
Improving Performance of Small On-Chip Instruction Caches

Matthew K. Farrens

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI53706

Andrew R. Pleszkun

Department of Electrical and
Computer Engineering

University of Colorado-Boulder
Boulder, CO 803094425

Abstract

Most current single-chip processors employ an on-chip
instruction cache to improve performance. A miss in this insk-uc-
tion cache will cause an external memory reference which must
compete with data references for access to the external memory,
thus affecting the overall performance of the processor. One com-
mon way to reduce the number of off-chip instruction requests is to
increase the size of the on-chip cache. An alternative approach is
presented in this paper, in which a combination of an instruction
cache, instruction queue and instruction queue buffer is used to
achieve the same effect with a much smaller instruction cache size.
Such an approach is significant for emerging technologies where
high circuit densities are initially difficult to achieve yet a high level
of performance is desired. or for more mature technologies where
chip area can be used to provide more functionality. The viability
of this approach is demonstrated by its implementation in au exist-
ing single-chip processor.

1. Introduction

In recent years, advances in VLSI technology have
significantly increased the speed at which a single-chip processor
(SCP) can he run. As was the case with the first mainframes, raw
processing speed is now much greater than memory speed. There-
fore, it behooves us to examine what the designers of the first high-
performance computers did to minimize the negative impact of
memory latency on processor performance and attempt to incor-
porate some of their methods with ours.

One important difference between the problems faced by
mainfratne designers and architects of single-chip processors is the
adverse effect of off-chip bandwidth and pin limitations on SCP
pet-fOtlllStl~. Due to these limitations, certain mainframe
approaches to reducing memory latency, such as a massive increase
in the memory bandwidth, may not be available in the SCP environ-
ment. Other techniques, however, such as the incorporation of more
pipelining in the processor, the use of queues between the processor
and memory, and making wide use of caches, are still applicable.

Programs generate two different types of memory requests,
requests for instructions (l-Fetches) and requests for data (D-
Fetches). Both types of requests are competing for the same
resource - memory. Mainframe designers developed techniques to

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by pcrmksion of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

reduce the impact of this competition, such as supplying separate
data and instruction caches, and allowing multiple outstanding
memory requests. Due to physical space limitations in the SCP
realm, it is not practical to supply separate on-chip data and instruc-
tion caches. Furthermore, supplying separate off-chip data and
instruction caches would require extra I/O pins that may not be
available. Therefore, given the inherent spatial and temporal local-
ity exhibited by instructions, SCP on-chip caches are generally
instruction caches, used to service I-Fetches. This permits the avall-
able off-chip bandwidth to be utilized for servicing D-Fetches. The
use of an on-chip instruction cache has been suggested by others
[PaSe80,SmGo85,Smit821, and has been already incorporated in
several designs [ACHA87,BCDF87,KMO:M87].

While a simple on-chip instruction cache will provide a
significant increase in performance, some competition for external
memory between I-Fetches and D-Fetches will still exist. This is
because, even in mature technologies, physical limitations prevent
extremely large on-chip caches. In addition, for new and emer@ng
technologies that promise increased speed, the high densities
needed to support even moderately sized caches are not available.
ln this paper we ate interested in approaches that minimize the
impact of this competition for external memory and provide perfor-
mance equivalent to that provided by much larger instruction
caches.

The remainder of this paper is div:ided into 6 sections. The
next section presents a short discussion of I-fetch and ita interaction
with D-fetch. Section 3 gives a brief description of the PIPE pm-
cessor which is used as a basis for our simulations. Next, we con-
trast the PIPE approach to I-fetch with a conventional instruction
cache approach. In Section 5, simulation details are provided and in
Section 6, a discussion of our simulation results is presented.
Finally, Section 7 presents our summary and conclusions.

2. Instruction and Data Fetch Strategies

Most current processor designs assume the presence of a cela-
tively large external cache, and that accessing that cache can be
done quickly. An external cache access is typically associated with
a stage of the pipeline and involves broadcasting a request off-chip
and then latching the data item (in the case of read) when it is
returned by the cache. Cleary, the off-chip communications and
cache memory access activities associated with such a strategy can
have a dramatic, limiting impact on a processor’s performance. If a
processor’s design is too closely tied to the performance of the
external cache, implementing the processor in a faster technology
will not necessarily result in a faster system. Techniques to minim-
ize this interdependence between processor and memory will now
be presented.

2.1. Instruction Fetch

In the mid 1970’s, Rau and Rossman [RaRo77] studied the
instruction fetch strategies used by the IBM System/370 series, the

0 1989 ACM 0884-7495/89/0000/0234$01.50

CDC 6600, and the Manchester University MU5 This study exam-
ined the use of Pmfetch Buffers in conjunction with an Instruction
Buffer (an instruction cache). In their model of instruction fetch,
the decode logic takes instructions directly out of the Pmfetch
Buffers, which are loaded with as many sequential instructions as
possible given the size of the buffets, the size of the hrstructiort
cache, and the speed of external memory. Their results showed that
a reduction of up to 50% in average I-Fetch delay can be achieved
by the use of these buffers. While the results indicated that, within
certain bounds, better performance can be achieved by using more
buffers, the results also indicated that increasing the number of Pre-
fetch Buffers increases memory traffic. Since the penalty for going
off-chip in an SCP environment is higher than in a mainframe, a
balance must be struck between the number of Ptefetch Buffers and
the amount of off-chip accessing these buffers generate. A similar
study by Gtohoski and Pate1 [GrPa82] included the effect of
operand accessing on program performance and found similar
RXlltS.

