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Abstract

As microprocessor speeds continue to outpace memory subsystems in speed, minimizing
average data access time grows in importance. Multi-lateral caches afford an opportunity
to reduce the average data access time by active management of block allocation and re-
placement decisions. We evaluate and compare the performance of traditional caches and
multi-lateral caches with three active block allocation schemes: MAT, NTS, and PCS.

We also compare the performance of NTS and PCS to multi-lateral caches with a near-
optimal, but nonimplementable policy, pseudo-opt, that employs future knowledge to achieve
both active allocation and active replacement. NTS and PCS are evaluated relative to
pseudo-opt with respect to miss ratio, accuracy of predicting reference locality, actual usage
accuracy, and tour lengths of blocks in the cache. Results show the multi-lateral schemes do
outperform traditional cache management schemes, but fall short of pseudo-opt; increasing
their prediction accuracy and incorporating active replacement decisions would allow them
to more closely approach pseudo-opt performance.

Keywords: multi-lateral cache, active management, reuse information
1 Introduction

Minimizing the average data access time is of paramount importance when designing high-
performance machines. Unfortunately, access time to off-chip memory (measured in proces-

sor clock cycles) has increased dramatically as the disparity between main memory access
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times and processor clock speeds widen. The effect of this disparity is further compounded as
multiple-issue processors continue to increase the number of instructions that can be issued
each cycle. There are many approaches to minimizing the average data access time. The
most common solution is to incorporate multiple levels of cache memory on-chip, but still
allocate and replace their blocks in a manner that is essentially the same as when caches
first appeared three decades ago.

Recent studies [23][16][10][8][18] have explored better ways to configure and manage a
resource as precious as the first-level (L1) cache. Active cache management (active block
allocation and replacement) can improve the performance of a given size cache by main-
taining more useful blocks in the cache; active management retains reuse information from
previous tours of blocks and uses it to manage block allocations and/or replacements in
subsequent tours!. In order to partition the allocation of blocks within a cache structure,
several proposed schemes [16][10][8][18] incorporate an additional data store within the L1
cache structure and intelligently manage the state of the resulting multi-latera? [17] cache
by exploiting reuse pattern information. These structures perform active block allocation,
but still relegate block replacement decisions to simple hardware replacement algorithms.
While processor designers typically design for the largest possible caches that can still fit
on the ever growing processor die, multi-lateral designs have been shown to perform as well
as or better than larger, single structure caches while requiring less die area [17][22]. For a
given die size, reducing the die requirements to attain a given rate of data supply can free
that space for other resources — for example, to dedicate more space to branch prediction,
data forwarding, instruction supply, and the instruction reorder buffer.

In this paper we evaluate the performance of three proposed cache schemes that perform
active block allocation and compare their performance to one another and to traditional

single-structure caches. We implement the MAT [10], NTS [16], and PCS [18] schemes using

L A tour of a cache block is the time interval between an allocation of the block in cache and its subsequent
eviction. A given memory block can have many tours through the cache.

2We use the term multi-lateral to refer to a level of cache that contains two or more data stores that have
disjoint contents and operate in parallel.



hardware that is as similar as possible in order to do a fair comparison of the block allocation
algorithms that each uses. Our experiments show that making placement decisions based
on effective address-based block reuse, as in the NTS scheme, outperforms the macroblock-
based and PC-based approaches of MAT and PCS, respectively. All three schemes perform
comparably to larger direct-mapped caches and better than associative caches of similar size.

We then examine the performance of optimal and near-optimal multi-lateral caches to
determine the performance potential of multi-lateral schemes. Optimal and near-optimal
schemes excel in block replacement decisions, while their block allocation decisions are a
direct consequence of the replacement decision. We compare the performance of two imple-
mented multi-lateral schemes to the near-optimal scheme to determine the reason for their
performance. For the implemented schemes to perform better, improvements need to be
made in their block allocation and replacement choices.

The rest of this paper is organized as follows. Section 2 discusses techniques that aid in
reducing the average data access time. Section 3 discusses active cache management in detail
and presents past efforts to perform active block allocation. Section 4 presents our simulation
methodology and Section 5 evaluates the performance of the three multi-lateral schemes. In
Section 6, we present the performance of optimal and near-optimal multi-lateral schemes,
which perform (near-)optimal replacement of blocks, and compare the decisions made in the
near-optimal scheme to those made in two of the implementable schemes. Conclusions are
given in Section 7.

2 Background

There are many techniques for reducing or tolerating the average memory access time.
Prominent among these are: 1) store buffers, used to delay writes until bus idle cycles in order
to reduce bus contention; 2) non-blocking caches, which overlap multiple load misses while
fulfilling other requests that hit in the cache [19][12]; 3) hardware and software prefetching
methodologies that attempt to preload data from memory to the cache before it is needed

[5][1][4][6][15]; and 4) victim caching [11], which improves the performance of direct mapped



caches through the addition of a small, fully associative cache between the L1 cache and
the next level in the hierarchy. While these schemes do contribute to reducing average data
access time, this paper approaches the problem from the premise that the average data access
time can be reduced by exploiting reuse pattern information to actively manage the state of
the L1 cache. This approach can be used with these other techniques to reduce the average
data access time further.

3 Active Cache Management

Active cache management can be used to improve the performance of a given size cache
structure by controlling the data placement and management in the cache to keep the active
working set resident, even in the presence of transient references. Active management of
caches consists of two parts: allocation of blocks within the cache structure on a demand
miss® and replacement of blocks currently resident in the cache structure?. Block allocation
in today’s caches is passive and straightforward: blocks that are demand fetched are placed
into their corresponding set within the cache structure. However, this decision does not take
into consideration the block’s usefulness or usage characteristics. Examining the past history
of a given block is one method of aiding in the future allocations of the block. Decisions
can range from simply not caching the target block (bypassing) to placing the block in a
particular portion of the cache structure, with the hope of making best use of the target
cache block and the blocks that remain in the cache.

Simple block replacement policies are used to choose a block for eviction in today’s caches,
and this choice is often suboptimal. For a multi-lateral cache, the allocation and replacement
problems are coupled. In particular, the blocks that are available for replacement are a direct
consequence of the allocation of a demand-missed block.

Recently, several approaches to more efficient management of the L1 data cache via block

3 Allocation decisions for blocks not loaded on a demand miss, e.g. prefetched blocks in a streaming
buffer scheme as proposed in [11], and bypassing schemes are not considered here. However, schemes that
make proper bypass decisions and allocation decisions for prefetched data can further improve upon the
performance of the schemes evaluated herein.

“We consider only write-allocate caches in this paper. Write no-allocate caches follow a subset of these
rules, where writes are not subject to these allocation decisions.



allocation decisions have emerged in the literature: NTS [16], MAT [10], Dual/Selective [8],
and PCS [18]. However, none of these approaches makes sophisticated block replacement

decisions, and instead relegates these decisions to their respective cache substructures.
3.1 The NTS Model

