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Abstract 

Most current single-chip processors employ an on-chip 
instruction cache to improve performance. A miss in this insk-uc- 
tion cache will cause an external memory reference which must 
compete with data references for access to the external memory, 
thus affecting the overall performance of the processor. One com- 
mon way to reduce the number of off-chip instruction requests is to 
increase the size of the on-chip cache. An alternative approach is 
presented in this paper, in which a combination of an instruction 
cache, instruction queue and instruction queue buffer is used to 
achieve the same effect with a much smaller instruction cache size. 
Such an approach is significant for emerging technologies where 
high circuit densities are initially difficult to achieve yet a high level 
of performance is desired. or for more mature technologies where 
chip area can be used to provide more functionality. The viability 
of this approach is demonstrated by its implementation in au exist- 
ing single-chip processor. 

1. Introduction 

In recent years, advances in VLSI technology have 
significantly increased the speed at which a single-chip processor 
(SCP) can he run. As was the case with the first mainframes, raw 
processing speed is now much greater than memory speed. There- 
fore, it behooves us to examine what the designers of the first high- 
performance computers did to minimize the negative impact of 
memory latency on processor performance and attempt to incor- 
porate some of their methods with ours. 

One important difference between the problems faced by 
mainfratne designers and architects of single-chip processors is the 
adverse effect of off-chip bandwidth and pin limitations on SCP 
pet-fOtlllStl~. Due to these limitations, certain mainframe 
approaches to reducing memory latency, such as a massive increase 
in the memory bandwidth, may not be available in the SCP environ- 
ment. Other techniques, however, such as the incorporation of more 
pipelining in the processor, the use of queues between the processor 
and memory, and making wide use of caches, are still applicable. 

Programs generate two different types of memory requests, 
requests for instructions (l-Fetches) and requests for data (D- 
Fetches). Both types of requests are competing for the same 
resource - memory. Mainframe designers developed techniques to 
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reduce the impact of this competition, such as supplying separate 
data and instruction caches, and allowing multiple outstanding 
memory requests. Due to physical space limitations in the SCP 
realm, it is not practical to supply separate on-chip data and instruc- 
tion caches. Furthermore, supplying separate off-chip data and 
instruction caches would require extra I/O pins that may not be 
available. Therefore, given the inherent spatial and temporal local- 
ity exhibited by instructions, SCP on-chip caches are generally 
instruction caches, used to service I-Fetches. This permits the avall- 
able off-chip bandwidth to be utilized for servicing D-Fetches. The 
use of an on-chip instruction cache has been suggested by others 
[PaSe80,SmGo85,Smit821, and has been already incorporated in 
several designs [ACHA87,BCDF87,KMO:M87]. 

While a simple on-chip instruction cache will provide a 
significant increase in performance, some competition for external 
memory between I-Fetches and D-Fetches will still exist. This is 
because, even in mature technologies, physical limitations prevent 
extremely large on-chip caches. In addition, for new and emer@ng 
technologies that promise increased speed, the high densities 
needed to support even moderately sized caches are not available. 
ln this paper we ate interested in approaches that minimize the 
impact of this competition for external memory and provide perfor- 
mance equivalent to that provided by much larger instruction 
caches. 

The remainder of this paper is div:ided into 6 sections. The 
next section presents a short discussion of I-fetch and ita interaction 
with D-fetch. Section 3 gives a brief description of the PIPE pm- 
cessor which is used as a basis for our simulations. Next, we con- 
trast the PIPE approach to I-fetch with a conventional instruction 
cache approach. In Section 5, simulation details are provided and in 
Section 6, a discussion of our simulation results is presented. 
Finally, Section 7 presents our summary and conclusions. 

2. Instruction and Data Fetch Strategies 

Most current processor designs assume the presence of a cela- 
tively large external cache, and that accessing that cache can be 
done quickly. An external cache access is typically associated with 
a stage of the pipeline and involves broadcasting a request off-chip 
and then latching the data item (in the case of read) when it is 
returned by the cache. Cleary, the off-chip communications and 
cache memory access activities associated with such a strategy can 
have a dramatic, limiting impact on a processor’s performance. If a 
processor’s design is too closely tied to the performance of the 
external cache, implementing the processor in a faster technology 
will not necessarily result in a faster system. Techniques to minim- 
ize this interdependence between processor and memory will now 
be presented. 

2.1. Instruction Fetch 

In the mid 1970’s, Rau and Rossman [RaRo77] studied the 
instruction fetch strategies used by the IBM System/370 series, the 
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CDC 6600, and the Manchester University MU5 This study exam- 
ined the use of Pmfetch Buffers in conjunction with an Instruction 
Buffer (an instruction cache). In their model of instruction fetch, 
the decode logic takes instructions directly out of the Pmfetch 
Buffers, which are loaded with as many sequential instructions as 
possible given the size of the buffets, the size of the hrstructiort 
cache, and the speed of external memory. Their results showed that 
a reduction of up to 50% in average I-Fetch delay can be achieved 
by the use of these buffers. While the results indicated that, within 
certain bounds, better performance can be achieved by using more 
buffers, the results also indicated that increasing the number of Pre- 
fetch Buffers increases memory traffic. Since the penalty for going 
off-chip in an SCP environment is higher than in a mainframe, a 
balance must be struck between the number of Ptefetch Buffers and 
the amount of off-chip accessing these buffers generate. A similar 
study by Gtohoski and Pate1 [GrPa82] included the effect of 
operand accessing on program performance and found similar 
RXlltS. 

