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Abstract

Modern processors improve instruction level parallelignspecu-
lation. The outcome of data and control decisions is predicind
the operations are speculatively executed and only corednitthe
original predictions were correct. There are a number ofoifays
that processor resources could be used, such as threadémger
execution. As the use of speculation increases, we beli@re m
processors will need some form speculation controto balance
the benefits of speculation against other possible aet$viti

Confidence estimation is one technique that can be explbjted
architects for speculation control. In this paper, we idtroe per-
formance metrics to compare confidence estimation meamanis
and argue that these metrics are appropriate for speaulatio-
trol. We compare a number of confidence estimation mechanism
focusing on mechanisms that have a small implementatidrecos
gain benefit by exploiting characteristics of branch predi; such
as clustering of mispredicted branches.

We compare the performance of the different confidence esti-

mation methods using detailed pipeline simulations. Ushege
simulations, we show how to improve some confidence estisiato
providing better insight for future investigations compagrand ap-
plying confidence estimators.

1 Introduction

Speculation is a fundamental tool in computer architectitral-
lows an architectural implementation to achieve highetririon
level parallelism, and thus performance, by predictingahizome
of specific events. Most processors currently implementdita
prediction to permit speculative control-flow; more recewntk has
focused on predicting data values to reduce data deperedi€i].

Confidence estimatiois a technique for assessing the quality
of a particular prediction. Confidence estimation has ugumen
studied in the context of branch prediction. Jacobseal [7] de-
scribed a number of uses for confidence estimation: theyesigd
that it may be used to improve the branch prediction ratetrobn
resource use in a dual-path execution pipeline or controteca
switching in a multithreaded processor.

In this paper, we study the design of confidence estimatats an
make the several contributions. First, we feel that confidegsti-
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mators will usually be used for some form gffeculation control
Previous metrics used to compare confidence estimatorsiweul
sult in inappropriate design decisions. We introduce steshccon-
sistent metrics to compare the performance of confidendmast
tors, and argue that different applications of confidendienegors
require different metrics. Second, we compare hardwarenint
sive confidence estimators against several less complienagots
that use existing branch prediction or processor staterimdtion.
While the complex implementation has uniformly better perf
mance, the less complex methods have similar performargt@ an
significantly reduced implementation cost, making themeatipg
for many of the practical cases where confidence estimatmnidv
be used. Lastly, our pipeline-level simulations indicatays/to
improve the hardware-intensive confidence estimator incnaa
implementation.

In the next section, we descrilsereeningor diagnostic tests
and adopt their terminology for branch prediction and canfick
estimation. g2, we apply this terminology to confidence estima-
tion, and conduct a series of measurements to compareatiffer
confidence estimators. We close with a discussion of terhpgra
pects of branch predictors and how they can be exploitedpodue
confidence estimation.

1.1 Diagnostic Tests

The following description is adapted from a paper by Gashw#],

as described in [1]. Aliagnostic tesis used to determine if an
individual belongs to a clas® of people that have a particular
disease, or to the class of people who do not have the disBase,
The result of a test places a person either into the cfaghiose
who are suspected of having the disease, or gasbhe accuracy
of the diagnostic test is indicated by two parametsesisitivityand
specificity The sensitivity is defined to bee®is = P[S|D], or the
probability that a person with the disease is properly diesgal.
The specificity is 8ec= P[S|D], or the probability that a person
who does not have the disease is correctly diagnosed. Far goo
tests, both 8ecand SENsare close to one.

The problem with all diagnostic tests is that if a diseasaixc
infrequently, there will be a large number of “false pos8V — the
diagnostic test will indicate that a person has the disedsanin
fact they do not. This can be expresse®4$S|D] = 1—-P[S|D] =
1— SPEC The last metric of interest is the probability that someone
has a diseasg, = P[D]. In most tests, we are interested in the
predictive value of a positive te§PvP), which is P[D|S]. The
Pvp is the probability that a person has the disease given tlesta t
indicates they might.

Gastwirth cites a study of the ELISA test for AIDS used to



screen donated blood, where the sensitivity wasi$= 0.977,
indicating that the test should find samples with the diseasée
the specificity was 8ec = 0.926, indicating that most tests that
come back positive would really have the disease. The laagie v
ues for &Ns and SPEC can be misleading for large populations
or for very rare diseases. For example, assume that @0l%
of the population actually has AIDB(= 0.0001). Then, using
the above equation, we compute®= P[D|S] = 0.001319. In
other wordseven if the diagnostic test indicates you have the dis-
ease, there is only 8.13% probability that you actually have the
disease, simply because the disease is so rare

So far, we have described parameters of diagnostic tests ind
pendently of thecostof different outcomes. For example, in the
ELISA test for AIDS, it is very important to have a high sensit
ity — tainted blood samples shouldn’t be accepted. However,
acceptable to have a lower specificity, because you may lest@bl
use a series of (more expensive) tests to determine if theoper
really has the disease.

2 Confidence Estimation as a Diagnostic Test

It is more difficult to compare two confidence estimators thao
branch predictors in part because confidence estimatoisecased
for a number of purposes while branch predictors are tyjyical
only used to predict the outcome of control-dependentutns.
Most architectures are designed to use speculation ancetiera
assumption is that “you might as well be doing something4 an
thus each branch is predicted.