The use of a Target Btstruction Buffer (TIB) was also exam-
ined in both of the above studies, as well as one by Hill [Hill87]. A
TIB can be used in place of or in addition to an instruction cache,
and contains the n sequential instructions stored at a branch target
address. (n is a function of the TIB size.) When a branch is taken,
the n instructions are taken out of the TIB while the I-Fetch control
logic issues requests for the instructions sequential to the ones in tbe
TIB. If there ate mom instructions in the TIB than the number of
clock cycles it takes to access external memory, the instruction
stream will have no gaps in it. The AMD2!NOO [Adva871 uses such
a TIB instead of an instruction cache. While the results of the stu-
dies indicate that a small TIB can provide better performance than a
simple small instruction cache, the use of a TIB implies large
amounts of off-chip accessing, which again can be a problem in
SCP design.

2.2. Data Fetch
There are several ways to reduce the effective access time of

data mferences. One technique is to treat the external memory as a
functional unit, and schedule arrivals from memory. Some
Load/Store architectures [HCSS87] employ a version of this tech-
nique by providing a delay slot after a load that can be filled with an
instruction that will execute while the load is completing (in essence
treating the external memory as a functional unit with access time of
2 clock cycles). The obvious drawback to this method is that the
architecture is tied directly to external factors such as memory
speed.

Another technique is to provide queues, either explicitly archi-
tectural or transparent to the user, that allow the machine to con-
tinue executing instructions while waiting for the memory request to
be serviced. This method has the advantage of making the architec-
ture independent of memory speed. The IBM 801 [Radi82], for
example, provides what is in effect a single element transparent
queue that allows instructions after a load that do not use the
requested data to continue to issue. This machine only blocks issue
when an instruction needs to use data that has not yet been returned
from memory. However, since only a single element queue is used,
even if memory is pipelined only one memory request can be out-
standing at a time.

Making the queues part of the architectme and visible to the
programmer permits the easy overlap of memory activities with pro-
gram execution. If the memory is pipelmed, several memory
requests can be outstanding at the same time. In addition, the use of
architectural queues allows requests generated by the instruction
fetch unit to take precedence over data requests with a limited
impact on performance. In a processor without queues, a data
request is issued very near the time the data is required. If an
instruction request interferes with this data request, the pmcessor
will lose cycles waiting for both the instruction request and the data
request to finish. In processor designs incorporating queues, it is

assumed a data request has been issued some time before it is actu-
ally requited, allowing an instruction request to interfern without
necessarily causing the processor to block.

While both caches and queues are used to reduce the impact of
memory latency on processor performance. there is a fundamental
difference between these two strategies. Caches attempt to e&n-
inure memory latency, while queues allow the processor to tolerate
it. The proper combination of these two techniques can Iead to
significant increases in performance by eliminating the majority of
the memory latency and allowing tbe processor to tolerate what
remains. The PIPE architecture, described in the next section,
achieves a high level of performance by combing the use of data
and instruction queues with a relatively small on-chip instruction
cache.

3. The PIPE Processor
The PIPE pmcessor is a pipelined single-chip processor

designed at the University of Wisconsin and is an outgrowth of tire
PIPE project. A mom detailed description of the PIPE project is
available elsewhere (GHLP85).

The PIPE processor features a simplified load/store instruction
set, five stages of pipelining, an on-chip instruction cache with
queues, both input and output data queues. and an extended version
of a delayed branch. A block diagram of the processor is shown in
Figure 1. The five pipeline stages consist of Instruction Fetch,
Instruction Decode, Instruction Issue, ALU l/Logical and ALU2.
The use of queues throughout the processor is evident in the
diagram. The following is a brief description of the architecture and
the features most relevant to the instruction fetch studies to be
presented later.

3.1. The PIPE Architecture
The PIPE architecture is a register to register type, and has

much in common with the Gray and CDC archhectums. The PIPE
processor is a 32% processor with a 32-bit wide internal bus. PIPE
uses sixteen 32.bit dam mgistem, divided into a set of 8 fomgmund
and 8 background registers to improve the speed of subroutine cal-
ling. PIPE is ldbit word-addressable, has separate input and output
busses, and a single-level interrupt. A barrel shifter is used to per-
form shifts and a standard ALU performs adds and subtracts as well
as logic functions. Them am also 8 Branch Registers, whose use
wilI be described later.