The use of a Target Btstruction Buffer (TIB) was also exam- 
ined in both of the above studies, as well as one by Hill [Hill87]. A 
TIB can be used in place of or in addition to an instruction cache, 
and contains the n sequential instructions stored at a branch target 
address. (n is a function of the TIB size.) When a branch is taken, 
the n instructions are taken out of the TIB while the I-Fetch control 
logic issues requests for the instructions sequential to the ones in tbe 
TIB. If there ate mom instructions in the TIB than the number of 
clock cycles it takes to access external memory, the instruction 
stream will have no gaps in it. The AMD2!NOO [Adva871 uses such 
a TIB instead of an instruction cache. While the results of the stu- 
dies indicate that a small TIB can provide better performance than a 
simple small instruction cache, the use of a TIB implies large 
amounts of off-chip accessing, which again can be a problem in 
SCP design. 

2.2. Data Fetch 
There are several ways to reduce the effective access time of 

data mferences. One technique is to treat the external memory as a 
functional unit, and schedule arrivals from memory. Some 
Load/Store architectures [HCSS87] employ a version of this tech- 
nique by providing a delay slot after a load that can be filled with an 
instruction that will execute while the load is completing (in essence 
treating the external memory as a functional unit with access time of 
2 clock cycles). The obvious drawback to this method is that the 
architecture is tied directly to external factors such as memory 
speed. 

Another technique is to provide queues, either explicitly archi- 
tectural or transparent to the user, that allow the machine to con- 
tinue executing instructions while waiting for the memory request to 
be serviced. This method has the advantage of making the architec- 
ture independent of memory speed. The IBM 801 [Radi82], for 
example, provides what is in effect a single element transparent 
queue that allows instructions after a load that do not use the 
requested data to continue to issue. This machine only blocks issue 
when an instruction needs to use data that has not yet been returned 
from memory. However, since only a single element queue is used, 
even if memory is pipelined only one memory request can be out- 
standing at a time. 

Making the queues part of the architectme and visible to the 
programmer permits the easy overlap of memory activities with pro- 
gram execution. If the memory is pipelmed, several memory 
requests can be outstanding at the same time. In addition, the use of 
architectural queues allows requests generated by the instruction 
fetch unit to take precedence over data requests with a limited 
impact on performance. In a processor without queues, a data 
request is issued very near the time the data is required. If an 
instruction request interferes with this data request, the pmcessor 
will lose cycles waiting for both the instruction request and the data 
request to finish. In processor designs incorporating queues, it is 

assumed a data request has been issued some time before it is actu- 
ally requited, allowing an instruction request to interfern without 
necessarily causing the processor to block. 

While both caches and queues are used to reduce the impact of 
memory latency on processor performance. there is a fundamental 
difference between these two strategies. Caches attempt to e&n- 
inure memory latency, while queues allow the processor to tolerate 
it. The proper combination of these two techniques can Iead to 
significant increases in performance by eliminating the majority of 
the memory latency and allowing tbe processor to tolerate what 
remains. The PIPE architecture, described in the next section, 
achieves a high level of performance by combing the use of data 
and instruction queues with a relatively small on-chip instruction 
cache. 

3. The PIPE Processor 
The PIPE pmcessor is a pipelined single-chip processor 

designed at the University of Wisconsin and is an outgrowth of tire 
PIPE project. A mom detailed description of the PIPE project is 
available elsewhere (GHLP85). 

The PIPE processor features a simplified load/store instruction 
set, five stages of pipelining, an on-chip instruction cache with 
queues, both input and output data queues. and an extended version 
of a delayed branch. A block diagram of the processor is shown in 
Figure 1. The five pipeline stages consist of Instruction Fetch, 
Instruction Decode, Instruction Issue, ALU l/Logical and ALU2. 
The use of queues throughout the processor is evident in the 
diagram. The following is a brief description of the architecture and 
the features most relevant to the instruction fetch studies to be 
presented later. 

3.1. The PIPE Architecture 
The PIPE architecture is a register to register type, and has 

much in common with the Gray and CDC archhectums. The PIPE 
processor is a 32% processor with a 32-bit wide internal bus. PIPE 
uses sixteen 32.bit dam mgistem, divided into a set of 8 fomgmund 
and 8 background registers to improve the speed of subroutine cal- 
ling. PIPE is ldbit word-addressable, has separate input and output 
busses, and a single-level interrupt. A barrel shifter is used to per- 
form shifts and a standard ALU performs adds and subtracts as well 
as logic functions. Them am also 8 Branch Registers, whose use 
wilI be described later. 