By comparison, we think that confidence estimators will nor-
mally be used fospeculation control For example, if a particular
branch in a Simultaneous Multithreading [14] processorfibw
confidence, it may be more cost effective to switch threads th
speculatively evaluate the branch. A confidence predidtengts
to corroborate or assess the prediction made by a brancicioed
Each branch is eventually determined to have been predicted
rectly or incorrectly. For each prediction, the confidensgnsator
assigns a “high confidence” or “low confidence” to the praditt
In addition to the standard terminology of diagnostic testshave
found that another notation simplifies the comparison deckint
confidence estimators. We drav & 2 matrix listing the frequency
for each outcome of a test. When we apply this framework thiarc
tectural simulation, each of the quadrants can be directigsured
during simulation or analysis. Typically, we normalize treues
to insure that the sum equals one. Thus, our quadrant table fo
confidence estimation is:

Prediction Outcome

C I
H Cuc | Inc
Confidence ¢ e e
LC | Cre | Inc

In this table, “C” and “I" refer to “correct” and “incorrectpre-
dictions, respectively, and “HC” refers to “high confideheand
“LC” to “low confidence”. During a simulation, we can mea-
sureCuc, Inc,Cre andILc using a branch predictor for each
branch and concurrently estimate the confidence in thatchran
predictor using a specific confidence estimator. When thedra
is actually resolved, we classify the branch as belongingldss
Cuc,Inc,Crcorlic.

2.1 Metrics for Comparing Confidence Estimators

There are many possible designs for confidence estimatods, a
we need a consistent method to compare the effectivenesgof t
confidence estimators. To date, only Jacobseal [7] have pub-
lished comparisons of confidence estimators, and theirrpape
sidered only two designs. When converted to our termingldgy
cobseret al defined the “confidence misprediction rate”lag- +
CrLc/Cuc+Iuc+Cre+ILc. Thisrepresents the fraction when
the confidence estimator was wrong or disagreed with theteakn
branch outcome. Jacobsenal also defined the “coverage” of a
confidence predictor a88r.c + It /Cuc + Iac + Cre + Irc.

We believe that when a confidence estimator is applied, the ar
chitectural feature using that confidence estimation wiliex be
used for “high confidencebdr “low confidence” branches, but not
both. Since the “confidence misprediction rate” includethmut-
comes, we felt more effective metrics needed to be desighed.
example, consider a simultaneous multithreading (SMTEeso
sor that uses a confidence estimator to determine if a pestict
branch is likely to be mispredicted. If the branch predictis
of “low confidence”, the processor may switch to another lavai
able thread rather than fetch additional instructions fithin cur-
rent thread. The performance of such a processor is verytisens
to P[I|LC| = ILc/CLc + ILc, the probability that the branch
is incorrectly predicted if it was low confidence. A high valu
for P[I|LC] indicates that the processor can switch contexts only
when the following instructions will not commit. A low valusf
P[I|LC] indicates that the SMT processor may needlessly switch
threads, reducing the performance of the primary thread ovA |
value of the $ec (P[LC|I]) means that the processor will miss
some opportunities to improve aggregate performance bickwi
ing threads.

Not all uses of confidence estimators will make the same kind
of decisions, but we feel it is most useful to compare confiden
estimators using metrics that reflect how the confidencenasirs
are used. For example, SMT processors want a confidenceaestim
tor with a largeP[I|LC] and a largeP[LC|I]. We have found in
our own discussion that terms such as “accuracy” and “coegra
tend to cause confusion, because accuracy has an inhefitamp
tion about the application of a technique. Thus, we use akutr
terms that also have the benefit of being standard terms tis-sta
tics. Each of these metrics is easy to compute, and each igleth
is better” metric. To simplify discussion, we assign thddaing
names to these conditions.

Sensitivity: The &Nsis P[HC|C] = Cuc/Cuc + Cre,
and represents the fraction of correct predictions idettiéis
“high confidence”.

Predictive value of a Positive Test: ThesiPis P[C|HC] =
Cruc/Cuc + Iuc and represents the probability that a high-
confidence estimate is correct.

Specificity: The ®ecis P[LC|I| = Irc/Iac + ILc, and rep-
resents the fraction of incorrect predictions identifiedlas
confidence”.

Predictive value of a Negative Test: The/Wis P[I|LC] =
I:co/Cre + Ine and represents the probability that the a
low-confidenceestimate is correct.

There is a natural relation between theeg and R/N and the
SENsand R/p that can be clarified by an example. Assume a pro-
gram executed 100 conditional branches. Of those, 20 afgrenis
dicted. The confidence estimator indicates “high confidefme
61 of the 80 correctly predicted branches and 2 of the inctyre
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Figure 1: Parametric plots showing how the sensitivitye¢®), specificity
(SPEQ and branch prediction accuracgy)(influence the values of\®> and
PvN. Each line shows the value of/P and R/N when we hold two values
constant and vary the third value. For example, in the rigbst curve, the
specificity and branch prediction accuracy are held cohstard we vary
the value of the sensitivity. The markers on each line indidhe decile
values of the parameter being varied.

predicted branches. It indicates “low confidence” for 19h&f 80
correctly predicted branches and 18 of the 20 incorrectidjmted
branches.

Prediction Outcome

C I
Confidence HC 61 2
LC 19 18
The SENswould be =8 = 76%, and the RP would be

61419
% = 97%. A larger ENsindicates more of the correctly pre-
dicted branches are correctly estimated, and a largeriRdicates
that the confidence estimator doesn’'t designate incornextiq
tions as “high confidence”. Ther&cwould be 335 = 90%, in-
dicating that the confidence estimator is good at finding robttte
incorrectly predicted branches. The®would be 157 = 49%,
indicating that the confidence estimator is reasonably abkx-
clude correctly predicted branches. Since branch predastou-
racy isCruc + Crc, the ENsand SEcare independent of the
branch predictor accuracy. In other word€N% is only a prop-
erty of correctly predicted branches, andeis only a property of
incorrectly predicted branches.