The NTS (nontemporal streaming) cache [16] is a location-sensitive cache management
scheme that uses hardware to dynamically partition cache blocks into two groups, temporal
(T) and nontemporal (NT), based on their reuse behavior during a past tour. A block is
considered N'T if during a tour in L1, no word in that block is reused. Blocks classified as
NT are subsequently allocated in a separate small cache placed in parallel with the main L1
cache; all other blocks (those marked T and those for which no prior information is available)
are handled in the “main” cache. Data placement is decided by using reuse information
that is associated with the effective address of the requested block. The effectiveness of
NTS in reducing the miss ratio, memory traffic, and the average access penalty has been

demonstrated primarily with mostly numeric programs.
3.2 The MAT Model

The MAT (memory address table) cache [10] is another scheme based on the use of effective
addresses; however, it dynamically partitions cache data blocks into two groups based on their
frequency of reuse. Blocks become tagged as either Frequently or Infrequently Accessed. A
memory address table is used to keep track of reuse information. The granularity for grouping
is a macroblock, defined as a contiguous group of memory blocks considered to have the same
usage pattern characteristics. Blocks that are determined to be Infrequently Accessed are
allocated in a separate small cache. This scheme has shown significant speedups over generic
caches due to improved miss ratios, reduced bus traffic, and a resulting reduction in the

average data access latency.
3.3 The Dual Cache/Selective Cache Model

The Dual Cache [8] has two independent cache structures, a spatial cache and a temporal
cache. Cache blocks are dynamically tagged as either temporal or spatial. A locality pre-

diction table is used to maintain information about the most recently executed load/store



instruction. The blocks that are tagged neither spatial nor temporal do not find a place in the
cache and bypass the cache. This method is more useful in handling vector operations which
have random access patterns or very large strides and introduce self interference. However,
its two caches do not necessarily maintain disjoint contents. The temporal cache is designed
to have a smaller line size compared to the spatial cache. If the required data is found in
both caches it is read from the temporal cache or written into both in parallel. In order to
overcome this replication and coherence problem, the authors proposed a simplified version
of the Dual Cache, called the Selective Cache. The Selective Cache has only one memory
unit like a conventional cache, but incurs more hardware cost due to its locality prediction
table, as in the Dual Cache. Only data exhibiting spatial locality or temporal locality that
is not self-interfering is cached. For most of the benchmarks in their study, this scheme was
shown to perform better than a conventional cache of the same size. The Selective Cache
itself is an improvement of the Bypass Cache [7], which relies on compiler hints to decide

whether a block is to be cached or bypassed.
3.4 The PCS Model

The PCS (program counter selective) cache [18] is a multi-lateral cache design that evolved
from the CNA cache scheme [23]. The PCS cache decides on the data placement of a block
based on the program counter value of the memory instruction causing the current miss,
rather than on the effective address of the block as in the NTS cache. Thus, in PCS, the tour
performance of blocks recently brought to cache by this memory accessing instruction, rather
than the recent tour performance of the current block being brought to the cache, is used
to determine the placement of this block. The performance of PCS is best for programs in
which the reference behavior of a given datum is well-correlated with the memory referencing

instruction that brings the block to cache.
3.5 Other Multi-Lateral Cache Schemes

Several other cache schemes can be considered multi-lateral caches, such as the Assist
cache [13] used in the HP PA-7200, and the Victim cache [11]. However, neither of these

schemes actively manage their cache structures using reuse information obtained dynamically



during program execution. The Assist cache uses a small data store as a staging area for
data entering the L1 and potentially prevents data from entering the .1 when indicated by a
compiler hint. The Victim cache excels in performance when a majority of the cache misses
are conflict misses which result from the limited associativity of the main cache; the buffer in
the Victim scheme serves to dynamically increase the associativity of a few hot spots in the
(typically direct-mapped) main cache. While both schemes have been shown to perform well
[22], they each require a costly data path between the two data stores to perform the data
migrations they require. Without the inter-cache data path present, these schemes cannot
operate, as they use no previous tour information for actively deciding which data store to
allocate a block to. While the Victim cache has been shown to perform well relative to the
above actively-managed schemes when the main cache is direct-mapped [18], in this paper
we evaluate only multi-lateral schemes that use dynamic information to allocate data among
two data stores with no direct data path between them.
4 Simulation Methodology

A simulator and a set of benchmark programs were used to compare the performance of the
multi-lateral cache strategies. This section describes the dynamic superscalar processor and
memory simulators used to evaluate these cache memory structures, the system configuration

used, and the methods, metrics, and benchmarks that constitute the simulation environment.

4.1 Processor and Memory Subsystem

The processor modeled in this study is a modification of the sim-outorder simulator in the
SimpleScalar [3] toolset. The simulator performs out-of-order (OOO) issue, execution, and
completion on a derivative of the MIPS instruction set architecture. A schematic diagram
of the targeted processor and memory subsystem is shown in Figure 1, with a summary of
the chosen parameters and architectural assumptions.

The memory subsystem, modeled by the micache tool discussed below, consists of a sep-
arate instruction and data cache and a perfect secondary data cache or main memory. The

instruction cache is perfect and responds in a single cycle. The data cache is modeled as



Fetch Mechanism | fetches up to 16 instructions in program
Processor order per cycle
Branch Predictor | perfect branch prediction
¢ --------- t ------- Issue Mechanism | out-of-order issue of up to 16 operations
- : per cycle, 256 entry instruction re-order
| buffer (RUU), 128 entry |oad/store queue
' ' (LSQ); loads may execute when all prior
Cache A B store addresses are known
' Functional Units | 16 INT ALUs, 16 FPALUSs, 8 INT
, t t ! MULT/DIV, 8 FPMULT/DIV, 8 L/S units
* """"" * """ I-D‘ata F. U. Latency INT ALU:2/1, INT MULT:3/1, INT
Cache (total/issue) DIV:12/12, FPALU:2/1, FP MULT:4/1,
‘ FPDIV:12/12,L/S:1/1
Instruction Cache | perfect cache, 1 cycle latency
Secondary Cache/ Data Cache Multi-Lateral L1 (A and B), write-back,
Main Memory write-allocate, 32 bytelines, 1 cycle hit
latency, 18 cycle miss latency, non-block-

ing, 8 memory ports

Figure 1: Processor and memory subsystem characteristics.

a conventional data cache split into two subcaches (A and B with disjoint contents) and
placed in parallel within LL1. In this multi-lateral cache, each subcache is unique with its
own configuration: size, set-associativity, replacement policy, etc. The A and B caches are
probed in parallel, and are equidistant from the CPU. Both A and B are non-blocking with
32-byte lines and single cycle access times. A standard (single-structured) data cache model
would simply configure cache A to the desired parameters and set the B cache size to zero.

The L2 cache access latency is 18 cycles; a 256 bit bus between L1 and L2 has 32
bytes/cycle data bandwidth. L1 to L2 access is fully pipelined; a miss request can be sent
on the LL1-1.2 bus every cycle for up to 100 pending requests. The L2 cache is modeled as a

perfect cache in order to focus this study on the management strategies for the L1.

4.2 The mlcache Simulation Tool

mlcache [22] is an event-driven, timing-sensitive cache simulator based on the Latency
Effects (LE) cache timing model, discussed in depth in [21]. It can be easily configured to
model various single and multi-lateral cache structures by using its library of cache state and

data movement routines. For interactions not modeled in the library routines, users can write



Support Routine Description

check for_cache_hit() check to see if an accessed block is present in the cache

update() place an accessed block into the cache

move_over () move an accessed block from one cache to another

do_swap() move an accessed block from cachel to cache2 and move the
evicted block to cachel

place an accessed block into both cachel and cache2 and move the

do_swap with_inclusion() evicted block from cache2 to cachel

do_save evicted() move the block evicted from cachel to cache?
find_and_remove() remove a block from a cache
check for_reuse() determine if ablock exhibits temporal behavior (word reuse)

Table 1: The basic support routines provided with the micache simulator. The user can call these routines
from a configuration file to control the cache state and interactions.

their own management routines and call them from the simulator. The tool can be easily
joined to a wide range of event-driven processor simulators. As described above, our processor
model in this work is based on the SimpleScalar toolset. Together, a combined processor-and-
cache simulator, such as SimpleScalar+mlcache, can provide detailed evaluations of multiple
cache designs running target workloads on proposed processor/cache configurations.
mlcache is easily retargetable due to the provision of a library of routines that a user can
choose from to perform the actions that should take place in the cache in each situation. The
routines are accessed from a single C file, named config.c. The user simply modifies config.c to
describe all of the desired interactions between the caches, processor, and memory. The user
also controls when the actions occur via the delayed update mechanism built into the cache
simulator. Delayed update is used to allow a behavioral cache simulator, such as Dinerolll
[9], to account for latency for latency- or latency-adding effects. The use of delayed update
causes the effects of an access, i.e. an access’ placement into the cache, the removal of the
replaced block, etc. to occur only after the calculated latency of the access has passed. Table
1 shows the routines provided and a brief description of each. If more interactions are needed
than these, additional library routines can be added. However, from these brief examples it
is easy to see that this modular, library-based simulator already allows a significant range

of cache configurations to be examined.