From Main Memory To Main Memory 

Figure 1. Block Diagram of the PIPE Pmcessor 
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3.1.1. Instruction Set 
PIPE instructions come in 2 forms, single parcel and two par- 

cel, where a parcel is a 16-bit quantity (see Fig. 2). ‘The position of 
the register fields is the same for all instructions, greatly simplifying 
the decode logic. The PIPE instruction set suppotts a basic reper- 
toire of 3 operand instructions; addition, subtraction, logical opera- 
tions, and shifts in their various forms ate all provided. Due to the 
limited physical space available, PIPE does not support floating 
point numbers, nor is there any hardware support for multiplication 
or division. 

Opcode Ri 4 Rk 
15 9 8 6 5 3 2 0 

(a) ldbit format 

Opcode Ri 4 1 Op Ext 1 Immediate Field 1 
15 9 8 6 5 3 2 0 31 16 

(b) 32-bit format 

Figure 2. Instruction Format 

3.1.2. Architectural Queues 

As with the PIPE architectme, the PIPE processor provides 
both input and output queues which act as insulating buffers 
between external memory and the internal processing elements of 
the chip. These queues can be seen in Figure 1. This arrangement 
allows the on-chip clock rate to be determined solely by the timing 
delays thmugh the processing elements that comprise the chip. The 
speed of the external memory has no effect on the processor’s inter- 
nal clock rate. 

Since PIPE is a register-to-register type machine, all memory 
interactions occur thtough Load and Store instructions. A Load 
instruction generates a memory address and places it on the tail of 
the Load Address Queue (LAQ). Items in the LAQ are then sent to 
the memory system, which sometime later responds with the data 
item. The data item is not placed directly in a register. but on the 
loud queue (LDQ) which acts as a buffer for data. The head of this 
input queue is visible w the programmer as a register (R7). By 
making this queue explicit in the architectural defmition. a program 
cao have multiple outstandiig memory requests without forcing the 
issue logic to reserve a path into the register file for each request. 
By employing well known compiler optimization techniques, the 
load instructions are moved as far ahead of the instruction requiring 
the data as possible. 

The writing of data items to memory occurs in a similar way. 
A stem. address is generated and placed on the tail of the Store 
Address Queue (SAQ). Data items am placed on the tail of the 
Store Data Queue (SDQl by specibing register 7 as the destination 
operand. The items at the top of the SAQ and SDQ are sent as a 
pair to the memory. 

3.1.3. Prepare to Branch 

Branch instructions am notorious for causing performance 
degradation in heavily pipelined machines due to the difficulty in 
keeping the pipeline full of useful instructions while the branch con- 
dition is being evaluated. This problem has been extensively stu- 
died [DeLe87,McHe86,Smit81], and a number of methods for 
minimizing the impact of branches have been developed. The 
method used in the PIPE architecture is a generalized form of the 
delayed branch [HJBG82,Radi82]. 

In the delayed branch scheme, them are a fixed number of 
delay slots following a branch that are tilled with instructions that 
are guaranteed to execute. Ideally the number of delay slots should 
be as large as possible to guarantee that the branch condition will 

have been evaluated by the time the instructions complete, thus 
keeping the pipeline full. Studies of the delayed branch indicate 
that for many benchmark programs it is difficult to till more than 
two delay slots, however. This means that the compiler has to either 
place null operations into the slots it is unable w ftll. or the proces- 
sor must have the ability to conditionally execute these instntctions 
so that the compiler can place iustructions into the delay slots that 
are likely to be executed. 

Our experience with many scientific programs is slightly dif- 
ferent. We have found that a compiler can easily generate code with 
au average of 4 instructions that can be unconditionally executed 
after a branch [YoGot?4]. Therefore, PIPE uses an instruction caRed 
the prepare-to-branch (PBR) instruction which allows the compiler 
w specify the number of delay slots (between 0 and 7). Providing 
the ability to specify how many instructions are w be executed after 
a PBR instruction allows the PIPE architectnte to always do as well 
as the more msbictive delayed branch scheme, while in some cases 
significantly out-performing it. 

In order to suppon the PBR instruction, 8 Branch Registers 
were added to the architectme. These registers am not part of the 
general purpose registers, but a separate set of registers used to sWre 
branch target addresses. This allows the PBR titmction w be a 
single parcel insttuction. and allows the compiler to load several 
branch target address at the beginning of a basic block. 

3.2. The PIPE Cache 
The PIPE instruction cache is direct mapped and composed of 

sixteen 4-word lines totaling 64 words, or 128 bytes. This is 
between 32 and 64 instructions, depending on the distribution of 1 
and 2 parcel instructions. In addition to the cache there is an I-byte 
Instruction Queue (IQ) and and an I-byte Instruction Queue Buffer 
(IQB) that lie between the insttuction cache and the decode logic. 
The only time the cache makes a request for a line from off-chip 
memory is if the line is guaranteed to contain at least one uncottdi- 
tionally executable instruction. In this paper, when we refer to the 
PIPE cache, we are actually referring w the physical cache, the IQ, 
the IQB, and the strategy we use to manage them. ‘Ibe PIPE cache 
has been explained in detail elsewhere [plFa86]. 