From Main Memory To Main Memory

Figure 1. Block Diagram of the PIPE Pmcessor

235

3.1.1. Instruction Set
PIPE instructions come in 2 forms, single parcel and two par-

cel, where a parcel is a 16-bit quantity (see Fig. 2). ‘The position of
the register fields is the same for all instructions, greatly simplifying
the decode logic. The PIPE instruction set suppotts a basic reper-
toire of 3 operand instructions; addition, subtraction, logical opera-
tions, and shifts in their various forms ate all provided. Due to the
limited physical space available, PIPE does not support floating
point numbers, nor is there any hardware support for multiplication
or division.

Opcode Ri 4 Rk
15 9 8 6 5 3 2 0

(a) ldbit format

Opcode Ri 4 1 Op Ext 1 Immediate Field 1
15 9 8 6 5 3 2 0 31 16

(b) 32-bit format

Figure 2. Instruction Format

3.1.2. Architectural Queues

As with the PIPE architectme, the PIPE processor provides
both input and output queues which act as insulating buffers
between external memory and the internal processing elements of
the chip. These queues can be seen in Figure 1. This arrangement
allows the on-chip clock rate to be determined solely by the timing
delays thmugh the processing elements that comprise the chip. The
speed of the external memory has no effect on the processor’s inter-
nal clock rate.

Since PIPE is a register-to-register type machine, all memory
interactions occur thtough Load and Store instructions. A Load
instruction generates a memory address and places it on the tail of
the Load Address Queue (LAQ). Items in the LAQ are then sent to
the memory system, which sometime later responds with the data
item. The data item is not placed directly in a register. but on the
loud queue (LDQ) which acts as a buffer for data. The head of this
input queue is visible w the programmer as a register (R7). By
making this queue explicit in the architectural defmition. a program
cao have multiple outstandiig memory requests without forcing the
issue logic to reserve a path into the register file for each request.
By employing well known compiler optimization techniques, the
load instructions are moved as far ahead of the instruction requiring
the data as possible.

The writing of data items to memory occurs in a similar way.
A stem. address is generated and placed on the tail of the Store
Address Queue (SAQ). Data items am placed on the tail of the
Store Data Queue (SDQl by specibing register 7 as the destination
operand. The items at the top of the SAQ and SDQ are sent as a
pair to the memory.

3.1.3. Prepare to Branch

Branch instructions am notorious for causing performance
degradation in heavily pipelined machines due to the difficulty in
keeping the pipeline full of useful instructions while the branch con-
dition is being evaluated. This problem has been extensively stu-
died [DeLe87,McHe86,Smit81], and a number of methods for
minimizing the impact of branches have been developed. The
method used in the PIPE architecture is a generalized form of the
delayed branch [HJBG82,Radi82].

In the delayed branch scheme, them are a fixed number of
delay slots following a branch that are tilled with instructions that
are guaranteed to execute. Ideally the number of delay slots should
be as large as possible to guarantee that the branch condition will

have been evaluated by the time the instructions complete, thus
keeping the pipeline full. Studies of the delayed branch indicate
that for many benchmark programs it is difficult to till more than
two delay slots, however. This means that the compiler has to either
place null operations into the slots it is unable w ftll. or the proces-
sor must have the ability to conditionally execute these instntctions
so that the compiler can place iustructions into the delay slots that
are likely to be executed.

Our experience with many scientific programs is slightly dif-
ferent. We have found that a compiler can easily generate code with
au average of 4 instructions that can be unconditionally executed
after a branch [YoGot?4]. Therefore, PIPE uses an instruction caRed
the prepare-to-branch (PBR) instruction which allows the compiler
w specify the number of delay slots (between 0 and 7). Providing
the ability to specify how many instructions are w be executed after
a PBR instruction allows the PIPE architectnte to always do as well
as the more msbictive delayed branch scheme, while in some cases
significantly out-performing it.

In order to suppon the PBR instruction, 8 Branch Registers
were added to the architectme. These registers am not part of the
general purpose registers, but a separate set of registers used to sWre
branch target addresses. This allows the PBR titmction w be a
single parcel insttuction. and allows the compiler to load several
branch target address at the beginning of a basic block.

3.2. The PIPE Cache
The PIPE instruction cache is direct mapped and composed of

sixteen 4-word lines totaling 64 words, or 128 bytes. This is
between 32 and 64 instructions, depending on the distribution of 1
and 2 parcel instructions. In addition to the cache there is an I-byte
Instruction Queue (IQ) and and an I-byte Instruction Queue Buffer
(IQB) that lie between the insttuction cache and the decode logic.
The only time the cache makes a request for a line from off-chip
memory is if the line is guaranteed to contain at least one uncottdi-
tionally executable instruction. In this paper, when we refer to the
PIPE cache, we are actually referring w the physical cache, the IQ,
the IQB, and the strategy we use to manage them. ‘Ibe PIPE cache
has been explained in detail elsewhere [plFa86].

This instruction cache, while relatively small, proves sufficient
for our purposes. It allows us to verify the design of the wntml
logic, and demonstrate that an I-Fetch strategy such as this need not
adversely affect the clock rate. In addition, our simulation results
indicate that if the IQ and IQB are used properly, larger instruction
caches do not necessarily provide a sigoitlcant improvement in per-
formance.