We evaluate the performance of three of the multi-lateral schemes, MAT, NTS, and PCS,
and compare their performance to three traditional, single-structure caches: a 16K direct-
mapped cache, a 16K 2-way associative cache, and a 32K direct-mapped cache. The config-

urations of the evaluated caches are shown in Table 2.
4.3 Simulated Cache Schemes

Performing a realistic comparison among the program counter and effective address schemes
requires detailed memory simulators for the MAT, N'TS, and PCS cache management schemes
described above. We chose to omit the Selective Cache, as its block allocation decisions are
similar to those made by PCS, while PCS’ hardware implementation is simpler. To en-
sure a fair comparison and evaluation, we placed all the management schemes on the same
platform within a uniform multi-lateral environment, using the mlcache tool. Each of the
configurations includes a 32-entry structure that stores reuse information, as described for
each scheme.

The following subsections describe our implementations of the MAT, NTS, and PCS cache
management schemes. The main cache is labeled cache A, the auxiliary buffer is labeled cache
B, and both caches are placed equidistant from the CPU. The three schemes are configured
to be as similar as possible to one another so that their performance differences can be

attributed primarily to differences among the block allocation decisions that they make.
4.3.1 Structure and Operation of the NTS Cache

The NTS cache, using the model in [18], which was adapted from the scheme proposed
in [16], actively allocates data within L1 based on each block’s usage characteristics. In
particular, blocks known to have exhibited only nontemporal reuse are placed in B, while
the others (presumably temporal blocks) are sent to A. This is done in the hope of allowing
temporal data to remain in the larger A cache for longer periods of time, while shorter
lifetime nontemporal data can for a short while be quickly accessed from the small, but more
associative B cache.

On a memory access, if the desired data is found in either A or B, the data is returned

to the processor with 0 added latency, and the block remains in the cache in which it is
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Single MAT NTS PCS
Cache A A B A B A B
Size 16K/16K/32K] 16K | 2K | 16K | 2K | 16K | 2K
Associativity 1/2/1 1 full 1 full 1 full
Replacement policy —/LRU/- - LRU - LRU - LRU
latency to next level 18 18 18 18 18 18 18

Table 2: Characteristics of the four configurations studied. Times/latencies are in cycles.

found. On a miss, the block entering L1 is checked to see if it has an entry in the Detection
Unit (DU). The DU contains temporality information about blocks recently evicted from
L1 and is managed as follows. Each entry of the DU describes one block and contains a
block address (for matching) and a T/NT bit (to indicate the temporality of its most recent
tour). On eviction, a block is checked to see if it exhibited temporal reuse (i.e. if some word
in the block was referenced at least twice) during this just-completed tour in the L1 cache
structure, and its T/NT bit is set accordingly in the DU. If no corresponding DU entry is
found for the evicted block, a new DU entry is created and made MRU in the DU structure.
On a miss, if the new (missed) block address matches an entry in the DU, the T/NT bit
of that entry is checked and the block is placed in A if it indicates temporal, and B if not.
The DU entry is then made MRU in the DU so that it has a better chance of remaining in
the DU for future allocation predictions. Thus, each creation or access of an entry in the
DU is treated as a “use” and the DU (with 32 entries, in these simulations) is maintained
with LRU replacement. If no matching DU entry is found, the missed block is assumed to

be temporal and placed in A.
4.3.2 Structure and Operation of the PCS cache

The PCS cache [18] decides on data placement based on the program counter value of
the memory instruction causing the current miss, rather than on the effective address of the
block as in the N'TS cache. Thus, the performance of blocks missed by individual memory
accessing instructions, rather than individual data blocks, determines the placement of data
in the PCS scheme.

The PCS cache structure modeled is similar to the NTS cache. The DU is indexed by the

11



memory accessing instruction’s program counter, but is updated in a manner similar to the
NTS scheme. When a block is replaced, the temporality bit of the entry associated with the
PC of the memory accessing instruction that brought the block to cache at the beginning of
this tour is set according to the block’s reuse characteristics during this just-completed tour
of the cache. If no DU entry matches that PC value, one is created and replaces the LRU
entry in the DU. If that instruction subsequently misses, the loaded block is placed in B if
the instruction’s PC hits in the DU and the prediction bit indicates N'T; otherwise the block

is placed in A. If the instruction misses in the DU, the data is placed in A.
4.3.3 Structure and Operation of the M AT cache

The MAT cache [10] structure has a Memory Address Table (MAT) for keeping track of
reuse information and for guiding data block placement into the A or B cache of the L1
structure. In this implementation, the MAT is a 32-entry fully associative structure (like the
DU in NTS and PCS). Note, however, that the original implementation of MAT (reported
in [10]) used a 1K entry direct mapped table. Each MAT entry consists of a macroblock
address and an n-bit saturating counter. An 8-bit counter and a 1KB macroblock size is
used here, as in the original study.

On a memory access, caches A and B are checked in parallel for the requested data.
At the same time, the counter in the corresponding MAT entry for the accessed block is
incremented; if there is no corresponding entry, one is created, its counter is set to 0, and the
LRU entry in the MAT is replaced. This counter serves as an indicator of the “usefulness”
of a given macroblock, and is used to decide whether a block in that macroblock should be
placed in the A or B cache during its next tour.

On a cache miss, the macroblock address of the incoming block is used as an index into
the MAT. If an entry exists, its counter value is incremented and compared against the
decremented counter of the macroblock corresponding to the block that would be replaced
if the incoming block were to be placed in the A cache. The counter is decremented to

ensure that that data can eventually be replaced; the counter of the resident data will
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continue to decrease if it is not reaccessed often enough and it continues to conflict with
more recently accessed blocks. If the counter value of the incoming block is higher than
that of the conflicting block currently in cache A, the incoming block replaces this block in
the A cache. This situation indicates that the incoming block is in a macroblock that has
shown more “usefulness” in earlier tours than the macroblock in which the conflicting block
resides, and should thus be given a higher priority for residing in the larger main cache. If
the counter value of the incoming block is less than that of the current resident block, the
incoming block is placed in the smaller B cache.

Finally, if no entry corresponds to the incoming block, the block is placed in the A cache
by default and a new entry is created for it in the MAT, with its counter initialized to zero.
If no entry corresponds to the conflicting block currently in cache A, its counter value is
assumed to be 0, permitting the new block to replace it easily. When no entry is found in
the MAT for a resident block in cache A, another macroblock that maps to the same set
in the MAT must have been accessed more recently, and the current block is therefore less
likely to be used in the near future.