This instruction cache, while relatively small, proves sufficient 
for our purposes. It allows us to verify the design of the wntml 
logic, and demonstrate that an I-Fetch strategy such as this need not 
adversely affect the clock rate. In addition, our simulation results 
indicate that if the IQ and IQB are used properly, larger instruction 
caches do not necessarily provide a sigoitlcant improvement in per- 
formance. 

33. The PIPE Chip 

The PIPE chip was fabricated by the MOSIS fabrication facil- 
ity in 3 micron NMOS with one layer of metallization, and wntains 
just over 37,000 transistors. The chips have been tested and perform 
at a peak rate of slightly over 6 MIPS. While this number is not as 
impressive as the performance numbers quoted by several other 
existing ptucessors, it is important to remember that PIPE was fabri- 
cated in a very restrictive technology. SPICE simulations of the 
PIPE processor using 2 micron NMOS parameters with low resist 
polysiliwn interconnect indicate that if ,this kss restrictive NMOS 
fabrication process were available to us. the PIPE performance rate 
would be over 18 MIPS. The availability of a sewnd level of 
metallization would improve the performance even more. While 
such fabrication processes are currently being used by such wm- 
patties as Intel, MOSIS does not suppotl such processes in NMOS. 
(They do in CMOS, however.) A better comparison for PIPE would 
be with either RISC-II [Hem&t] or MIPS [HJPR83], since both 
these processors were also manufactuted in NMOS. PIPE is 2-3 
times faster than either of these machines. 
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4. Contrasting PIPE and other Instruction Fetch Strategies 

When an on-chip instruction cache is all that an SCP design 
uses to reduce off-chip memory traffic, choosing the correct cache 
prefetch strategy becomes critical. Hill [Hii87] used trace-driven 
simulations to compare a wide range of instruction cache 
configurations and instruction prefetch strategies. Among the many 
pxefetch strategies he modeled were the ones used by the Berkeley 
SPUR processor, the MIPS-X processor, and a strategy he refers to 
as Ahvays-prefetch. Throughout his study, the always-prefetch stra- 
tegy consistently provided the best performance. We refer to a cache 
using this always-prefetch strategy as a Conventional cache. The 
following sections provide a detailed description of the PIPE 
approach and the approach used in the conventional cache. 

4.1. The Conventional Cache 

In the model used by Hill, a cache line is composed of a 
number of sub-blocks, each block with its own individual valid bit. 
A PC is presented to the cache at the beginning of each clock cycle 
and a tag lookup and cache array lookup of that PC can both be 
completed before the end of that cyde. The always-prefetch stra- 
tegy prefetches an instruction from the next sequential location on 
each instruction reference, even if this address maps into the next 
cache line. Memory requests are made for only one instruction at a 
time, and a new one cannot begin until the previous one finishes. 
Data fetches have priority over both instruction fetches and pre- 
fetches, while instruction fetches have priority over prefetches. 

As Hill points out, there are certain implementation problems 
with the always-prefetch scheme, such as the fact that two reads 
from the tag array per clock may be necessary. In spite of these 
problems, this is a very useful model since it consistently provided 
better performance than any other prefetch strategy studied by Hill. 

4.2. The PIPE Instruction Fetch Logic 

In the PIPE instruction fetch logic, there are two queues that 
lie between the instruction cache and the instruction register, the IQ 
and the IQB (see Fig. 1). Both these queues are the size of a cache 
line. The IQ, if not empty, is guaranteed to always contain at least 
one instruction to be executed. No such guarantee is made for the 
contents of the IQB . 

When the IQ becomes empty, an attempt is made to fill it with 
the data contained in the IQB. If the IQB cannot provide the IQ 
with valid data, a cache lookup for a new line must he performed. If 
the line is not in the cache, then a request to memory is initiated. 

When the IQB becomes empty, the next sequential line past 
the one in the IQ is prefetched from the on-chip cache. If that line is 
not in the cache, the off-chip request is blocked until the control 
logic can ensure that some portion of the requested line will be exe- 
cuted. The control logic determines whether to make an off-chip 
memory request based on a number of factors. Due to the encoding 
of the PIPE instruction set, the existence of a branch instruction is 
determined by a single bit of the opcode. This allows the cache 
control logic to easily scan the instructions in the IQ and determine 
if any are PBR instructions. If there are none, the next sequential 
line is guaranteed to contain at least one unconditionally executable 
instruction, and the control logic can initiate the appropriate fetch. 