33. The PIPE Chip

The PIPE chip was fabricated by the MOSIS fabrication facil-
ity in 3 micron NMOS with one layer of metallization, and wntains
just over 37,000 transistors. The chips have been tested and perform
at a peak rate of slightly over 6 MIPS. While this number is not as
impressive as the performance numbers quoted by several other
existing ptucessors, it is important to remember that PIPE was fabri-
cated in a very restrictive technology. SPICE simulations of the
PIPE processor using 2 micron NMOS parameters with low resist
polysiliwn interconnect indicate that if ,this kss restrictive NMOS
fabrication process were available to us. the PIPE performance rate
would be over 18 MIPS. The availability of a sewnd level of
metallization would improve the performance even more. While
such fabrication processes are currently being used by such wm-
patties as Intel, MOSIS does not suppotl such processes in NMOS.
(They do in CMOS, however.) A better comparison for PIPE would
be with either RISC-II [Hem&t] or MIPS [HJPR83], since both
these processors were also manufactuted in NMOS. PIPE is 2-3
times faster than either of these machines.

236

4. Contrasting PIPE and other Instruction Fetch Strategies

When an on-chip instruction cache is all that an SCP design
uses to reduce off-chip memory traffic, choosing the correct cache
prefetch strategy becomes critical. Hill [Hii87] used trace-driven
simulations to compare a wide range of instruction cache
configurations and instruction prefetch strategies. Among the many
pxefetch strategies he modeled were the ones used by the Berkeley
SPUR processor, the MIPS-X processor, and a strategy he refers to
as Ahvays-prefetch. Throughout his study, the always-prefetch stra-
tegy consistently provided the best performance. We refer to a cache
using this always-prefetch strategy as a Conventional cache. The
following sections provide a detailed description of the PIPE
approach and the approach used in the conventional cache.

4.1. The Conventional Cache

In the model used by Hill, a cache line is composed of a
number of sub-blocks, each block with its own individual valid bit.
A PC is presented to the cache at the beginning of each clock cycle
and a tag lookup and cache array lookup of that PC can both be
completed before the end of that cyde. The always-prefetch stra-
tegy prefetches an instruction from the next sequential location on
each instruction reference, even if this address maps into the next
cache line. Memory requests are made for only one instruction at a
time, and a new one cannot begin until the previous one finishes.
Data fetches have priority over both instruction fetches and pre-
fetches, while instruction fetches have priority over prefetches.

As Hill points out, there are certain implementation problems
with the always-prefetch scheme, such as the fact that two reads
from the tag array per clock may be necessary. In spite of these
problems, this is a very useful model since it consistently provided
better performance than any other prefetch strategy studied by Hill.

4.2. The PIPE Instruction Fetch Logic

In the PIPE instruction fetch logic, there are two queues that
lie between the instruction cache and the instruction register, the IQ
and the IQB (see Fig. 1). Both these queues are the size of a cache
line. The IQ, if not empty, is guaranteed to always contain at least
one instruction to be executed. No such guarantee is made for the
contents of the IQB .

When the IQ becomes empty, an attempt is made to fill it with
the data contained in the IQB. If the IQB cannot provide the IQ
with valid data, a cache lookup for a new line must he performed. If
the line is not in the cache, then a request to memory is initiated.

When the IQB becomes empty, the next sequential line past
the one in the IQ is prefetched from the on-chip cache. If that line is
not in the cache, the off-chip request is blocked until the control
logic can ensure that some portion of the requested line will be exe-
cuted. The control logic determines whether to make an off-chip
memory request based on a number of factors. Due to the encoding
of the PIPE instruction set, the existence of a branch instruction is
determined by a single bit of the opcode. This allows the cache
control logic to easily scan the instructions in the IQ and determine
if any are PBR instructions. If there are none, the next sequential
line is guaranteed to contain at least one unconditionally executable
instruction, and the control logic can initiate the appropriate fetch.

In addition, if there is a PBR instruction in execution, the con-
trol logic knows that a certain number of instructions past the PBR
instruction will be unconditionally executed. ms number is pm-
vided in a 3-bit field of the PBR instruction.) Thus, the control logic
can initiate cache lookups or fetches for these instructions to be
unconditionally executed while the PBR instruction is being
evaluated. Once all the instructions guaranteed to execute pass into
the IQ and the result of the PBR instruction has been returned to the
cache, the control logic can then start filling the IQB with the
instructions stored at the branch target address. If the branch target
address is in the cache, there will be no interruption in the supply of
instructions and no wasted cycles. If the line is not on chip, having

an IQB allows the processor to begin fetching from external
memory some number of clocks early. The implication of this is
that if the number of delay slots can be made large enough no
specific branch prediction strategies are necessary.