As with the NTS and PCS schemes, there is no direct data path between the A and B
caches. Unlike those schemes, however, the MAT structure is updated for every access to

the cache instead of only on replacements.
4.4 Benchmarks

Table 3 shows the 5 integer and 3 floating point programs from the SPEC95 benchmark
suite used in this study. These programs have varying memory requirements, and the simu-
lations were done using the training data sets. Each program was run to completion (with

the exception of perl, which was terminated after the first 1.5 billion instructions).
4.5 The Relative Cache Effects Ratio

An important metric for evaluating any cache management scheme is the cache hit/miss
ratio. However, in OOQ processors with multi-ported non-blocking caches, effective mem-
ory latencies (as seen by the processor) vary according to the number of outstanding miss

requests. Since the main focus of this study is to evaluate the effectiveness of the L1 cache
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Instruction Memory References Perfect Memory
Count (millions) Performance
Program (millions) L oads Stores CycI.e Qount IPC
(millions)
SPEC95 Integer Benchmark
Compress 35.68 7.37 5.99 5.35 6.6644
Gcee 263.85 61.15 36.24 43.50 6.0648
Go 548.13 115.79 41.40 91.33 6.0049
Li 956.49 286.38 168.79 151.32 6.3210
Per| 1,500.00 396.82 269.83 232.89 6.4408
SPEC95 Floating Point Benchmarks
Hydro2d 974.50 196.11 60.90 127.63 7.6353
Su2cor 1,054.09 262.20 84.74 152.34 6.9192
Swim 849.92 205.18 58.44 113.02 7.5201

Table 3: The eight benchmarks and their memory characteristics.

structure using special management techniques, the Relative Cache Effects Ratio (RCR) was
developed [17]. The RCR for a given processor running cache configuration X relative to

cache configuration base, is given by:

CycleCountx — CycleCount per fectCache

RCRx =
X CycleCountyese — CycleCount per fectCache

(1)

where CycleCountpe, fectcache 1 the total number of cycles needed to execute the same
program on the same processor with a perfect cache configuration. RCR, a normalized
metric between the base cache and the perfect cache, is 1 for the base cache configuration
and 0 for the perfect cache configuration. Cache configurations that perform better than
the base have RCR between 0 and 1, with lower RCR being better. A cache configuration
that performs worse than the base has RCR > 1. RCR gives an indication of the finite
cache penalty reduction obtained when using a given cache configuration. RCR mirrors the
performance indicated by speedup numbers, but isolates the cache penalty cycles from total
run time and rescales them as a fraction of the penalty of a traditional (base) cache. It
thus gives a direct indication of how well the memory subsystem performs relative to an

ideal (perfect) cache. In addition to overall performance speedup, this metric will be used

to measure the relative performance gains of each cache management approach in Section 5.
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4.6 The Block Tour and Reuse Concept

The effectiveness of a cache management scheme can also be measured by its ability to
minimize the cumulative number of block tours during a program run. Individual cache
block tours are monitored and classified based on the reuse patterns they exhibit. A tour
that sees a reuse of any word of the block is considered dynamic temporal; a tour that sees
no word reuse is dynamic nontemporal. Both dynamic temporal and dynamic nontemporal
tours can be further classified as either spatial (when more than one word was used) or
nonspatial (when no more than one word was used). This allows us to classify each tour into
one of four data reuse groups: 1) nontemporal nonspatial (NTNS), 2) nontemporal spatial
(NTS), 3) temporal nonspatial (TNS), and 4) temporal spatial (TS). Good management
schemes should result in fewer (longer) tours, and a consequently higher percentage of data
references to blocks making TS tours. NTNS and N'TS tours are problematic; more frequent
references to such data are likely to cause more cache pollution. To minimize the impact of
bad tours, a good multi-lateral cache management scheme should utilize an accurate block
behavior prediction mechanism for data allocation decisions.
5 Experimental Results

Miss ratio is often used to rank the performance benefits of particular cache schemes.
However, miss ratio is only weakly correlated with the performance of latency-masking pro-
cessors with non-blocking caches. Furthermore, it fails to capture the latency-adding effect
of delayed hits on overall performance. Delayed hits, discussed in [22][21], are accesses to
data that are currently returning to the cache on behalf of an earlier miss to that cache block.
Delayed hits incur latencies larger than cache hits, but generally less than a full cache miss,
as the requested data is already in transit from the next level of memory. Two programs
exhibiting similar miss ratios may thus have quite different overall execution times due to
differing numbers of delayed hits and the extent of latency masking, as shown in [22].

To avoid oversimplifying a cache scheme’s impact on overall performance, we instead

concentrate on two metrics from timing-sensitive experiments: overall speedup relative to a
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Compress Gcee Go Hydro2d Li Perl Su2cor [ Swim

MAT 0.220 0.074 0.031 0.479 0.041 0.060 0.256 0.220
NTS 0.219 0.070 0.021 0.474 0.043 0.032 0.257 0.230
PCS 0.221 0.086 0.024 0.494 0.050 0.033 0.257 0.167

16K: 1w 0.239 0.112 0.070 0.484 0.062 0.062 0.269 0.228
16K:2w 0.217 0.061 0.038 0.488 0.038 0.044 0.248 0.224
32K : 1w 0.215 0.071 0.035 0.452 0.029 0.051 0.244 0.161

Table 4: Miss ratios of the 6 cache schemes running the 8 benchmarks.

base cache and the Relative Cache Effects Ratio, presented above.
5.1 Miss Ratio

Table 4 shows the miss ratios for each of the six cache configurations when running the
eight benchmarks, and Figure 2 shows the corresponding speedup relative to a 16K direct-
mapped cache. Naively, we might assume that when comparing two configurations for a
particular application, a higher miss ratio would imply a lower speedup, and that (since
cache stalls account for only a portion of the run time) the relative speedup would be less
than the relative miss ratio. However, a comparison of Table 4 and Figure 2 shows that this
assumption is not valid. In compress, for example, the miss ratio of PCS is about 1.01x that
of N'TS, but its run time is about 1.04x longer. In gcc, the 32K direct-mapped cache actually
has a higher miss ratio, but less run time than the 16K 2-way associative cache. In swim,
NTS has a higher miss ratio, but less run time than the MAT, 16K and 32K direct-mapped,
and 16K 2-way caches. Thus, relative miss ratio alone is an inadequate indicator of relative
performance; latency masking, miss latency overlap, and delayed hits must be incorporated
in a timing model to get an accurate performance assessment. Therefore, we concentrate

our performance analysis on latency-sensitive metrics, such as speedup and RCR.

5.2 Speedup

The speedup achieved by each scheme for each program is shown in Figure 2, where the
single 16K direct-mapped (16k:1w) cache is taken as the base. Overall, the speedup obtained
by using the multi-lateral cache schemes ranges from virtually none in hydro2d to just over
16% in go with NTS. Clearly, some of the benchmarks tested do not benefit from any of

the improvements offered by the cache schemes evaluated, i.e. better management of the L1
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Figure 2: Overall execution time speedup for the five evaluated cache schemes, relative to a single direct-
mapped 16K cache (16K:1w).

data store by the multi-lateral schemes, increased associativity of a single cache (16k:2w),
or a larger cache (32k:1w). In benchmarks where there is appreciable performance gain over
the base cache, the multi-lateral schemes often perform as well as or better than either a
higher-associative single cache or a larger direct-mapped cache. In compress and gcc, the
benchmarks’ larger working sets benefit from the larger overall cache space provided by the
32K direct-mapped structure, although even for these benchmarks the multi-lateral schemes
are able to obtain a significant part of the performance boost via their better management
of the cache. Despite their smaller size, the multi-lateral caches generally perform well
compared to the larger 32K direct-mapped cache and are generally faster than the 2-way
associative cache. In the multi-lateral schemes, the larger direct-mapped A cache offers fast
access, and the smaller, more associative B cache can still be accessed quickly due to its
small size. Our experiments show that using an 8-way associative B cache instead of a fully
associative B cache would reduce performance by less than 1%.