In addition, if there is a PBR instruction in execution, the con- 
trol logic knows that a certain number of instructions past the PBR 
instruction will be unconditionally executed. ms number is pm- 
vided in a 3-bit field of the PBR instruction.) Thus, the control logic 
can initiate cache lookups or fetches for these instructions to be 
unconditionally executed while the PBR instruction is being 
evaluated. Once all the instructions guaranteed to execute pass into 
the IQ and the result of the PBR instruction has been returned to the 
cache, the control logic can then start filling the IQB with the 
instructions stored at the branch target address. If the branch target 
address is in the cache, there will be no interruption in the supply of 
instructions and no wasted cycles. If the line is not on chip, having 

an IQB allows the processor to begin fetching from external 
memory some number of clocks early. The implication of this is 
that if the number of delay slots can be made large enough no 
specific branch prediction strategies are necessary. 

5. Simulation Details 

For our benchmark programs we chose to use the first 14 
Lawrence Livermore loops as defined in [McMa84]. There were 
two main reasons for this decision. First, we are assuming a 
scientific workstation environment and the Lawrence Livermore 
Loops are a well-established benchmark for numeric workloads. 
Secondly, and perhaps more importantly, we are interested in the 
interaction between instruction and data requests. and the Livermore 
Loops do generate a large number of data requests per inner loop, 
especially when an off-chip floating point unit is assumed. This 
high data request rate allows us to monitor the ability of the dif- 
fe=nt prefetch schemes to interact with data requests, especially 
when the cache is small and large numbers of instruction requests 
are being generated. 

The loops were compiled by the original PIPE compiler, and 
then revised by hand to reflect the slightly different architecture of 
the PIPE processor. No hand-optimization was done - the loops are 
not “tuned” to increase performance. The 14 loops were compiled 
as one large program, so that each loop would run until finished and 
then fall through to the next loop. This has the effect of flushing the 
cache every few thousand cycles, since it is guaranteed that at the 
beginning of each new loop no part of it will be- in the cache. The 
sizes of the inner loops are listed in Table I. A total of 150,575 
instructions are executed in a single run through the benchmark pro- 
gram. 

i 

1 

Lawrence Liverrnore JAOD sizes in bvtes 

Loop # Inner Loop 
I-‘ooP# 

Inner Loop 
Size Size 

116 8 732 
204 9 272 

64 10 260 
80 11 56 
76 12 56 
72 13 328 

288 14 224 

Table I. Inner Loops sizes 

Memory is modeled as a large external cache that services 
both instruction and data requests. This cache is connected to the 
processor chip by a pair of busses, an input bus and an output bus 
(see Fig. 3). Only the cache deals directly with the large external 
main memory. The cache is assumed to be large enough to achieve 
a 100% hit rate in our simulations. The processor does not have an 
on-chip multiply unit, making an external floating point chip neces- 
sary. The floating point unit is addressed as a memory location, so 
that a pair of data stones to the appropriate locations will cause a 

Figure 3. Simulation setup 
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multiply to occur. The number of clocks necessary to perform a 
floating point multiply is kept a constant, and is set to 4 clock 
cycles. Since both the cache and the floating point unit must share 
the return bus. some bus arbitration is necessary. The simulation 
model gives precedence to data and instruction loads and stores, fol- 
lowed by multiply results, with instruction prefetches having lowest 
priority. 

Two versions of the PIPE simulator were created, one that 
used tbe PIPE cache and one that used the conventional cache. 
Simulation runs of the benchmark program were performed using 
both setups, and in the simulation runs performed, the following 
parameters were varied: 

(I) instruction format 
(2) instruction cache size 
(3) the cache line size 
(4) the speed of external memory 
(5) the width of the input bus 
(6) permitting a pipelined extemaI memory 
(7) the instruction queue (IQ) size 
(8) the instruction queue buffer (IQB) size 

The Erst parameter compares a Exed 32-bit instruction format to the 
16 and 32-bit instruction formats used by PIPE. The second and 
third parameters am typically associated with cache studies and 
need no explanation. The next three parameters all deal with varia- 
tions in effective memory speed. Parameters 4 and 5 specifically 
reflect technological variations. As a given design is built in a more 
aggressive technology, the processor may run at a faster speed than 
the memory. Varying the external memory speed will indicate 
which instruction fetch strategy can tolerate a relatively slower 
memory. The input bus width is related to the effective external 
memory speed since a wider bus will more easily allow prefetch of 
instructions and thereby make memory appear faster. The 6th 
parameter, pipelined memory, essentially permits multipIe outstand- 
ing memory requests. If the memory is pipelined, it is assumed the 
memory system can accept a new request each clock cycle. The 
Enal 2 parameters are specific to the PIPE processor. The simulator 
was also able to select whether data or instructions have priority at 
the memory interface (since tbe PIPE processor uses queues). 

Given the large number of parameters listed, it is impractical 
to include an exhaustive listing of all simulation results. We will 
therefore concentrate on the significant results and indicate when 
trends hold for other sets of parameters. 

6. Discussion of Simulation Results 

The goal of these simulation studies is to compare a conven- 
tional cache using the always-pmfetch strategy with the PIPE 
instruction fetch strategy that is based on using an instruction cache, 
an instruction queue, and an instruction queue buffer. As described 
earlier, the IQ and IQB permit a type of look&read into the instruc- 
tion stream and are critical to an effective strategy for fetching off- 
chip instructions. The early detection of branches and instructions 
to be unconditionally executed relies on the existence and size of 
these buffers. In addition, the presence of the IQ makes the the 
instruction cache available for prefetch activities. 