Figure 1 provides some insight into the relation between the
SENS, SPEC prediction accuracy, W and R/N. The curves
are plotted for values of 8\s, SPECcand prediction accuracy)
that are representative of the measured values that willibe d
cussed irg3. For a given sensitivity and prediction accuracy (e.g.,
[SENS = 70%, p = 70%)] and[SENS = 70%, p = 90%)]), increas-
ing the sensitivity will greatly improve the® until it reaches an
asymptotic limit and then improves the/R. Likewise, for a given
Spec and prediction accuracy (e.JSPEC = 70%,p = 70%],
[SPEC= T0%,p = 90%] and[SPEC = 99%, p = 90%]), increas-
ing the ENsimproves the N. This improvement is faster if the
SENSis high or the branch prediction accuracy is low.

When designing a confidence estimator, we need to understand

whether the final application will be using the/Por PvN and the

importance of the BNsand SPEcto that application. Typically, we
would not want to change the branch prediction accuraciipafih
we can increase theviR by decreasing the prediction accuracy, this
would be counter-productive for most applications of cosrfice
estimation.

2.2 Using confidence estimators

Although the particulars of any given application are bel/dime
scope of this paper, there are a number of obvious uses of confi
dence estimation with associated costs that can illustretem-
portance of the relative values of these metrics. We haverithes!

one such application (speculation control for simultarseowilti-
threading), and list four others.

Bandwidth multithreading:  In a multithreading CPU designed

to assume a large number of threads, the architectural mamed

be more willing to switch threads if there is any uncertaimyhe
outcome of a branch. Unless the confidence estimator retuane
“high confidence” estimate, the architecture would switoleads.
Thus, we want a confidence estimator with a higin§, meaning
that most correct branches are identified as high-confijemmta
high PvP, meaning that most branches designated as high confi-
dence are predicted correctly.

SMT: As mentioned, in this architecture, you could use a con-
fidence estimator to control the number of instructions ésishy
individual threads. Since this architecture would err oe $ide

of speculatively issuing instructions, confidence estorstith a
high PvN are very important, while ¥p would be less important.

A higher S>’Ecmeans that more opportunities for avoiding wasteful
speculation are identified.

Power conservation: In related work [11], we are investigating
how to use confidence estimators to reduce power usage ina pro
cessor by suppressing instruction issue following lowfictamce
branches. The goals in the power conservation architeatersim-

ilar to those of the SMT design, and we want a confidence egiima
with large R/N and SPEC

Eager Execution: Some proposed architectures evaluate instruc-
tions on both paths of a conditional branch [16, 9, 15, 6, 8fse
architectures might use a confidence estimator to determliresn

to diverge and evaluate both paths. A confidence estimatibr wi
high PyN would indicate that a low-confidence estimate for a
given conditional branch has a high chance of being a miggpiezt
branch and may benefit from eager execution. A highreS
would mean that more opportunities for applying eager etecu
are found.

Improving Branch Predictors: Jacobsewt al[7] suggested that
a confidence estimator could be used to improve the accufazy o
branch predictor. If the ¥ > 50%, then the confidence esti-
mator can improve the branch prediction accuracy by inegrthe
outcome of a low-confident branch. Conversely, iffP< 50%,
then the branch prediction for high-confident branches lshbe
inverted. We have examined many confidence estimators ity man
configurations, but have not found a situation where theselieo
tions hold across a range of programs.

To summarize, in most of these applications, a highen P
would improve the underlying architecture, but none of thpla
cations needing a highenVR would sacrifice prediction accuracy



to increase the ¥. A higher S>’Ecwould indicate that the archi-
tectural optimization (multithreading, eager executipower con-
servation) might have greater impact because more of therapp
nities where it can be applied are exposed. Our own immedjate
plications for confidence estimation (power conservatiath eager
execution) biased our investigation towards confidencienagbrs
with a high P/N and S EC

3 Comparison of Confidence Estimators

We have implemented four confidence estimators either siésal
or implied in existing literature, and used our performamocet-
rics to compare their performance. Later, we examine th@teat
characteristics of branch predictors and show how thospegties
can be used to design another inexpensive confidence estimat

JRS Estimator: The first method we implemented is one-level
resetting counter mechanism proposed by Jacobsen, Rajenbe
and Smith (JRS) [7]. This predictor uses a miss distanceteoun
(which we call an MDC) table in addition to the branch pregiict
The structure of the confidence estimator is similar to tHahe
Gshare predictor. An index is computed using an exclusivefo
the program address and the branch history register. THexirs
used to read a value from a table of MDCs. The width of these
counters can vary in size, but we used 4-hit counters as stege
in [7]. We used a large table containing 4096 4-bit countBch
time a branch is predicted, the value of the MDC is compared to
a specific threshold. If the value is above that thresholeln tthe
branch is considered to have high confidence, otherwisesitdva
confidence. When a branch resolves, the corresponding eoictd
counter is incremented if the branch was correct; othenitisere-

set to zero. We tried all different threshold levels, andstetailed
results for a threshold of 15 and show the trend for othesstiwtls.

We called this thedRSconfidence estimator.

Pattern History Estimator:  Lick et al [9, 15] proposed a confi-
dence estimator for dual-path execution. the confidendmatsir
was used to determine when dual-path execution should kb use
Although neither of the available papers focused on the dentie
estimator itself, the basic design is described. letlkal observed
that a small number of branch history patterns typicallylgacor-
rect predictions in a branch architecture using a PAs ptedice.,
a BTB with a branch history stored for each branch site). Tdre ¢
fidence estimator assigned high confidence to a fixed settafrpat
and treated all other patterns as low confidence. Essantladi pat-
terns were always taken, almost always taken (once notytalie
ways not-taken, almost always not-taken and alternatikentand
not-taken. We called this theattern historyconfidence estimator.