Among the multi-lateral schemes, we see that the N'TS scheme provides the greatest
speedup in all benchmarks except for 1li (where MAT performs best), su2cor, and swim
(where PCS performs best), but the best multi-lateral cache speedups are only on the order
of 1% for these three benchmarks. Both the MAT and PCS schemes can perform well

when groups of blocks exhibit similar reuse behavior on consecutive tours through the cache.
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The NTS scheme may, however, fail to detect these reuse patterns because it correlates its
reuse information to individual cache blocks, as opposed to macroblock memory regions in
MAT or to memory accessing instructions in PCS. Thus, the MAT and PCS schemes can
perform well if programs exhibit SIMD (single-instruction, multiple-data) behavior, where
the reference behavior of nearby memory blocks or blocks referenced by the same memory
accessing instruction may be a better indicator of reuse behavior than the usage of an
individual block during its last tour. However, the NTS scheme is still competitive in these
three benchmarks, and thus gives the best overall performance of these schemes over the full

suite of benchmarks.
5.3 RCR Performance

Figure 3 shows the RCR performance of MAT, NTS, PCS, and the two single-structure
caches, where the 16K direct-mapped cache serves as the base for comparison. We see
here that NTS and PCS eliminate more than 50% of the finite cache penalty experienced
by go and perl. In compress, gcc, and li, the 32K single-structure direct-mapped cache
performs best. However, the difference in RCR between it and the best-performing multi-
lateral scheme is not very large, except for li, where it reduces the finite cache penalty
more than twice as much as MAT, the best multi-lateral scheme for this benchmark. None
of the caches show a significant improvement in RCR for the remaining three benchmarks
(hydro2d, su2cor, and swim).

In some instances, a multi-lateral scheme can experience poor performance, e.g. MAT
in the perl benchmark, relative to the other multi-lateral schemes. The block allocation
scheme of MAT is not well matched to the characteristics of the perl benchmark. If many of
the blocks are short-lived, but frequently accessed, those blocks will be placed in the smaller,
2K fully-associative cache. If this behavior continues, many blocks will contend for space
in the smaller 2K fully associative cache while the larger, 16K cache is badly underutilized.
Such a phenomenon can occur in any of these multi-lateral cache schemes; in the extreme,

the multi-lateral scheme’s performance may degrade to that of the B cache by itself. This
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Figure 3: RCR performance of the evaluated configurations running the eight benchmarks. RCRs near
1.0 have performance similar to the base 16K direct-mapped cache while RCRs closer to 0 approach the
performance of a perfect cache.

performance degradation can be addressed by improved block allocation mechanisms, as

discussed in Section 6.

5.4 Performance Differences and Their Causes

Though MAT and NTS both make block allocation decisions based on the effective address
of the block being accessed, their performance differs. MAT may make poor allocation
decisions when either the missed block or the block it would replace in cache A has a
markedly different desirability than the perceived desirability of the macroblock in which it
resides. When such a disparity in desirability occurs, a block-based desirability mechanism,
such as that used in NTS, will perform better. Table 5 presents a tour analysis for go and
su2cor. The performance of NTS relative to MAT is well demonstrated in go. Not only does
NTS appear to manage the tours in this program better, but it actually reduces the number
of tours that MAT experiences by 32%. In the case of su2cor, where the performance
difference between MAT and NTS is small (in terms of RCR), it is clear that the application
itself has much more nontemporal spatial data (> 17%), and neither scheme reduces the
tours seen by a 16KB direct-mapped cache by more than 6%.

The tour analysis for the two single-structure caches is also shown for these two widely
disparate benchmarks. The analyses used to compare MAT and NTS can also be used to

compare multi-lateral caches against single-structure caches. In go, the 32K direct-mapped
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Cache
Management | Total #of | % Reduction Total Percentage Referencesto Tour Groups
Scheme Tours in Tours

NTNS NTS TNS TS
16K: 1w 6,694,690 - 1.27 1.00 1143 86.29
MAT 2,807,282 58.06 0.48 0.63 5.63 93.26
NTS 1,894,991 71.69 0.21 0.51 4.70 94.58
16K:2w 3,932,345 41.26 0.57 0.61 8.99 89.84
32K: 1w 3,450,640 48.46 0.65 0.61 5.54 93.20
Cache
Management | Total #of | % Reduction Total Percentage Referencesto Tour Groups
Scheme Tours in Tours

NTNS NTS TNS TS
16K: 1w 24,848,705 - 0.35 17.98 7.77 73.90
MAT 23,975,325 351 0.11 16.96 5.96 76.02
NTS 23,471,060 5.54 0.23 17.36 7.77 74.64
16K:2w 22,824,448 8.15 0.09 17.15 6.95 75.81
32K: 1w 23,670,694 4.74 0.26 17.14 6.97 75.63

Table 5: Tour analysis for Go (top) and Su2cor (bottom).

cache has the best single-structure cache performance; though it has a slightly lower per-
centage of TS tours than the NTS cache, it has substantially more overall tours, and thus
worse overall performance. As with MAT and NTS in su2cor, the 2-way associative and
32K direct-mapped caches fail to significantly improve performance over the base cache due
to the high percentage of NTS data accessed.

NTS performs better than PCS overall in both speedup and RCR. The different basis
for decision making used by PCS and NTS (PC and effective address, respectively), results
in different performance. The PCS scheme may place a block suboptimally in the cache
since its placement is influenced by other blocks previously referenced by the requesting
PC. For example, a set of blocks may be brought into the cache by one instruction at the
beginning of a large routine. These blocks may be reused in different ways during different
parts of program execution (e.g. temporal during an initialization phase and nontemporal
during the main program’s execution). All of these blocks’ usage characteristics may be
attributed to a single entry in the DU, tied to the PC of the instruction that brought the
blocks to the cache. When each of these tours end, the instruction’s entry in the DU is

updated with that particular tour’s behavior, directly affecting the placement of the next
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block requested by this instruction. In effect, the allocation decisions of PCS are influenced
by the most recently replaced block that is associated with the load instruction in question;
if the characteristics of those most recently replaced blocks is not persistent, as discussed in
Section 6.3.4, the allocation decisions made by PCS for this load instruction will vary often,
potentially degrading performance.

However, program counter management schemes may be good if a given instruction loads
data whose usage is strongly biased [14] in one direction, i.e. if these tours are almost all
temporal or almost all nontemporal. In this case, accurate behavior predictions for future
tours will result in good block placement for that instruction. However, if the data blocks
loaded by the instruction have differing usage characteristics (i.e. weakly biased [14]) then
placement decisions of its blocks will be poor.

Block usage history (T/NT) is kept in a single bit (NTS and PCS); macroblock access
frequency is kept in an n-bit counter (MAT). Reducing the counter size in MAT generally
leads to decreased performance [10]. However, keeping tour history using a 2- or 3-bit counter
in NTS and PCS showed virtually no performance benefit over the 1-bit scheme.

6 Using Reuse Information in Data Cache Management

Each of the multi-lateral schemes operates on the assumption that reuse information is
useful in actively managing the cache. In this section, we assess the value of reuse information
for making placement decisions in multi-lateral L1 cache structures. We first examine optimal
cache structures to determine how they exploit reuse information in cache management. We
then outline the experiments performed to validate the use of reuse information and compare
the performance of multi-lateral schemes to the performance of near-optimally managed

caches of the same size.