To begin, we compared the conventional cache against ver- 
sions of the PIPE system with the parameter values listed in Table 
II. These parameter values were selected as representing a reason- 
able range of values that could be easily implemented. Notice that 
the IQ and IQB size track the line size of the cache, except in the 
case of the 32-byte line size. For this line size we simulated 2 dif- 
ferent IQ sizes. For all the simulation results presented here. a fixed 
32-bit instruction format was chosen in order to make comparisons 
to other machines that only have one instruction format more realis- 
tic. In addition, instructions requests are given priority over data 
requests at the memory interface. 

Table II. Simulated IQ and IQB configurations 

Our simulation results indicate that one part of the I-Fetch 
strategy used by PIPE is non-optimal. As stated earlier, the PIPE 
processor is an outgrowth of the PIPE project which involved a 
tightly-coupled pair of processors sharing the same memory. In this 
environment, it was important to limit memory trafEc as much as 
possible, and so the I-Fetch logic guarantees that some part of every 
line requested from off-chip will be executed. Our simulation results 
indicate that, for a single-chip processor on. its own, a certain perfor- 
mance penalty is paid by using this strategy and not allowing true 
prefetch from off-chip. All simulation results presented in this paper 
assume that true prefetching from off-chip can be done. (I’he I- 
Fetch logic does not guarantee that some part of the line requested 
from off-chip will be executed.) 

Our performance metric for these results is the total number of 
cycles needed to execute the 150,575 instructions. Our choice of 
this metric is due to the difficulty in computing an effective instmc- 
tion access time when queues are involved and because the effective 
access time does not necessarily indicate the impact of the interac- 
tion of data and instruction requests upon performance. In the fol- 
lowing graphs we plot the total number of cycles used on the verti- 
cal axis of our figures and cache size in byles on the horizontal axis. 

Figure 4 shows the performance of our 4 basic configurations 
and of the conventional cache in the case of a non-pipelined main 
memory with an access time of 1 clock cycle. (For a memory 
access time of 1 clock cycle, having a pipelined memory makes no 
difference.) This would correspond to a machine with a large, fast 
external cache. Figure 4a is for an input bus width of 4 bytes while 
in Figure 4b the bus width is 8 bytes. It is clear that the bus width 
can have a dramatic impact on performanc:e for cache sizes less than 
128 bytes. This effect is not unexpected if one considers that the 
underlying architecture can issue one instruction per cycle and that 
an instruction is 4 bytes long in these simulations. A bus only 4 
bytes wide has difficulty supplying the processor with instructions 
faster than they are consumed, and cannot get ahead of the issue 
logic. A bus width of 8 bytes, however, allows the instructions to 
arrive from memory at twice the rate they are being consumed, 
thereby permitting the prefetch logic to stockpile instructions. 

Looking at the curves in both graphs, an initial large perfor- 
mance improvement followed by a flattening of the curves is evi- 
dent. The knee of the curve corresponds to the size of most of the 
inner loops of the benchmark program. In Table I, we see that half 
of the inner loops fit within a 128 byte cache. The performance 
improvement seen for an input bus width of 8 bytes is seen across 
all parameters and becomes more dramatic as the memory access 
time increases. 

There are a couple of other interesting things to note in Figure 
4. First, we see in Figure 4b that configurations 8-8 and 16-16 per- 
form uniformly well for varying cache sizes with a bus width of 8 
bytes. Thus, using a 16 or 32 byte cache with an IQ and IQB one 
can achieve close to the performance of a 512 byte cache. Second, 
as seen in Figure 4a. a memory access time of 1 clock cycle and a 
bus width of 4 bytes is the only case for which the conventional 
cache performs better than some PIPE configuration. For a memory 
access time larger than 1 clock cycle, all PIPE configurations 
afways perform better than the conventional cache. 

ln Figure 5 we see the performance results for a bus width of 4 
bytes and a bus width of 8 bytes when main memory has an access 

238 



t 
a 28 
1 

21 

C 
Y 26 

T 25 

: 24 

Conllgnration 32-32 Cmignmion 32-32 Cmignmion 32-32 

Configdon 16-32 Configdon 16-32 
---- ---- 

coawuioml coawuioml 

calliglultion 16-16 calliglultion 16-16 
----- ----- 

con6glwltion a-a con6glwltion 8-a 
__-__--____ __-__--____ 

Configuration 16-32 
_--- 

con6gunuion 8-8 
____-__-__. 

19 
1, 

‘1 
. 0 0 100 100 2ixl 200 300 300 400 500 4io 500 

, 
600 6im 

Cache Size in Bytes Cache Size in Bytes 

194 0 
0 100 200 300 400 500 600 

Cache Size iu 3yte.s 

(4 (4 

F&me 4. Total execution time with varying cache sizes for a non-pipelined F&me 4. Total execution time with varying cache sizes for a non-pipelined 
memory with a 1 cycle memory access time. memory with a 1 cycle memory access time. 