Saturating Counters Estimator: The third method we imple-
mented was originally proposed in an early paper by Smitf. [13
Here, we use the state of tlaturating countersused in many
branch prediction mechanisms to determine the confidenite es
mate. For example, in a simple gshare predictor, branclomes
are determined by the state of a two-bit counter. We calletiie
saturating countersnethod.

Static Estimator: The last technique uses satic confidence
hint. Here, we executed the program and simulated the underly-
ing branch predictor (e.g., a gshare predictor). We redoedhum-

ber of correct outcomes for each branch instruction, and tise a
“threshold” to determine confident branches. In our exas)pie
used a threshold of 90%, meaning that a branch with)% branch

prediction accuracy was considered to have high confidemzeall
other branches had low confidence. The results we report@re f
self-profiled executions where the same input was useditodral
evaluate the confidence predictor. Thus, these resultemiradbest-
case evaluation of this confidence method. We mainly incthide
technique to indicate its potential.

3.1 Experimental Methodology

Each of the confidence estimation techniques makes assumapti
concerning the underlying branch predictor. Later, we carap
these methods when using a gshare and a McFarling branch pre-
dictor [12]. In each case, the structure of the confidencienast

tor may change due to the branch predictor, and we indicatgeth
changes there. We use the SimpleScalar [2] executionfusiveu-
lation infrastructure to compare the different confidenstingators.

Our simulator is an extension of tem-outordersimulator, with

a 5-stage pipeline and an additional 3 cycle mispredicéaovery
penalty.

We use a 64 kB L1 Dcache and a 128 kB L1 Icdcheth with
2 cycle access latency. Our simulator knows the outcomelof al
branches at the point of instruction decode, even for bres¢hat
do not actually commit. This includes branches followingiapre-
dicted branch. We essentially recorded a “speculativetrior the
processor, recording the prediction and eventual outcointem-
mitted and uncommitted branches. We did this to compareithe d
ference in branch prediction and confidence estimationdomit-
ted and uncommitted branches. When the processor is engauti
conditional branch, it does not know if a branch will comminot,
so it is important to understand hall branches are predicted and
estimated. It may be that some pattern arises in the uncdeanit
branches that would impact confidence estimation. We wilbgbs
restrict our discussion to committed instructions unlessndicate
otherwise. For example, when we report thees and R/N for
different confidence estimators, we only report these \&afaethe
committed instructions.

We used the SPECIint95 benchmarks for our performance eval-
uation and did not simulate the SPECfp95 since those pragram
typically pose few difficulties for branch predictors. Thench-
marks and important measurements from our simulationsstssl|
in Table 1.

We used three underlying branch predictors to compare the di
ferent confidence estimators: a speculative gshare peedicspec-
ulative McFarling combining predictor [12] and a non-spative
SAg [17] predictor. Figure 2 gives a schematic illustratadreach
branch predictor. The gshare branch predictor (Figure 2a)-c
bines a global branch history with the program counter tected
two-hit counter. The SAg predictor (Figure 2b) uses the m@oy
counter to index into an untagged table of branch historisters
that are used to select a two-bit counter. The bimodal predic
(Figure 2c) is used in the combining predictor and uses tle pr
gram counter to index a table of two-bit counters. The coinigin
predictor (Figure 2d) uses both a gshare (Figure 2a) anddzamo
(Figure 2c¢) predictor. A table of two-bit counters is usedétect a
component branch predictor for each prediction.

Only the gshare and combining predictors are speculatively
dated. Non-speculative update would slightly increasebthech

LIt is important to note that the “profile” technique cannoe assimple program
profile, since the decisions depend on outcome and state bfémch predictor. Thus,
the “profile” technique requires a branch predictor simola{which is much slower
than a simple profile) or hardware that reports performantm@mation for the under-
lying branch predictor, such as the Profile-Me mechanism [3]

2The Icache is equivalent to a 64 kB cache, since SimpleSbalsm 64-bit in-
struction encoding, but we only use 32 bits for each insibactso half the space is
wasted.



committed instructions all instructions ratio
conditional branches conditional branches all/committed
inst. number misprediction inst. number misprediction

(million) | (million) | taken rate (million) | (million) | taken rate cond.

application gshare| McF. SAg gshare gshare| McF. SAg_; inst. bra.
compress 80.4 14.4| 54.6%| 10.1%| 9.9%| 10.1% 108.6 19.4| 50.0%| 16.9%| 17.2%| 19.9% 1.35 1.35
gcc 250.9 50.4| 49.0%| 23.9%| 12.2%| 12.8% 455.9 91.0| 49.5%| 33.5%| 20.9%]| 21.6% 1.82 1.81
perl 228.2 43.8] 52.6%| 25.9%| 11.4%| 9.2% 402.7 76.5| 52.9%| 34.3%| 18.8%]| 16.7% 1.76 1.74
go 548.1 80.3| 54.5%| 34.4%| 24.1%| 25.6%] 1116.3 165.0| 51.4%| 41.1%| 31.8%] 33.5% 2.04 2.06
m88ksim 416.5 89.8| 71.7% 8.6%| 4.7%| 4.7% 563.3 118.0{ 68.8%| 14.9%| 9.1%]| 11.8% 1.35 1.31
xlisp 183.3 41.8] 39.5%| 10.2%| 6.8%]| 10.3% 263.6 59.2| 39.8%| 17.8%| 14.4%| 22.3% 1.44 1.42
vortex 180.9 29.1| 50.1%| 8.3%| 1.7%| 2.0% 225.6 37.4| 48.2%| 15.7%| 4.0%| 4.1% 1.25 1.29
jpeg 252.0 20.0] 70.0%| 12.5%| 10.4%| 10.3% 301.6 28.4| 67.9%| 20.1%| 18.8%| 17.8% 1.20 1.42
mean 267.6 46.2| 54.3%| 14.5%| 8.1%| 8.6% 429.7 74.4| 52.8%| 22.5%| 14.6%| 16.2% 1.61 1.61