5. Simulation Details

For our benchmark programs we chose to use the first 14
Lawrence Livermore loops as defined in [McMa84]. There were
two main reasons for this decision. First, we are assuming a
scientific workstation environment and the Lawrence Livermore
Loops are a well-established benchmark for numeric workloads.
Secondly, and perhaps more importantly, we are interested in the
interaction between instruction and data requests. and the Livermore
Loops do generate a large number of data requests per inner loop,
especially when an off-chip floating point unit is assumed. This
high data request rate allows us to monitor the ability of the dif-
fe=nt prefetch schemes to interact with data requests, especially
when the cache is small and large numbers of instruction requests
are being generated.

The loops were compiled by the original PIPE compiler, and
then revised by hand to reflect the slightly different architecture of
the PIPE processor. No hand-optimization was done - the loops are
not “tuned” to increase performance. The 14 loops were compiled
as one large program, so that each loop would run until finished and
then fall through to the next loop. This has the effect of flushing the
cache every few thousand cycles, since it is guaranteed that at the
beginning of each new loop no part of it will be- in the cache. The
sizes of the inner loops are listed in Table I. A total of 150,575
instructions are executed in a single run through the benchmark pro-
gram.

i

1

Lawrence Liverrnore JAOD sizes in bvtes

Loop # Inner Loop
I-‘ooP#

Inner Loop
Size Size

116 8 732
204 9 272

64 10 260
80 11 56
76 12 56
72 13 328

288 14 224

Table I. Inner Loops sizes

Memory is modeled as a large external cache that services
both instruction and data requests. This cache is connected to the
processor chip by a pair of busses, an input bus and an output bus
(see Fig. 3). Only the cache deals directly with the large external
main memory. The cache is assumed to be large enough to achieve
a 100% hit rate in our simulations. The processor does not have an
on-chip multiply unit, making an external floating point chip neces-
sary. The floating point unit is addressed as a memory location, so
that a pair of data stones to the appropriate locations will cause a

Figure 3. Simulation setup

237

multiply to occur. The number of clocks necessary to perform a
floating point multiply is kept a constant, and is set to 4 clock
cycles. Since both the cache and the floating point unit must share
the return bus. some bus arbitration is necessary. The simulation
model gives precedence to data and instruction loads and stores, fol-
lowed by multiply results, with instruction prefetches having lowest
priority.

Two versions of the PIPE simulator were created, one that
used tbe PIPE cache and one that used the conventional cache.
Simulation runs of the benchmark program were performed using
both setups, and in the simulation runs performed, the following
parameters were varied:

(I) instruction format
(2) instruction cache size
(3) the cache line size
(4) the speed of external memory
(5) the width of the input bus
(6) permitting a pipelined extemaI memory
(7) the instruction queue (IQ) size
(8) the instruction queue buffer (IQB) size

The Erst parameter compares a Exed 32-bit instruction format to the
16 and 32-bit instruction formats used by PIPE. The second and
third parameters am typically associated with cache studies and
need no explanation. The next three parameters all deal with varia-
tions in effective memory speed. Parameters 4 and 5 specifically
reflect technological variations. As a given design is built in a more
aggressive technology, the processor may run at a faster speed than
the memory. Varying the external memory speed will indicate
which instruction fetch strategy can tolerate a relatively slower
memory. The input bus width is related to the effective external
memory speed since a wider bus will more easily allow prefetch of
instructions and thereby make memory appear faster. The 6th
parameter, pipelined memory, essentially permits multipIe outstand-
ing memory requests. If the memory is pipelined, it is assumed the
memory system can accept a new request each clock cycle. The
Enal 2 parameters are specific to the PIPE processor. The simulator
was also able to select whether data or instructions have priority at
the memory interface (since tbe PIPE processor uses queues).

Given the large number of parameters listed, it is impractical
to include an exhaustive listing of all simulation results. We will
therefore concentrate on the significant results and indicate when
trends hold for other sets of parameters.

6. Discussion of Simulation Results

The goal of these simulation studies is to compare a conven-
tional cache using the always-pmfetch strategy with the PIPE
instruction fetch strategy that is based on using an instruction cache,
an instruction queue, and an instruction queue buffer. As described
earlier, the IQ and IQB permit a type of look&read into the instruc-
tion stream and are critical to an effective strategy for fetching off-
chip instructions. The early detection of branches and instructions
to be unconditionally executed relies on the existence and size of
these buffers. In addition, the presence of the IQ makes the the
instruction cache available for prefetch activities.

To begin, we compared the conventional cache against ver-
sions of the PIPE system with the parameter values listed in Table
II. These parameter values were selected as representing a reason-
able range of values that could be easily implemented. Notice that
the IQ and IQB size track the line size of the cache, except in the
case of the 32-byte line size. For this line size we simulated 2 dif-
ferent IQ sizes. For all the simulation results presented here. a fixed
32-bit instruction format was chosen in order to make comparisons
to other machines that only have one instruction format more realis-
tic. In addition, instructions requests are given priority over data
requests at the memory interface.