(a) bandwidth = 4 bytes. (a) bandwidth = 4 bytes. (h) bandwidth = 8 bytes. (h) bandwidth = 8 bytes. 

than 1 clock cycle, the PIPE strategy will significantly outperform 
the conventional cache approach. 

Figure 6 shows performance results for a system with a bus 
width of 8 bytes and a memory access time of 6 cloclr cycles. Fig- 
ure 6a (which is the same as Figure Sb with a different scale) 
represents a non-pipelined memory and 6b represents a pipelined 
memory. Comparing Figures 6a and 6b. we see that while the shape 
of the curves is nearly the same, in Figure 6b the curves have sbiftcd 
down and some compression has taken place. We again see that the 

time of 6 clock cycles and is not pipelined. (Notice that the scale 
for the total execution time axis has changed from that in Rgure 4.) 
From Figure 5 we see that for small cache sizes and higher memory 
access times, the PIPE configurations am less sensitive to bus width 
than the conventional cache. (once the cache sixebas grown to 256 
bytes, the bus width does not make a significant difference.) Simula- 
tions with memory access times of 2 and 3 clock cycles showed 
similar msuks. Thus, if one is forced to use a bus width of 4 bytes 
due to tecbnologicaf constraints and memory access tune is greater 
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PIPE configurations always do better than the conventional cache 
configuration In the case of a pipelined memory, some of the PIPE 
configurations perform substantially better. Figure 6 shows that the 
PIPE configurations providing the best peRformance have line sizes 
of 16 or 32 bytes, which is the reverse of the case shown in Figure 
4. In Figure 4, a line size of 8 gave the best performance. Such a 
result is not completely unexpected and is confirmed by other cache 
studies [Smit82]. One thing to notice in these figures is the relative 
flatness of the configurations providing the best performance. In 
Figure 4b it was configurations 8-8 and 16-16. while in Figures Sb 
and 6b configurations 16-16, 16-32 and 32-32 were best. Although 
the performance of the conventional cache and the various PIPE 
configurations converge as as cache size increases, me PIPE 
configurations that perform best display a much more uniform per- 
formance across all cache sizes. If we compare Figures 4, 5 and 6 
we see the PIPE configuration that has a cache lime size of 16 
(configuration 16-16) performs extremely well for a broad range of 
cache sizes and memory access times. 

From an implementation point of view, in which technology is 
quickly changing, tbe results presented here are significant. Using a 
combination of a relatively small cache, an IQ, and an IQB, excel- 
Ient performance can be achieved with a limited number of transis- 
tors. This is important when designing instruction fetch logic in 
newer, substantially faster technology that does not permit high den- 
sity circuitry. In addition, the same design will maintain a high 
level of performance as main memory speeds improve, or as the 
technology matures and higher densities become possible. The 
higher densities achieved in the mature technology can be used to 
expand the on-chip cache to include data or to provide mom on-chip 
functionality such as multiply hardware. 

It is important to remember that the I-Fetch strategy presented 
here is for a subset of the actual strategy implemented on the PIPE 
processor. As pointed out earlier. the actual PIPE processor has 
both a 16-bit and a 32-bit instruction size, which further complicates 
the I-Fetch logic. Nonetheless, the actual implementation of this 
approach demonstrates its viability. 

7. Summary and Conclusions 

In this paper we have presented an evaluation of a set of 
instruction fetch strategies appropriate for single-chip processors. 
In most of today’s approaches to instruction fetch, the single-chip 
processor is provided with a simple on-chip instruction cache. On a 
cache miss, a request is made to the external memory for instruc- 
tions and these off-chip instruction requests compete with dam 
references for access to the external memory. One way to reduce 
the number of off-chip instruction requests is to simply increase the 
size of the on-chip cache. Increasing the instruction cache size is 
not always possible, however, especially -in emerging technologies 
where high circuit densities arc difficult to achieve or where ctip 
area is needed to provide a certain level of functionality. We have 
suggested an approach to fetching instructions that combines the use 
of an instruction cache, an instruction queue, and an instruction 
queue buffer, and briefly described an existing processor that 
employs this approach. This approach was compared to a simple 
on-chip instruction cache approach that uses an instruction pmfetch 
strategy that Hii [Hill871 has detemrined ‘to provide the best pcrfor- 
mance when used with a conventional cache. Our simulation results 
indicate that using our approach the processor performs up to twice 
as fast as a processor using the conventional cache-only approach 
with a small cache size and can in fact provide performance com- 
parable to larger caches. The viability of this approach is demon- 
strated by its implementation in the PIPE processor chip. 

8. Acknowledgements 

This work was supported by National Science Foundation 
Grants DCR-8604224 and CCR-870672;!. We would also like to 
thank both Mark Hill and Rob Joersz for their valuable assistance. 