Table 1: Program characteristics, differentiating betwweemmitted instructions and both committed and uncomnhiitstructions. The
processor will typically issue 20-100% more instructiohart actually commit, due to speculative execution. Theesfor speculative

execution were measured when using the gshare branch faredic
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Figure 2: Schematic illustration of the different branclkedtictors

misprediction rate, since information from recent brarschenot
immediately available to succeeding branches. The SAg hisde
similar to the PAs, which is usually implemented with a biater-
get buffer, but the SAg is “tagless” and may alias branchokiiss.
It is difficult to roll back from speculative history updatiesa PAs
or SAg predictor, and we did not implement speculative updiat
that reason. Restoring the table at a branch mispredictiquires
multiple cycles as each non-committed predicted branctones
its old history state in the branch history table (BHT). Attatively,
the whole BHT could be checkpointed for each predicted branc
and restored on misprediction. This scheme requires spasterte
multiple copies of the BHT. The SAg is much more expensive to
implement than Gshare or McFarling, and only offers simjlar-
formance (see Table 1).

Throughout our analysis and comparison, it is importangto r
member that the JRS estimator is significantly more expertsiv
implement than either the saturating counters, the higatyern

or the profile method, since extra tables and state are ndsyckbe
JRS estimator.

3.2 Comparison of Confidence Estimators When Using a
Gshare Branch Predictor

In our first configuration, we used a 4096-entry gshare brameh
dictor. The JRS confidence estimator was implemented as de-
scribed above. We implemented the history pattern confelese
timator using both the values determined by Latkal and by re-
peating their measurements for the gshare predictor, teajemew
“highly confident” patterns. In our presentation, we onlywstre-
sults using the patterns specified by Lietkal since there appear to
be no dominant patterns in the global history register wrengia
gshare predictor. The saturating counters method usedeiinésh

tic described above - strongly taken or strongly not-takemobhes
were considered confident and all others were not confiderg. W
used a 90% threshold for the static, profile-based technique

The first column of Table 2 shows the performance of the dif-
ferent confidence estimators when using the gshare predite
report the geometric mean of the sensitivity, specificityPPand
PVN for each confidence estimator; detailed information ache
application can be found in [5]. The averages are computad fr
the averages of the original data. In other words, when ctmpu
ing the average for the\®, we take the mean faf's;¢ andC'r.c
and comput&€'r ¢ /Cuc + CrLc, rather than averaging the existing
PvP's.

Unless we consider a specific application for the confidesee e
timators, it is difficult to select one estimator over anothe gen-
eral, the JRS estimator has the highest PVP and an accephle
and the profile-based estimator is roughly similar. The raditg
counter method has a better PVN than the JRS or profile method,
but at the expense of a lower PVP. This occurs because the satu
rating counter method is more sensitive (i.e., reduces elaive
value of low-confidence predictions for correct branchddpw-
ever, the test is not very specific, and incorrectly classifiany
incorrectly predicted branches as “high confidence” brascfrhe
history pattern method fares poorly when using this and theant
ling predictors because no dominant patterns emerge. $iose
patterns don't occur, the history pattern method will cifyssost
branches as “low confidence”, leading to a low sensitivitincg
most branches are marked “low confidence”, most of the incor-
rectly predicted branches will be correctly diagnosed asdonfi-
dence.



Gshare Predictor McFarling Predictor SAg Predictor
Confidence Estimator | sens spec pvp pvn sens spec- pvp pvn sens sp-ec pvp pvn
JRS, Threshold >= 15 56% 96% 98% 30% 64% 93% 99% 23% 64% 94% 99% 24%
Saturated Counters 88% 42% 88% 41% 67% 78% 96% 21% 90% 48% 94% 36%
History Pattern 17% 94% 93% 19% 18% 89% 94% 11% 73% 81% 97% 26%
Static, Threshold > 90% | 55% 89% 96% 28% 72% 88% 98% 26% 66% 93% 98% 30%

Table 2: Comparison of Confidence Estimators when using a@®sMcFarling and SAg branch predictors

3.2.1 Enhancing the JRS Estimator

We use an enhanced implementation of the JRS confidenceaestim
tor that improves performance. Rather than use the sametbran
history to index the branch predicticand MDC table, we first
predict the branch and include that prediction when we intthex
MDC table. Figure 3 shows the noticeable performance diffee.

Each point on the lines indicates the performance when ¢hgng 50
the “threshold” value. This improvement requires readingtmoth —e—enhanced JRS
alternative MDC counters and then selecting the appraprigult 45 *~. —— standard JRS
when the branch prediction completes. We use this impleatient
throughout the remainder of the paper. 40 | \

Figure 4 shows the W and R/N for the JRS estimator for dif- \

ferent possible configurations of the hardware. As befoeghe
line shows the results when we vary the number of the four-bit
MDC entries, and each point on a line indicates the perfooman
when changing the “threshold” value. The right-most poisgsia
threshold of 16; since this cannot be reached by a four-bityID
all branches are marked “low confidence”, and thexRs equal to Threshold = 15
the misprediction rate.