Table II. Simulated IQ and IQB configurations

Our simulation results indicate that one part of the I-Fetch
strategy used by PIPE is non-optimal. As stated earlier, the PIPE
processor is an outgrowth of the PIPE project which involved a
tightly-coupled pair of processors sharing the same memory. In this
environment, it was important to limit memory trafEc as much as
possible, and so the I-Fetch logic guarantees that some part of every
line requested from off-chip will be executed. Our simulation results
indicate that, for a single-chip processor on. its own, a certain perfor-
mance penalty is paid by using this strategy and not allowing true
prefetch from off-chip. All simulation results presented in this paper
assume that true prefetching from off-chip can be done. (I’he I-
Fetch logic does not guarantee that some part of the line requested
from off-chip will be executed.)

Our performance metric for these results is the total number of
cycles needed to execute the 150,575 instructions. Our choice of
this metric is due to the difficulty in computing an effective instmc-
tion access time when queues are involved and because the effective
access time does not necessarily indicate the impact of the interac-
tion of data and instruction requests upon performance. In the fol-
lowing graphs we plot the total number of cycles used on the verti-
cal axis of our figures and cache size in byles on the horizontal axis.

Figure 4 shows the performance of our 4 basic configurations
and of the conventional cache in the case of a non-pipelined main
memory with an access time of 1 clock cycle. (For a memory
access time of 1 clock cycle, having a pipelined memory makes no
difference.) This would correspond to a machine with a large, fast
external cache. Figure 4a is for an input bus width of 4 bytes while
in Figure 4b the bus width is 8 bytes. It is clear that the bus width
can have a dramatic impact on performanc:e for cache sizes less than
128 bytes. This effect is not unexpected if one considers that the
underlying architecture can issue one instruction per cycle and that
an instruction is 4 bytes long in these simulations. A bus only 4
bytes wide has difficulty supplying the processor with instructions
faster than they are consumed, and cannot get ahead of the issue
logic. A bus width of 8 bytes, however, allows the instructions to
arrive from memory at twice the rate they are being consumed,
thereby permitting the prefetch logic to stockpile instructions.

Looking at the curves in both graphs, an initial large perfor-
mance improvement followed by a flattening of the curves is evi-
dent. The knee of the curve corresponds to the size of most of the
inner loops of the benchmark program. In Table I, we see that half
of the inner loops fit within a 128 byte cache. The performance
improvement seen for an input bus width of 8 bytes is seen across
all parameters and becomes more dramatic as the memory access
time increases.

There are a couple of other interesting things to note in Figure
4. First, we see in Figure 4b that configurations 8-8 and 16-16 per-
form uniformly well for varying cache sizes with a bus width of 8
bytes. Thus, using a 16 or 32 byte cache with an IQ and IQB one
can achieve close to the performance of a 512 byte cache. Second,
as seen in Figure 4a. a memory access time of 1 clock cycle and a
bus width of 4 bytes is the only case for which the conventional
cache performs better than some PIPE configuration. For a memory
access time larger than 1 clock cycle, all PIPE configurations
afways perform better than the conventional cache.

ln Figure 5 we see the performance results for a bus width of 4
bytes and a bus width of 8 bytes when main memory has an access

238

t
a 28
1

21

C
Y 26

T 25

: 24

Conllgnration 32-32 Cmignmion 32-32 Cmignmion 32-32

Configdon 16-32 Configdon 16-32
---- ----

coawuioml coawuioml

calliglultion 16-16 calliglultion 16-16
----- -----

con6glwltion a-a con6glwltion 8-a
__-__--____ __-__--____

Configuration 16-32
_---

con6gunuion 8-8
____-__-__.

19
1,

‘1
. 0 0 100 100 2ixl 200 300 300 400 500 4io 500

,
600 6im

Cache Size in Bytes Cache Size in Bytes

194 0
0 100 200 300 400 500 600

Cache Size iu 3yte.s

(4 (4

F&me 4. Total execution time with varying cache sizes for a non-pipelined F&me 4. Total execution time with varying cache sizes for a non-pipelined
memory with a 1 cycle memory access time. memory with a 1 cycle memory access time.

(a) bandwidth = 4 bytes. (a) bandwidth = 4 bytes. (h) bandwidth = 8 bytes. (h) bandwidth = 8 bytes.

than 1 clock cycle, the PIPE strategy will significantly outperform
the conventional cache approach.

Figure 6 shows performance results for a system with a bus
width of 8 bytes and a memory access time of 6 cloclr cycles. Fig-
ure 6a (which is the same as Figure Sb with a different scale)
represents a non-pipelined memory and 6b represents a pipelined
memory. Comparing Figures 6a and 6b. we see that while the shape
of the curves is nearly the same, in Figure 6b the curves have sbiftcd
down and some compression has taken place. We again see that the

time of 6 clock cycles and is not pipelined. (Notice that the scale
for the total execution time axis has changed from that in Rgure 4.)
From Figure 5 we see that for small cache sizes and higher memory
access times, the PIPE configurations am less sensitive to bus width
than the conventional cache. (once the cache sixebas grown to 256
bytes, the bus width does not make a significant difference.) Simula-
tions with memory access times of 2 and 3 clock cycles showed
similar msuks. Thus, if one is forced to use a bus width of 4 bytes
due to tecbnologicaf constraints and memory access tune is greater

139
T
o 129

: 119
I

109
C
Y 99

f 89

; 19

z+ 69

1 5g

; 49

8 39

29

139-
T
o 129.