240 



9. References 

[ACHA87] 

[Adva87] 

[B CDF87] 

[GHLF’85] 

[GrPa82] 

[HCSS87] 

[Henn841 

[Hill871 

[HJBG82] 

[HJF’R83] 

A. Agarwal, P. Chow, M. Horowitz, J. Acken. A. Salz, 
and J. Hennessy, “On-chip Instruction Caches for 
High Performance Processors.” Proceedings of the 
Conference on Advanced Research in VLSI, Stanford, 
pp. l-24, March 1987. 

“Advanced Micro Devices,” AM29000 User’s 
Manual (1987). 

A. D. Berenbaum. B. W. Colbry, D. R. Ditzel, R. D. 
FErnan, H. R. McLellan, and K. J. O’Conner, 
“CRISP: A Pipelined 32-bit Microprocessor with 
13k-bit of Cache Memory,” IEEE Journal of Solid 
State Circuits, vol. SC-22, pp. 776782. October 1987. 

J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. 
B. Schechter, and H. C. Young, “PIPE: a VLSI 
Decoupled Architecture,” Proceedings of the Twelfih 
Annual Symposium on Computer Architecture. pp. 
20-27. June 1985. 

G. F. Grohoski and J. H. Patel, “A Performance 
Model for Instruction Prcfetch in Pipclined Instruc- 
tion” Units,” Proceedings of the Ninth International 
Symposium on Parallel Processing, pp. 248-252, 
August 1982. 

M. Horowitz, P. Chow. D. Stark, R.T. Simoni, A. 
Salz. S. Przybylski. J. Hennessy, G. Gulak, A. 
Agarwal, and J.M. Acken, “MIPS-X: A 20-MIPS 
Peak, 32-bit Microprocessor with On-Chip Cache,” 
IEEE Journal of Solid-State Circuits, vol. SC-22, 
pp.790-799, Oct. 1987 

J. HeMessy, “VLSI Processor Architecture,” IEEE 
Transactions on Computers, vol. C-33, No. 12, 
pp.1221-1246, Dec. 1984 

M. D. Hi, Aspects of Cache Memory and Instruction 
Buffer Peflormance, Doctoral Thesis, Department of 
Computer Sciences, University of California, Berke- 
ley, California. 

J. Hennessy, N. Jouppi, F. Baskett, T. Gross and J. 
Gill, “Hardware/Software Tradeoffs for Increased Per- 
formance.” Symposium on Architectural Support for 
Programming Languages and Operating Systems, pp. 
33-54, March 1983. 

J. Hermessy. N. Jouppi, S. Przybylski, C. Rowen, and 
T. Gross, “Design of a High Performance VLSI Pro- 
cessor,” Proceedings of the Third Caltech Conference 
on VLSI, pp. 2-l I, March 1982. 

[KMOM87] H. Kadota. J. Miyake, I. Okabayashi, T. Maeda, T. 
Okamoto. M. Nakajima, and K. Kagawa, “A 32-bit 
CMOS Microprocessor with On-Chip Cache and 
TLB,” IEEE Journal of Solid-State Circuits, vol. SC- 
22. pp.800-807. Oct. 1987 

[McMa84] F. H. McMahon, “LLNL FORTRANS KERNELS: 
MFL.OPS.” Lawrence Livermore Laboratories, Liver- 
more, CA, March 1984. 

paSe80] 

[PlFa86] 

[Radi82] 

D. A. Patterson and C. H. Sequin, “Design Considera- 
tions for Single-Chin Commuters of the Future.” IEEE 
&ansactiow”on Co;npute&, Vol. C-29, No. 2, Febru- 
ary 1980. 

A. R. Pleszkun and M. K. Farrens. “An Instruction 
Cache Design for use with a Delayed Branch,” 
Advanced Research in VLSI: Proceedings of the 
Fourth MIT Conference, April 1986. 

G. Radin, “The 801 Minicomputer,” Symposium on 
Architectural Support for Programming Languages 
and Operating Systems,” pp. 3947, March 1982. 

[RaRo77] 

[Smit811 

[SmGo851 

[Smit82] 

wocow 

B. R. Rau and G. E. Rossman. “The Effect of Instruc- 
tion Fetch Strategies upon the. Performance of” Pipe- 
lined Instruction Units.” Proceedings of the Fourth 
Annual Symposiwn on Computer Archiitecnue. pp. 
80-89, June 1977. 

James E. Smith, “A Study of Branch Prediction Stra- 
tegies”, Proceedings of the Eighth Annual Symposium 
on Computer Architecture, pp. 135-148, May 1981. 

J. E. Smith and J. R. Goodman, “Instruction Cache 
Replacement Policies and Organizations,” IEEE 
Transactions on Computers, Vol. C-34, NO. 3, pp. 
234-241, March 1985. 

A. J. Smith, “Cache Memories,” ACM Computing 
Surveys, Vol. 14, No. 3, September 1982. 

H. C. Young and I. R. Goodman, “A Simulation 
Study of Architectural Data Queues and Prepare-to- 
branch” Inst~ction,” Proceedings of the IEEE tnter- 
natiOnal Co@erence on Computer Design, pp. 544- 
549. October 1984. 

241 