More branches are marked “low confidence” at a higher thresh-
old. This increases theP&c but also decreases the/i® since
more correctly predicted branches are marked as “low condiele
Lowering the threshold has the opposite effect: thiSwill in-
crease, but the W will decrease. Selecting the appropriate con-  Figure 3: Performance of the JRS enhanced confidence estimat
figuration of the JRS estimator, as with selecting the apyate

configuration ofanyestimator, depends very much on the intended
application. Threshold = 2

50% /
3.3 Comparison of Confidence Estimators When Using a Mc- : ‘
Farling Branch Predictor 40% 4

30 H{Threshold = 1

20 : | |
88 90 92 94 96 98 100
PVP

Threshold =15

/

J

In the second comparison, we used a McFarling combininggred

tor that combines the results from a gshare predictor antlla td 230% *’\H\,_ B
two-bit saturating counters indexed only by the programnteu z w
As indicated in [12], this configuration offers the best pemiance 20%

for the predictor sizes we are using in this evaluation. TR&,J

. . ) ) X —— 4096 CIR counters
static and history pattern confidence estimators were imeiged

10% |+ —#&— 1024 CIR counters

as before. The “saturating counters” method was modifieds& u 256 CIR counters
information from both prediction mechanisms in the comtni 0% || —#—64 CIR counters
predICtO r. 90% 92% 94% 96% 98% 100%
) ) ] ] PVP
3.3.1 Saturating Counters Estimator for McFarling Predic-
tors
In the McFarling predictor, two different two-bit countepsovide Figure 4: Performance of the JRS confidence estimator. whag us
branch predictions, and a “meta-predictor’ chooses betwthe the Gshare predictor, as the design parameters are varied.

two predictions. Each component, the gshare or bimodaligred
tors, uses a two-bit counter to provide hysteresis in thadrgre-
diction. In the McFarling predictor, both component prédis
are queried for each branch prediction. A third table, theame
predictor information, is used to determine which predictoould
be used. When the branch actually commits, both branchgicedi
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Figure 5: Performance of the Smith confidence estimator wisen
ing the McFarling predictor, as the design parameters aredia

are updated. If the component predictor results were differthe
meta predictor moves to re-enforce the use of the correcpoem
nent predictor. Otherwise the meta predictor is unchanged.

There are a number of sources of information for the “satu-
rating counters” mechanism. We found that two techniqueskwo
well, and that each has a benefit depending on the desiredrperf
mance metric (PP or PvN). We are not interested in titérection
of a branch prediction, just the likelihood that the preidictwill
be correct. Thus, we categorize each branch componentcpredi
as offering a “strong” or “weak” prediction, where the traimal
states in the state machine are considered “weak” preditity-
noring the information from the meta predictor, there are fiour
states: (Strong, Strong), (Strong, Weak), (Weak, Strof\ygak,
Weak).

In the “Both Strong” variant, we signal “high confidence” gnl
when both predictors are strongly biased in the same dinectind
“low confidence” otherwise. In the “Either Strong” variante sig-
nal “low confidence” only when both branch predictors arehia t
“weak” state, and high confidence otherwise. Table 2 shos on
the “Both Strong” variant to simplify the data presentatiofa-
ble 3 compares the “Both Strong” and “Either Strong” vargant
The “Both Strong” method has a highepScand R/p since only
“strongly” predicted branches will be marked as high conficie
reducing the total number of correctly estimated low-caetfice
branches. Conversely, the “Either Strong” method will havegh
SENS, lower PyN and higher Rp, since more branches will be
considered “low confidence”.

We also looked at a number of variations on these techniques
which use the saturation state of only the selected couneter-
mine the confidence, information from the meta-predictorié
ferent combinations of the state information. Howeverséhmeth-
ods generally had a lowerP&cand R/N. Since we were mainly
interested in applications of confidence estimation thatteamize
the S Ecand P/N, we do not include those results in the paper.

The relative merits of the different estimators change when
considering the McFarling branch predictor, as shown inntta-
dle column of Table 2. In this configuration, the JRS, saingat
counter and profile-based techniques are roughly similae JRS
mechanism is more specific than the other methods, meannil it
identify more incorrectly predicted branches, but the P¢Mbout
the same for each of those estimators.

Saturated Counters
Both Strong Either Strong
sens | spec | pvp | pvn | sens | spec | pvp | pvn
68% 77% 96% 21%| 97% 18% 91%  38%
54% 80% 95% 20%| 96% 15% 89%  36%|
52% 83% 96% 18%| 96% 17% 90%  36%
36% 84% 88% 29%| 91% 18% 78%  39%
79% 52%  97% 11%||  99% 12% 96%  33%
xlisp 78%  68%  97% 18%| 98% 15% 94%  34%
vortex 85%  76% 100% 8%| 99% 17%  99%  33%
ipeg 77% 75% 96% 28%| 97% 18% 91%  42%
Mean 67% 78% 96% 21%| 97% 17%  91%  37%|

application
compress
gce

perl
go

m88ksim

Table 3: Performance of Low-Confidenes. High-Confidence
thresholds with the McFarling branch predictor

The SPEcof the JRS method decreases when we switch to the
McFarling predictor. We believe this happens because tadipr
tion accuracy is higher, and there are fewer incorrect jptégis to
identify. Identifying those few remaining incorrect pretidns is
more difficult. Essentially, the branch predictor is findithg eas-
ier mispredictions and thus improving the mispredictioteral he
SPEec for the saturating counter estimator improves greatly when
compared to the Gshare predictor, in part because the tinardsi
dictor in the Gshare has such a low specificity to begin withe T
PvN of all the branch estimators is significantly lower when gsin
the McFarling branch predictor. In part, this occurs beeati®
underlying branch predictor is more accurate and the contiele
estimator has to work harder to find mispredictions.