6.1 Optimally and Near-Optimally Managed Caches

Belady’s MIN [2] is an optimal replacement algorithm for a single-structure cache, i.e. it

5

results in the fewest misses®. While it is interesting to see how reuse information is used

5Note that we do not consider timing models in this section, for which MIN is not an optimal algorithm.
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to manage a single cache, we are interested in determining how an optimal replacement
algorithm for a multi-lateral cache makes replacement decisions, and how reuse information
might best be exploited. However, no direct extension of MIN to multi-lateral caches is
known. The only exception is where both the A and B caches of a multi-lateral configuration
are fully associative and blocks are free to move between the two caches as necessary in order
to retain the most useful blocks in the cache structure; this multi-lateral cache is, however,
degenerate as it reduces to a single fully associative cache of size equal to the total of cache
A plus cache B. In this case, MIN can be used to optimally manage the hardware-partitioned
fully associative single cache.

We refer to Belady’s MIN algorithm, when applied to the dual-fully associative caches, as
opt. While opt gives an upper bound on the performance of a multi-lateral cache of a given
size and associativity, comparing opt to the implementable schemes does not yield a direct
comparison of replacement decisions based on reuse information. Since multi-lateral caches
typically have caches A and B of differing associativity, the performance difference between
the implementable schemes and opt may be due not only to replacement decisions, but also to
mapping restrictions placed on the implementable schemes by their limited associativity. We
would instead like to compare the performance of the implementable schemes to an optimally
managed multi-lateral configuration where the A and B caches are of differing associativity
in order to better attribute the differences in placement and replacement decisions to the
management policy itself, rather than to the associativity of the configuration.

Pseudo-opt [20] is a multi-lateral cache management scheme for configurations where the
associativity of A is no greater than that of B. As in the configuration for opt, free movement
of blocks between A and B is allowed in this scheme, provided that the contents of A and B
are disjoint. Management is adapted from Belady’s MIN algorithm, as follows. On a miss,
the incoming block fills an empty slot in the corresponding set of cache A or cache B, if one
exists. If no such empty slot exists, then for each set of cache A, an extended set of blocks

is defined, consisting of all blocks in cache A and cache B that map to this set in cache A.
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Reference b c F D b E D F c
Time 1 2 3 4 5 6 7 8 9

f f { f f { { f { |
Set 0 - - F F F D D D D
Set 1 b b b b b b b b b
CacheB c c D D E E F c
Hit/Miss M M M M H M H M M

Figure 4: An example showing why pseudo-opt is suboptimal.

For each extended set that includes any block currently resident in cache B, i.e. sets whose
extended set is larger than the associativity of cache A, block v of the extended set whose
next reference is farthest in the future is found. If block v does not currently reside in cache
B, it is swapped with one of the cache B blocks of this extended set. The incoming block is
placed in cache A and the block in that set next referenced farthest in the future is moved
to cache B, overfilling it by one block. The cache B block next referenced farthest in the
future is then replaced. This choice is not optimal in all cases, as illustrated by the following
example.

For the reference pattern in Figure 4, consider a design with a direct-mapped cache A of
size 2 blocks (2 sets) and a one block cache B. The references shown in the figure are block
addresses. Upper case letters map to set 0 and lower case letters map to set 1 of cache A.
The figure shows the contents of set 0 and set 1 in cache A and cache B after each memory
access. Using pseudo-opt we incur 7 misses. The first 3 compulsory misses fill empty blocks.
D replaces c at time 4 since c is next referenced further in the future than F or b. At time
6, E cannot replace b and replaces F rather than D. Finally, F and ¢ miss. However, the
minimum possible number of misses is 6. This can be achieved by replacing F (in set 0 of
cache A) instead of ¢ (in cache B) at time 4. E then replaces b at time 6 after swapping b
and c, and finally F misses, but ¢ hits.

In cases where the A and B caches are fully associative, pseudo-opt reduces to opt. Al-
though pseudo-opt is also not an implementable policy, its performance, as seen in Table 6, is

close to that of opt. Furthermore, pseudo-opt’s performance is much better than the imple-
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mentable multi-lateral schemes’ performance. Most of the performance difference between
the implementable schemes and opt is thus due to non-optimal allocation and replacement
decisions; only a small portion of the performance difference (no more than the difference
between opt and pseudo-opt) is due to the restricted associativity of the implementable
schemes. We therefore use pseudo-opt for comparison to the implementable schemes in or-
der to eliminate the associativity difference from the evaluations and give a better idea of
the realizable performance of a limited-associativity multi-lateral cache. The differences in
placement and replacement decisions seen in the implementable schemes provide insights

into their performance relative to a near-optimal scheme.

6.2 Simulation Environment

To evaluate the opt and pseudo-opt schemes, we collected memory reference traces gen-
erated from the SimpleScalar processor environment [3]. FEach trace entry contains the
(effective) address accessed, the type of access (load or store), and the program counter of
the instruction responsible for the access.

We skipped the first 100 million instructions (to avoid initialization effects) and analyzed
the subsequent 25 million memory references. We limited the number of memory references
evaluated due to the space and processing time required to perform the opt and pseudo-opt
cache evaluations. These experiments use five SPEC95 integer benchmarks — compress,
gce, go, li, and perl, since sampling such a small portion of a floating point program
will likely generate references that form part of a regular loop, resulting in very low miss
rates. However, the sampled traces for the integer programs do reasonably mirror the actual
memory reference behavior of the complete program execution, as shown in Section 5.

The traces were annotated to include the information necessary to perform the opt and
pseudo-opt replacement decisions and counters for many useful statistics. These included
the outcome of an access (hit or miss) as it would have occurred in an opt/pseudo-opt
configuration, the usage information for each block tour (as seen for each scheme), and the

number of blocks in each reuse category that are in the cache at each instant in time (i.e. the

24



number of NTNS, NTS, TNS, and TS blocks resident in the cache). From these statistics,
we gathered information regarding the performance of the opt and pseudo-opt management
schemes and compared the performance of the implementable schemes to that of the optimal
schemes on an access-by-access basis.

Due to the smaller size of the input sets in this section, compared to the full program
executions performed in Section 4, we chose a direct-mapped, 8KB A cache and a fully as-
sociative, 1KB B cache, each with a 32B blocksize, for the pseudo-opt configuration. The
opt configuration is simply a 9K fully associative cache. Using the larger, (1642)K caches
of Section 4 for these evaluations would not have been useful in determining each scheme’s
performance, as the SPEC benchmarks already have small to moderately sized working sets
[5]; these relatively short traces would show little performance benefit from active manage-
ment in a large cache, whereas the benefits of active management are highlighted when using
smaller caches. The micache simulator used in this section only deals with the cache and
memory, not the processor. Without processor effects, timing is of little significance and

mlcache is used here only as a behavioral-level simulator.

6.3 Results
6.3.1 Analysis of opt vs. pseudo-opt

We analyzed the annotated traces produced from the opt and pseudo-opt runs to determine
their relative performance based on miss ratio measurement and block usage information.
In particular, we counted the number of tours that show each reuse pattern, the number of
each type of block resident in the cache at any given instant, and how often a block with a

prior reuse characteristic changes its usage pattern in a subsequent tour.
6.3.2 Miss Ratio

As the miss ratios in Table 6 show, the performance of pseudo-opt is relatively close to
that of opt, except for go. Note that miss ratio in these experiments is a straightforward
performance metric, as the simulations are behavioral and do not include access latencies
or processor latency-masking effects. In go, the performance disparity between opt and

pseudo-opt is due to the limitations on the associativity of the A cache, and possibly also
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Compress Gcee Go Li Perl
opt 0.042 0.013 0.008 0.008 0.0169
pseudo-opt 0.048 0.016 0.023 0.010 0.0174
PONS 0.050 0.018 0.028 0.011 0.0175
NTS 0.063 0.029 0.054 0.018 0.0200
PCS 0.067 0.032 0.060 0.019 0.0190
16K: 1w 0.063 0.029 0.050 0.020 0.0520

Table 6: Miss ratios for the five (8+1)KB and the 16KB cache configurations on the trace inputs. PONS
is the pseudo-opt no-swap scheme.

to the suboptimal replacement policy of pseudo-opt. On each replacement, any number of
swaps can be done in opt to rearrange the cache contents so that the least desired cache
block is replaced. However, in pseudo-opt, the movement choices are limited by the mapping
requirements of the direct-mapped A cache — at most one block, mapping to the set in B
that is associated with the incoming block, need be swapped on each replacement. Despite
its more limited choice of blocks to replace, the performance of pseudo-opt is still very close
to opt except for go, and the difference in performance between pseudo-opt and opt is always
much smaller than the difference between the implementable configurations and pseudo-opt.
The actual performance of the implementable schemes is discussed in Section 6.4.