: 119.
1

109.

C
Y 99

; 89.

. .

-I-

I Comigamtioa 32-32 Configuration 32-32

Confignration 16-32

Conventional

codignration 16-32
_---

CCXlVUNiOIld

Con6guzation 16-16
----.

configuration 8-8
_____-----.

Conliguration 16-16
---*. e

S
Configuration 8-8

_______-__.

0 100 200 300 400 500 600
Cache Size in Bytes

(3)

0 100 200 300 400 500 600
Cache Size iu Bytes

(a)

Figure 5. TotsI execution time with varying cache sixes for a non-pipelined
memory with a 6 cycle memory access time.

(a) bandwidth = 4 bytes. (b) bandwidth = 8 bytes.

239

99-
T

‘: 89-

a
1 19-

C
Y 69-
C

; 59-

s

49-
*

Configuration 32-32

CoNiguration 16-32

Conventional

a
1 79

C
Y 69
C

Configuration 32-32

Confignnuion 16.32

ConventiOnal

Couliguration 16-16

Configuration 8-a
...-..-..

0 loo 200 300 400 500 600 0 100 200 300 400 SO0 600

Cache Size in Bytes Cache Size in Bytes

(4 0)

Figure. 6. Total execution time with varying cache sizes for a bus width of 8
bytes and a 6 cycle memory access time.

(a) non-pipeliaed memory. (b) pipelined memory.

PIPE configurations always do better than the conventional cache
configuration In the case of a pipelined memory, some of the PIPE
configurations perform substantially better. Figure 6 shows that the
PIPE configurations providing the best peRformance have line sizes
of 16 or 32 bytes, which is the reverse of the case shown in Figure
4. In Figure 4, a line size of 8 gave the best performance. Such a
result is not completely unexpected and is confirmed by other cache
studies [Smit82]. One thing to notice in these figures is the relative
flatness of the configurations providing the best performance. In
Figure 4b it was configurations 8-8 and 16-16. while in Figures Sb
and 6b configurations 16-16, 16-32 and 32-32 were best. Although
the performance of the conventional cache and the various PIPE
configurations converge as as cache size increases, me PIPE
configurations that perform best display a much more uniform per-
formance across all cache sizes. If we compare Figures 4, 5 and 6
we see the PIPE configuration that has a cache lime size of 16
(configuration 16-16) performs extremely well for a broad range of
cache sizes and memory access times.

From an implementation point of view, in which technology is
quickly changing, tbe results presented here are significant. Using a
combination of a relatively small cache, an IQ, and an IQB, excel-
Ient performance can be achieved with a limited number of transis-
tors. This is important when designing instruction fetch logic in
newer, substantially faster technology that does not permit high den-
sity circuitry. In addition, the same design will maintain a high
level of performance as main memory speeds improve, or as the
technology matures and higher densities become possible. The
higher densities achieved in the mature technology can be used to
expand the on-chip cache to include data or to provide mom on-chip
functionality such as multiply hardware.

It is important to remember that the I-Fetch strategy presented
here is for a subset of the actual strategy implemented on the PIPE
processor. As pointed out earlier. the actual PIPE processor has
both a 16-bit and a 32-bit instruction size, which further complicates
the I-Fetch logic. Nonetheless, the actual implementation of this
approach demonstrates its viability.

7. Summary and Conclusions

In this paper we have presented an evaluation of a set of
instruction fetch strategies appropriate for single-chip processors.
In most of today’s approaches to instruction fetch, the single-chip
processor is provided with a simple on-chip instruction cache. On a
cache miss, a request is made to the external memory for instruc-
tions and these off-chip instruction requests compete with dam
references for access to the external memory. One way to reduce
the number of off-chip instruction requests is to simply increase the
size of the on-chip cache. Increasing the instruction cache size is
not always possible, however, especially -in emerging technologies
where high circuit densities arc difficult to achieve or where ctip
area is needed to provide a certain level of functionality. We have
suggested an approach to fetching instructions that combines the use
of an instruction cache, an instruction queue, and an instruction
queue buffer, and briefly described an existing processor that
employs this approach. This approach was compared to a simple
on-chip instruction cache approach that uses an instruction pmfetch
strategy that Hii [Hill871 has detemrined ‘to provide the best pcrfor-
mance when used with a conventional cache. Our simulation results
indicate that using our approach the processor performs up to twice
as fast as a processor using the conventional cache-only approach
with a small cache size and can in fact provide performance com-
parable to larger caches. The viability of this approach is demon-
strated by its implementation in the PIPE processor chip.

8. Acknowledgements

This work was supported by National Science Foundation
Grants DCR-8604224 and CCR-870672;!. We would also like to
thank both Mark Hill and Rob Joersz for their valuable assistance.

