local-2h implies that there are 2 history bits used to index the
counter array and the remaining index bits come from the branch address. We keep the
assumption that the number of history array and counter array entries are the same. As

17

� bimodal/gshare

 local
� local-2h
� local-4h
� local-6h
� local-8h
� local-10h
� local-12h

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 M
is

s
R

at
e

(%
)

�

�

�

�
�

�

�

�

�

�
� �

�

�

�

�
� �

�

�

�
� �

�

�
�

�
��

Figure 17: Local Predictor Performance with Address Bits

the figure shows, reducing the number of history bits can improve performance. This is
mainly due to the reduction in the history array size itself. The figure also shows that the
bimodal/gshare predictor performance is still significantly better than the different local
predictor variations. In addition, the bimodal/gshare predictor only requires a single level
of array access.

Another variation in the local scheme is to change the number of history entries.
Figure 18 shows the resulting performance. The notation local-64HR signifies that there
are 64 history table entries. As the figure shows, using the same number of history table
entries as counters is usually a good choice.

References

[BL93] T. Ball and J. R. Larus. Branch prediction for free. In Proceedings of the ACM
SIGPLAN ’93 Conference on Programming Language Design and Implementa-
tion, Albuquerque, NM, 1993.

[FF92] J. A. Fisher and S. M. Freudenberger. Predicting conditional branch directions
from previous runs of a program. In Proceedings of ASPLOS V, pages 85–95,
Boston, MA, October 1992.

[HCC89] W. W. Hwu, T. M. Conte, and P. P. Chang. Comparing software and hardware
schemes for reducing the cost of branches. In Proc. 16th Int. Sym. on Computer
Architecture, pages 224–233, May 1989.

18

� � local- 64 HR
� � local-256 HR
� � local- 1K HR
� � local- 4K HR
� � local-16K HR
� � local

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

�

�

�

�

�
� �

�

�

�

�

�
�

� � �

�

�

�

�

�
�

� � �

�

�

�

�

�
�

� � �

�

�

�

�

�
�
� �

�

�

�

�
�

Figure 18: Local Predictor Performance with Varying Number of History Registers

[JW89] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for su-
perscalar and superpipelined machines. In Proceedings of ASPLOS III, pages
272–282, Boston, MA, April 1989.

[Kil86] E. A. Killian. In RISCompiler and C Programmer’s Guide. MIPS Computer
Systems, 930 Arques Ave., Sunnyvale, CA 94086, 1986.

[LS84] J.K.L. Lee and A.J. Smith. Branch prediction strategies and branch target buffer
design. Computer, 17(1), January 1984.

[LW93] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In Proc. 20th
Int. Sym. on Computer Architecture, May 1993.

[MH86] S. McFarling and J. Hennessy. Reducing the cost of branches. In Proc. 13th Int.
Sym. on Computer Architecture, pages 396–403, June 1986.

[PSR92] S. T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch
prediction using branch correlation. In Proceedings of ASPLOS V, pages 76–84,
Boston, MA, October 1992.

[Sit93] R. L. Sites. Alpha AXP architecture. Communications of the ACM, 36(2):33–44,
Feb. 1993.

[Smi81] J. E Smith. A study of branch prediction strategies. In Proc. 8th Int. Sym. on
Computer Architecture, pages 135–148, May 1981.

19

[Smi91] M. D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Computer
Systems Laboratory, Stanford University, November 1991.

[SPE90] SPEC. The SPEC Benchmark Report. Waterside Associates, Fremont, CA,
January 1990.

[Wal91] D. W. Wall. Limits of instruction-level parallelism. In Proceedings of ASPLOS
IV, pages 176–188, Santa Clara, CA, April 1991.

[YP92] T. Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive
branch prediction. In Proc. 19th Int. Sym. on Computer Architecture, pages
124–134, May 1992.

[YP93] T. Y. Yeh and Y. N. Patt. A comparison of dynamic branch predictors that use
two levels of branch history. In Proc. 20th Int. Sym. on Computer Architecture,
pages 257–266, May 1993.

20