In addition to the advantage of future knowledge, pseudo-opt differs from the imple-
mentable schemes by freely allowing blocks to move between the A and B caches in order to
obtain the best block for replacement. However, this movement actually accounts for very
little of the performance difference seen between pseudo-opt and the implementable schemes.

To verify this claim, we created a version of pseudo-opt, called PONS (pseudo-opt no-
swap), that disallows data movement between the caches. The management scheme used by
PONS is the same as for pseudo-opt, except that no blocks are swapped between cache A
and B at any time. The incoming block replaces the block in its A or B set that is next
referenced farthest in the future. In PONS, it is thus possible that a replaced block in cache
B is referenced sooner in the future than a block in some other set in A that extends into
that set of cache B and could have been replaced if swaps were allowed.

However, we see in Table 6 that the miss ratios of pseudo-opt and PONS are actually
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Figure 5: Dynamic cache block occupation in opt and pseudo-opt (denoted po, grouped into NTNS, NTS,
TNS, and TS usage patterns.

very close, indicating that the omission of inter-cache data movement has a small effect on
near-optimum performance. In particular, the performance difference between pseudo-opt
and PONS is much smaller than the difference between pseudo-opt and the implementable
schemes, showing that the major advantage of pseudo-opt comes from its management using
future knowledge as opposed to its ability to move blocks between caches. Since some multi-
lateral schemes do allow data movement between the A and B caches, we use pseudo-opt as

the basis for comparison to the implementable multi-lateral cache schemes.

6.3.3 Cache Block Locality Analysis

We examined the locality of cache blocks that are resident in the cache structure at any
given time by counting the number of blocks in each category at the time of each miss and
taking an average over the duration of the program. The locality of the cache blocks for the
opt and pseudo-opt configurations is shown in Figure 5.

For opt and pseudo-opt managed caches, as expected, data that exhibits temporal reuse
occupies a large portion of the cache space; nontemporal data occupies at most 23% of the
cache (compress under pseudo-opt). Furthermore, the vast majority of the blocks in L1
are both temporal and spatial. Though the blocks are relatively small in size (32 bytes), we
find that spatial reuse can be exploited well if the cache is managed properly. As expected,

the pseudo-opt configuration (vs. the opt configuration) generally holds fewer TS blocks in
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Figure 6: Block usage persistence within opt and pseudo-opt.

the cache, due to the pseudo-opt configuration’s limited placement options and sub-optimal
replacement decisions. However, perl is an exception to this observation. In both opt and
pseudo-opt, all of perl’s data in the cache is spatial (TS or NTS), as seen in Figure 5;
keeping an N'T'S block in cache long enough so that it obtains TS status, as done by pseudo-
opt, slightly increases the miss ratio of the perl benchmark above that of opt, indicating

that maximizing the number of TS blocks in cache is not always the best policy.
6.3.4 Block Usage Persistence

While the presence of certain types of blocks in the cache shows the potential benefit of
managing the cache with reuse information, management based on this information is not
straightforward. Blocks can have different usage characteristics during different portions
of program execution, making block usage hard to predict. The prediction of a particular
block’s usage pattern is similar to the branch prediction problem. However, branch outcomes
are easier to predict than optimal block usage characteristics for aiding placement decisions.

To assess the value of reuse information, we examined the persistence of cache block behav-
ior in the opt and pseudo-opt schemes, i.e. once a block exhibits a given usage characteristic
in a current tour, how likely is it to maintain that characteristic in its next tour? If there
is a high correlation between past and future use (i.e. the block’s usage characteristic is
persistent), prediction of future usage behavior will be easier. Block persistence in terms of

same and not-same is therefore analogous to the same-direction terminology used in branch
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prediction studies [14] to predict the path a specific branch will take given behavior history.
Instead of determining block persistence in terms of the four usage patterns NTNS, NTS,
TNS, and TS, we decided to examine only the persistence of T and NT patterns. This
coarser granularity grouping is more directly relevant to our placement decisions for 2-unit
cache structures.

Figure 6 presents data for block usage persistence in successive tours. In general, blocks
that exhibit NT usage behavior in prior tours have a strong likelihood of exhibiting N'T
behavior again in future tours. In the opt scheme, this likelihood ranges from 63% (perl)
to 95% (compress) for the evaluated benchmarks. However, the pseudo-opt scheme shows
somewhat less persistence, ranging from 57% (go) to 87% (compress) for NT blocks. Over-
all, the persistence of NT blocks in both opt and pseudo-opt schemes is well over 50%. Blocks
that exhibit T usage behavior are less persistent, and thus less predictable. T block per-
sistence in the opt scheme ranges from 40% (go) to 97% (li), and is similar for pseudo-opt:
45% (compress) to 92% (1i).

li skews these numbers somewhat; regardless of the type of usage characteristics that a
block exhibited in a tour, its next tour is highly likely to exhibit temporal reuse. While tem-
poral blocks are persistent in 1i, they are much less persistent for the other three benchmarks.
As compress, gcc, go, and perl represent a wider range of program execution than li alone,
we see that future tours of temporal blocks are harder to predict than nontemporal blocks,
i.e. temporally tagged blocks are only weakly biased toward exhibiting T usage patterns in

their next tour.

6.4 Multi-Lateral Scheme Performance

Given the performance and reuse information of the opt and pseudo-opt configurations, we
can determine how the implementable schemes perform as a result. We restrict our evaluation
of the implementable schemes to NT'S and PCS, the two multi-lateral configurations that

actively place data within L1 based on individual block reuse information.
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6.4.1 Miss Ratio Performance of NTS and PCS

To compare with the pseudo-opt configuration used, we configured the NTS and PCS
structures to have an 8KB direct-mapped A cache, a 1KB fully associative, LRU-managed
B cache, 32B block size, and a 32-entry detection unit (DU).

The miss ratio performance of the two configurations is shown in Table 6 along with the
performance of opt, pseudo-opt, PONS, and a direct-mapped 16KB single structure cache. In
concurrence with results of earlier analyses of these multi-lateral configurations [16][17][22],
the N'TS and PCS caches each perform about as well as a direct-mapped cache of nearly
twice the size. However, as the performance of pseudo-opt indicates, there is still room for

further improvement.

6.4.2 Prediction Accuracy

NTS makes placement decisions based on a given block’s usage during its most recent past
tour; if the block exhibited nontemporal reuse, it is placed in the smaller B cache for its next
tour, otherwise it is placed in the A cache. PCS makes placement decisions based on the
reuse of blocks loaded by the memory accessing instruction. If the most recently replaced
block loaded by a particular PC exhibited nontemporal reuse, the next block loaded by that
PC is predicted to do the same and is placed in the smaller B cache, otherwise it is placed
in the larger A cache. In both schemes, accessed blocks with no matching entry in the DU
are placed in the A cache by default.