Figure 5 shows the performance of the JRS estimator as the
hardware configuration is varied. The trends are similarh@t t
explained ing3.2, but the overall PN is lower.

3.4 Comparison of Confidence Estimators When Using a SAg
Branch Predictor

The third comparison, shown in column three of Table 2, uses a
SAg predictor with 2048 branch history entries and an 8192ye
counter table. Each branch history register was 13 bits.long

Since the counter entries are only two bits, the saturatinm¢
ters estimation method performs poorly in this configuratimst
as it did when using the Gshare predictor. Similarly, the 3R&
static estimators have similar performance to that seemwbag
the gshare predictor. The performance of the history patsti-
mator improves dramatically for SAg, where it performs rblyg
equivalent to the static and JRS methods. In addition, iahasich
lower implementation cost than JRS and does not requirelipgofi
like the static method. Therefore, the history patternnestor is
very competitive for a SAg branch predictor.

3.5 Summary of Comparisons

Several observations arise from our comparison of confielesti-
mation techniques. First, the performance of a confidenimator
appears to be very dependent on the branch predictor and confi
dence estimator having a similar design or indexing metHeat.
example, the JRS estimator has better performance for ther@s
mechanism (to which it is similar) than for the McFarling gietor,
and the History Pattern technique has excellent performarien
using a SAg, but poor performance when using a global history
as in Gshare or McFarling. This indicates that we may be able t
design a better variant of JRS for the McFarling predict@cdhd,
our improvement to the JRS method indicates the value ofidacl
ing more recent information in the confidence estimatiorcess.

Our comparison also shows the value of inexpensive confi-
dence estimators such as static profiling, the “saturatngters”



method, and the History Pattern technique. These methads pe
formed almost as well as the JRS technique when using differe
branch predictors, but they require very little additiohardware

to implement. It also shows that it is unlikely, albeit nopiossible,
that confidence estimation may be used to directly improaedir
prediction, since none of the confidence estimators we exani
had a /N consistently greater thait%.

4 Temporal Aspects of Branch Prediction and Confidence Es-
timation

We originally began studying confidence estimators becavse
are using them for a number of applications, including sorhe o
those mentioned i§2.2. We wanted to focus on confidence esti-
mators with a low implementation cost. During our invedtigsa,

we made a number of observations concerning the temporatessp
of branch prediction and we have used these observatiorestgrd
alternative confidence estimators.

4.1 Branch Misprediction Clustering

If branch mispredictions ardustered then we may be able to use
the distance since the last mispredicted branch as a coofides
timation mechanism. Our measurements confirm the obsenvati
of Heil and Smith [6] that mispredictions in a trace were tdusd.
However, we have found the degree of clustering is diffeveimn
you look at all branches (e.g., during a pipeline-level datian)
or only at the committed branches (e.g., branches in a ngonoal
gram trace). We use the information from all branches bexthat

is what is actually of interest to an architect in a real gipelor a
pipeline level simulation.

Our data shows that mispredictions are tightly clustereith w
few branches between mispredicted branches. Heil and $6jith
plotted the probability distribution function of the branmispre-
diction distance. If branches are independent (and noteried),
that graph has a geometric distribution with a parametealetqu
the misprediction rate. We found that presentation diffitwilun-
derstand, and found it easier to understand if we plot the dsiin
Figure 6. In this figure, we graph tmeisprediction ratevs. the dis-
tance to the previous mispredicted branch. If mispredigtiovere
not clustered, we would expect the misprediction rates ktdel
the same, as indicated by the average lines. Instead, wehfnd t
branches immediately following a misprediction are mokelly to
be mispredicted. In Figure 6, we plot two views of the datafaur
simulations. The data marked “all branches” includes bothmit-
ted and uncommitted branches, whereas the “committed beaiic
includes only committed branches. Heil and Smith used & tiaic
their analysis, and only report the data for committed binesc We
used a gshare branch predictor to generate the data in Fégbre
we also used a precise value for the distance to the previdsis m
predicted branch — the processor model has complete kngeled
of the pipeline state. Again, this corresponds to the infifom
that would be recorded by a trace when we consider the commit-
ted branches without a pipeline-level simulator. Figuréna@ves a
similar plot using the McFarling branch predictor.

A real architecture determines mispredictions when a birasic
resolved, and not when a misprediction is actually maden asii
“precise” model. This will lengthen the time, and thus thentuer
of branches executed, until the misprediction is actuadiedted,
and should skew the branch clustering such that it appeansciar
over a larger branch distance. Figure 8 shows the correspgnd
misprediction raters. misprediction distance when we only use in-
formation from resolved branches, using the same gsharelbra
predictor. Figure 9 shows similar information for the Mcliay
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Figure 6: Misprediction distance using a gshare branchigted
and precise misprediction information. The vertical axisvgs the
misprediction rate of predictions that are made a specifiatrer
of branches after a previously mispredicted branch.
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Figure 7: Misprediction distance using a McFarling brancédjc-
tor and precise misprediction information.
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Figure 8: Perceived misprediction distance for Gshareipred
This shows the misprediction rate of branches a specifiecorum
of branches after the most recent misprediction detectedeogro-
cessor.
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Figure 9: Perceived misprediction distance for McFarlimgdic-
tor.
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Table 4: Using misprediction distance as confidence estimat

branch predictor. As expected, both Figure 8 and Figurelb sti
show clustering, but the results are skewed to higher mitigtien
distances. Interestingly, the distribution for all braeshusing Mc-
Farling predictor has a different shape than when using sharg
predictor; however, the committed branches have a verylaimi
distribution. This occurs because of the variable time rdett
determine if a branch misprediction has occurred.