240

9. References

[ACHA87]

[Adva87]

[B CDF87]

[GHLF’85]

[GrPa82]

[HCSS87]

[Henn841

[Hill871

[HJBG82]

[HJF’R83]

A. Agarwal, P. Chow, M. Horowitz, J. Acken. A. Salz,
and J. Hennessy, “On-chip Instruction Caches for
High Performance Processors.” Proceedings of the
Conference on Advanced Research in VLSI, Stanford,
pp. l-24, March 1987.

“Advanced Micro Devices,” AM29000 User’s
Manual (1987).

A. D. Berenbaum. B. W. Colbry, D. R. Ditzel, R. D.
FErnan, H. R. McLellan, and K. J. O’Conner,
“CRISP: A Pipelined 32-bit Microprocessor with
13k-bit of Cache Memory,” IEEE Journal of Solid
State Circuits, vol. SC-22, pp. 776782. October 1987.

J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P.
B. Schechter, and H. C. Young, “PIPE: a VLSI
Decoupled Architecture,” Proceedings of the Twelfih
Annual Symposium on Computer Architecture. pp.
20-27. June 1985.

G. F. Grohoski and J. H. Patel, “A Performance
Model for Instruction Prcfetch in Pipclined Instruc-
tion” Units,” Proceedings of the Ninth International
Symposium on Parallel Processing, pp. 248-252,
August 1982.

M. Horowitz, P. Chow. D. Stark, R.T. Simoni, A.
Salz. S. Przybylski. J. Hennessy, G. Gulak, A.
Agarwal, and J.M. Acken, “MIPS-X: A 20-MIPS
Peak, 32-bit Microprocessor with On-Chip Cache,”
IEEE Journal of Solid-State Circuits, vol. SC-22,
pp.790-799, Oct. 1987

J. HeMessy, “VLSI Processor Architecture,” IEEE
Transactions on Computers, vol. C-33, No. 12,
pp.1221-1246, Dec. 1984

M. D. Hi, Aspects of Cache Memory and Instruction
Buffer Peflormance, Doctoral Thesis, Department of
Computer Sciences, University of California, Berke-
ley, California.

J. Hennessy, N. Jouppi, F. Baskett, T. Gross and J.
Gill, “Hardware/Software Tradeoffs for Increased Per-
formance.” Symposium on Architectural Support for
Programming Languages and Operating Systems, pp.
33-54, March 1983.

J. Hermessy. N. Jouppi, S. Przybylski, C. Rowen, and
T. Gross, “Design of a High Performance VLSI Pro-
cessor,” Proceedings of the Third Caltech Conference
on VLSI, pp. 2-l I, March 1982.

[KMOM87] H. Kadota. J. Miyake, I. Okabayashi, T. Maeda, T.
Okamoto. M. Nakajima, and K. Kagawa, “A 32-bit
CMOS Microprocessor with On-Chip Cache and
TLB,” IEEE Journal of Solid-State Circuits, vol. SC-
22. pp.800-807. Oct. 1987

[McMa84] F. H. McMahon, “LLNL FORTRANS KERNELS:
MFL.OPS.” Lawrence Livermore Laboratories, Liver-
more, CA, March 1984.

paSe80]

[PlFa86]

[Radi82]

D. A. Patterson and C. H. Sequin, “Design Considera-
tions for Single-Chin Commuters of the Future.” IEEE
&ansactiow”on Co;npute&, Vol. C-29, No. 2, Febru-
ary 1980.

A. R. Pleszkun and M. K. Farrens. “An Instruction
Cache Design for use with a Delayed Branch,”
Advanced Research in VLSI: Proceedings of the
Fourth MIT Conference, April 1986.

G. Radin, “The 801 Minicomputer,” Symposium on
Architectural Support for Programming Languages
and Operating Systems,” pp. 3947, March 1982.

[RaRo77]

[Smit811

[SmGo851

[Smit82]

wocow

B. R. Rau and G. E. Rossman. “The Effect of Instruc-
tion Fetch Strategies upon the. Performance of” Pipe-
lined Instruction Units.” Proceedings of the Fourth
Annual Symposiwn on Computer Archiitecnue. pp.
80-89, June 1977.

James E. Smith, “A Study of Branch Prediction Stra-
tegies”, Proceedings of the Eighth Annual Symposium
on Computer Architecture, pp. 135-148, May 1981.

J. E. Smith and J. R. Goodman, “Instruction Cache
Replacement Policies and Organizations,” IEEE
Transactions on Computers, Vol. C-34, NO. 3, pp.
234-241, March 1985.

A. J. Smith, “Cache Memories,” ACM Computing
Surveys, Vol. 14, No. 3, September 1982.

H. C. Young and I. R. Goodman, “A Simulation
Study of Architectural Data Queues and Prepare-to-
branch” Inst~ction,” Proceedings of the IEEE tnter-
natiOnal Co@erence on Computer Design, pp. 544-
549. October 1984.

241