The accuracy of these predictions can be determined based on the actual usage of the
blocks in the pseudo-opt scheme. For instance, a prediction of T behavior for a block is
classified as correct if the actual usage of that block in the pseudo-opt scheme is T. As noted
in Section 6.2, the annotated traces fed to our trace-driven cache simulator, a modified version
of mlcache, contain the actual block usage information for the tours seen in the pseudo-opt
scheme. The simulator provides information on the selected scheme’s block prediction and
actual usage accuracy. Given this information, it is easy to determine how well each of the

configurations predict a block’s usage, and consequently, whether it is properly placed within
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Tour prediction accuracy Actual usage accuracy

NTS PCS NTS PCS

NT 0.483 0.703 0.859 0.828

Compress T 0.240 0.210 0.402 0.412
Total 0.247 0.495 0.725 0.725

NT 0.322 0.589 0.684 0.617

Gce T 0.539 0.596 0.703 0.704
Total 0.527 0.595 0.696 0.675

NT 0.337 0.454 0.573 0.519

Go T 0.588 0.621 0.646 0.652
Total 0.561 0.596 0.624 0.609

NT 0.225 0.243 0.390 0.363

Li T 0.815 0.815 0.873 0.866
Total 0.786 0.723 0.787 0.758

NT 0.406 0.817 0.934 0.950

Perl T 0.326 0.382 0.727 0.738
Total 0.327 0.510 0.861 0.875

Table 7: Tour prediction and actual usage accuracy for NTS and PCS, broken into NT, T, and overall
(total) accuracy. Accuracies are relative to actual block usage in pseudo-opt.

the L1 cache structure.

Table 7 shows the prediction accuracy of NTS and PCS for the benchmarks examined.
In general, ignoring li due to its excessively high temporal reuse, the prediction accuracy is
relatively low, ranging from 25% (compress with NTS) to 60% (go with PCS), despite the
larger granularity of block typing (two categories, T and NT, rather than the complete four
category breakdown). Both the NTS and PCS schemes show poor prediction accuracies,
directly impacting their block allocation decisions and their resulting overall performance.
Improved block usage prediction for these schemes may result in better block placement and

higher performance.

6.4.3 Actual Usage Accuracy

Regardless of the prediction accuracy, a given block will exhibit reuse characteristics based
on the duration and time of its tour through the cache. We examined the actual usage of
each block as it was evicted from each of the caches in the implementable schemes to see how
that usage compared to the same blocks usage in the pseudo-opt scheme. This comparison
sheds some light on the effect of eliminating the movement of blocks between the caches

during an L1 tour.
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Compress Gce Go Li Per|

NT T NT T NT T NT T NT T
pseudo-opt 1293.3| 26695| 1731.2| 25946| 1177.8| 22297.3| 4400.4| 34221.5| 957| 54749
NTS 4.1 4.1 2.0 52.0 1.4 26.1 3.3 66.3 7.7 1304
PCS 3.7 48.9 2.1 49.8 1.3 24.1 3.2 66.1 79| 134.0
8K: 1w 3.6 35.4 2.0 35.7 1.2 14.0 2.6 48.0 3.7 35.9

Table 8: Average tour lengths for pseudo-opt, NTS, PCS, and a direct-mapped single cache. Tour lengths
measure the number of accesses handled while the block is in cache. Tours are broken into NT and T.

We see in Table 7 that relative to the low prediction accuracy we saw in Section 6.4.2, the
actual usage of the blocks in the cache is closer to the actual usage of the blocks in pseudo-
opt. Thus, despite our placement decisions, some blocks still exhibited reuse behavior akin
to that seen in the pseudo-opt configuration. Furthermore, although NTS exhibited lower
tour prediction accuracy than PCS (in all the benchmarks except for 1i), it exhibited higher

actual usage accuracy (in all the benchmarks except for perl).
6.4.4 Tour Lengths

While these accuracies are interesting, the block tour lengths in the implementable schemes
are not, directly related to the tour lengths in the pseudo-opt scheme, as pseudo-opt has a
more elaborate replacement policy. Disparate tour lengths can affect these comparisons
in two ways. First, for tours that are shorter in the pseudo-opt configuration than in the
implementable schemes, the implementable schemes may keep a block in L1 longer than
necessary and permit it to exhibit seemingly more beneficial usage patterns (i.e. TNS or
TS). While this makes a particular block seem more useful, the longer presence of that block
in L1 in the implementable schemes may unduly shorten the tours of a significant number
of other blocks, leading to their misclassification and precluding their optimal placement.

Conversely, where tours are longer in pseudo-opt than in the implementable schemes, the
corresponding blocks in the implementable schemes may be replaced before they can exhibit
their optimal usage characteristics, causing poor usage accuracy, poor prediction accuracy,
and poor placement into the small B cache, and hence shorter tour lengths.

Table 8 shows the average tour length for blocks showing T and N'T usage characteristics.

As expected, NT tours are much shorter than T tours, and tours in pseudo-opt are on
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average much longer than tours in either NT'S or PCS, due to its future knowledge and
greater flexibility in management of data once it has entered the L1 cache structure. In NTS
and PCS, once a block is placed in L1, it remains in the same cache until it is replaced, and
is thus subject to the replacement policy inherent in the corresponding cache. For instance,
if block « is deemed to be T in either NTS or PCS, it is placed in the direct-mapped A
cache. If a subsequent block 8 maps to the same set in A and is also marked T, the earlier
T block, «, will be evicted, possibly before it can exhibit its optimum usage characteristics.
In pseudo-opt, if it is deemed desirable at that time, block « would simply be moved to
the B cache. As a result, the tour length of block a would tend to be much longer under
pseudo-opt than under NTS or PCS.

We see that there is a clear gap between the average tour length of blocks in pseudo-opt
vs. the implementable schemes. This difference in tour lengths is, however, much larger
than the difference in miss ratio for the implementable vs. pseudo-opt schemes. The perfor-
mance difference is much smaller because the average tour length in pseudo-opt has increased
greatly, but the tour lengths of conflicting blocks may not be helped as much by the better
management scheme. Some blocks may be chosen to remain in cache for nearly the entire
program’s execution, as they are accessed regularly (though not necessarily frequently), and
would thus have very long tour lengths. These long-lived blocks greatly increase the average
tour lengths seen for each benchmark, though they may only reduce the overall number of
misses by a small amount.

From this study we see that by improving upon the prediction of the usage characteristics
of a block and the management of those blocks once they are placed in the L1 cache structure,
we might improve the performance of the NTS and PCS schemes to reduce the performance
gap that exists between these schemes and pseudo-opt. We see from Table 8 that each of
the multi-lateral schemes does increase the tour lengths relative to the single, direct-mapped
cache structure of nearly the same size, indicating that these schemes are making decisions

that improve data usage and performance relative to a conventional cache.
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7 Conclusions

In this paper we have evaluated three different implementable methodologies (MAT, N'TS,
and PCS) for managing an on-chip data cache based on active block allocation via capturing
and exploiting reuse information. In general, an actively managed cache structure signifi-
cantly improves upon the performance of a traditional, passively-managed cache structure
of similar size and competes with one of nearly twice the size. Further, the individual effec-
tive address reuse history scheme used in N'T'S generally gives better performance than the
macroblock effective address-based MAT or the PC-based PCS approaches.

We compared the performance of the PCS and NTS schemes to the performance of a
near-optimally managed cache structure (pseudo-opt). The difference in performance, block
usage prediction, actual block usage, and tour lengths between the implementable schemes
and pseudo-opt shows much room for improvement for these actively-managed caches.

Thus, multi-lateral cache structures that actively place data within the cache show promise
of improving cache space usage. However, the prediction strategies used in these current
schemes are too simple. Improving the prediction algorithms, as well as actively managing
blocks once they are placed in the L1 cache structure (active replacement), can help improve
the performance of the implementable schemes and may enable them to approach optimal
cache space usage.
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