Precise pipeline information is unavailable to a proceskms
ing execution, but it illustrates why the JRS estimator vgorkhe
JRS miss distance counters (MDC) are reset every time albranc
misprediction is detected, and branches are not markedigh “h
confidence” until several branches mapping to that MDC tegis
have been correctly predicted. Since branches are cldstére
“reset and count” insures that enough branches have exttute
bypass the cluster of poorly predictable branches. You sarthis
same behavior to designmaisprediction distance confidence esti-
mator, which is essentially a JRS confidence estimator with a sin-
gle MDC register. If more than a specific number of branche® ha
been fetched since the last resolved (but not necessariiynitbed)
misprediction, we consider the branch to have “high confidén
Table 4 shows the average performance of this techniguether
confidence estimators, using a range of distance threshdlelsan
vary the distance threshold to achieve different valuesracand
PvN. Jacobseret al [7] examined a related configuration, where
a global MDC was used to index into a table of correct-inatrre
registers. This solution still has a large MDC table, anddi}
marily investigated using the global indexing MDC as a way to
improve accuracy - they were not looking for inexpensivefizon
dence estimators. The variation used in [7] probably didwartk
well for the reasons illustrated in our earlier data — unligsin-
dexing structure of a table-based confidence estimatorhesthat
of the underlying branch predictor, the performance wiffeu By
comparison, the misprediction distance confidence estimeses
the property that mispredicted branches are clusteredhieaeits
performance.

We conducted a similar set of experiments to semiffidence

estimatorsalso cluster their “correct” confidence estimates. We
measured the JRS estimator with the gshare and McFarling pre
dictors and the saturating counters estimator with McRgrland
recorded a “mis-estimation distance” similar to the misizon
distance previously discussed. In each of these configmstive
found that correct confidence estimations are slightlytehesi, but
only over large distances - e.g., the confidence estimatamged
from being correct 45% of the time immediately following asmi
estimated branch, decaying to a 41% misestimation rate &t-a d
tance of four branches and a 33% misestimation rate for achran
distance greater than 8.

4.2 Using Clustering to Improve Confidence Estimation

Since confidence mis-estimations are only slightly clestewe
can loosely approximate confidence estimation as a Beirnoal|
particularly over the small number of branches actuallyderst

in a pipeline. Doing this, we can boost specific metrics, sash
the PVN, by waiting for several low (or high) confidence egstiat
occur. Recall that PN = P[I|LC], the probability of an incor-
rect prediction given a low-confidence estimation. Now,uass
we only consider low confidence estimates - if we see two low-
confidence estimates, the probability of both of those etisbe-
ing wrong is1 — (1 — PvN)?, since the RN is effectively the
probability of being incorrect. In certain applicationse wan use
this to “boost” our confidence estimates. For example, two o
confidence estimates from an estimator with a PVN of 30% would
have an overall PVN: 50%.

Not all applications can benefit from this boosting, because
boosting doesn't identify which of the two low-confident bcaes
are incorrect. Boosting only indicates the probabilityttbae of
the two branches is incorrect, and thus describes the stateo
pipeline rather than the state of a particular branch. Areeag
execution architecture that evaluates multiple pathsofolg a
low-confidence estimate would need to start evaluation dien
alternate paths of both of the low-confidence branches. AT SM
processor could use the two low-confidence estimates asreséd
that the instructions from the current thread are unlikelgammit,
and switch to an alternate thread. Likewise, a bandwidthtimul
threading processor can use boosting with the PVP.

5 Conclusions and Future Work

In this paper, we have focused on developing metrics thatbean
used to compare confidence estimators, and then used thosesme
to evaluate different confidence estimators. We have alpoaved
variants of specialized confidence estimators and shownelxast-
ing branch prediction resources can be used for confiderteas
tion. Equally important, we have shown that confidence exdtins
appear to work best if their structure mimics that of the utyieg
branch predictor. Furthermore, our pipeline-level sirtiolas have
shown that branch predictors exhibit characteristicshagclus-
tering, that can be exploited to provide better confidentienasors.
This points out the importance of using pipeline level siatioins
for this kind of work.

Our motivation for this work is a broad study ingpecula-
tion control where we hope to control how a superscalar proces-
sor uses speculative execution. Two applications are itbescat
this conference. One application involves controllingtrinstion
fetch and issue based on confidence estimators to reducer powe
demands in speculative processors [11]. The second irvalve-
trolling variants of eager execution [8]. We are also wogkitn
adaptive control of multithreaded processors to betteizatpro-
cessor resources. Each of these applications emphasaé&yith



and S Ecmetrics, and is very sensitive to the branch prediction ac-
curacy. This study has shown that as prediction accuracgases,
the PvN decreases in every confidence estimator we examined, in
a large part because there are fewer incorrectly prediataaches

to discover. We think most applications of confidence ediona
are going to be similar to our work in speculation controkl ainat
confidence estimation will be useful even in the presenceégbfiy
accurate branch predictors. We have focused on inexpemsea-
anisms such as the “saturating counters” method, and metieod
improve those estimates in particular problem domaingd) sis@p-
plying the boosting techniques to multithreading.

There is considerable work to be done in speculation cantrol
particularly when applied to eager execution, control ofltinu
threaded processors, control of the memory resources andrpo
conservation. Speculation control will require better amate pre-
cise confidence estimators, and we look forward to progretiss
area. In particular, we are working on an algorithm to “tuségtic
confidence estimation to achieve a particular goal fox Br SPEC
We are also working on a confidence estimator similar to th& JR
mechanism designed to better exploit the structure of theavlimg
two-level branch predictor.
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