
Inferring Packet Dependencies to Improve Trace Based
Simulation of On-Chip Networks

Christopher Nitta
cjnitta@ucdavis.edu

University of California, Davis
Davis, CA 95616

Kevin Macdonald
klmacdonald@ucdavis.edu
University of California, Davis

Davis, CA 95616

Matthew Farrens
farrens@cs.ucdavis.edu
University of California, Davis

Davis, CA 95616

Venkatesh Akella
akella@ucdavis.edu

University of California, Davis
Davis, CA 95616

ABSTRACT
With the advent of large scale chip-level multiprocessors, there is
a growing interest in the design and analysis of on-chip networks.
The use of full system simulation is the most accurate way to per-
form such an analysis, but unfortunately it is very slow and thus
limits design space exploration. In order to overcome this problem
researchers frequently use trace based simulation to study different
network topologies and properties, which can be done much faster.
Unfortunately, unless the traces that are used include information
about dependencies between messages (packets), trace based sim-
ulation can lead one to draw incorrect conclusions about network
performance metrics such as latency and overall execution time. In
this paper we will demonstrate the importance of including depen-
dency information in traces, as well as present an inference-based
technique for identifying and including dependencies, and show
that using these augmented traces results in much better simulation
accuracy without excessively extending simulation time.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous;
I.6.5 [Simulation And Modeling]: Model Development—Model-
ing methodologies

General Terms
Design, Performance

1. INTRODUCTION
There is a general consensus in the architecture community that

the best way (in terms of performance per watt) to harness the ben-
efits of Moore’s law is through parallelism. Consequently, from
servers to mobile phones [1], future chips will contain dozens (if
not hundreds) of processors, memories, and/or hardware accelera-
tors connected by on-chip networks. The on-chip network is a crit-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOCS ’11, May 1-4, 2011 Pittsburgh, PA, USA
Copyright 2011 ACM 978-1-4503-0720-8 ...$10.00.

ical component of the chip, as it constitutes a significant fraction
of the area and power consumed. As a result, a “one-size-fits-all”
approach is not appropriate for designing on-chip networks - a thor-
ough exploration of the design space is required. For example, the
amount of heterogeneity, buffer sizes, number of virtual channels,
topology of the network, arbitration and flow control schemes can
all be optimized for a given application or market segment. The
most accurate way to evaluate potential on-chip network designs
is through the use of full system simulation, using a real operating
system running real applications. In order to compare two differ-
ent network designs, for example, a set of full system simulations
should be run for each configuration - doing so will give the best
measure of how the designs compare. Unfortunately, full system
simulation is very slow - the execution time can grow quadrati-
cally with increased node counts, preventing researchers from do-
ing full system simulations with a large number of nodes. In our
review of the current literature we found that only one study fea-
tured full-system simulations with as many as 32 nodes [2], one
used 24 nodes [3], and the majority restricted their simulations to
16 nodes or less [4–8].

One commonly used method for circumventing this problem is to
use a full system simulator to extract a record of network activity (a
trace), and feed it into a trace-based simulator in order to evaluate
various network configurations. Trace based simulations run much
faster than full system simulations, and are widely used [9–17].
Unfortunately, these traces only include information about the or-
der of and time between packet transmissions - in real systems there
are dependencies between packets as well (some outgoing packets
cannot be generated until incoming data has been received, for ex-
ample). These dependencies are analogous to data dependencies in
pipelined processors, and we will refer to them as reception depen-
dencies.

While a trace from a given full-system simulation will implic-
itly include the reception dependencies for that particular network
configuration, the whole purpose of network simulation is to be
able to vary network parameters and evaluate the results - to look
at different topologies, arbitration schemes, flow control mecha-
nisms, buffer sizes, etc. The absence of explicit information about
reception dependencies means that packets are often injected into
the network by the simulator at a higher rate than would occur in a
real system, because the simulator does not know it needs to wait
for certain events to occur. The ramification of this unrealistically
high packet injection rate is that measured latencies can climb dra-
matically for the network being analyzed, since many messages
are spending an artificially large amount of time sitting in network

buffers. Thus, drawing any meaningful conclusion about system
parameters (such as overall speedup or ideal buffer size) based on
these results is exceedingly difficult, if not impossible.1

Unfortunately, many studies that use dependency-free traces in-
clude results relating to network speedup [9, 10, 12], normalized
execution time [11], or network latency [13–16]. In this paper we
will show that one has to be very careful when making predictions
about the performance of on-chip networks based on the results of
trace-driven simulations.

In order to increase the accuracy of trace-based simulation we
have developed a technique that allows us to add dependency in-
formation to traces, which we accomplish by inferring dependency
information based on a series of full-system runs using different
latencies. Using these augmented traces allows one to gain further
insight into the true behavior of on-chip networks, provides more
accurate results, and can help guide real on-chip network system
design.

The rest of the paper is organized as follows. In Section 2 we pro-
vide motivation for this work by providing a simple demonstration
of the disparities that can occur between full system simulations
and trace based simulations. We discuss related works from the lit-
erature in Section 3. In Section 4 we present a formal model for
representing dependency information in a trace, and describe our
algorithm for automated dependency inference, called PDG_GEN.
Section 5 presents the validation methodology and experimental re-
sults.

2. MOTIVATION
We will illustrate the pitfalls of using trace-based-simulation with-

out packet dependency information by comparing the full-system
simulation results (which is the true indicator of performance) with
the output of a trace-based simulation, where the traces are gener-
ated from a network topology different from the one being simu-
lated. We used Simics 3.0 [18] and GEMS 2.1.1 [19] for the exper-
iment.

First we modified Garnet [20] (which is the network simulator
inside GEMS) to generate a trace consisting of all messages that
enter and exit the network. We then configured Simics to model
a 16 core processor with a fully connected single cycle network,
and ran a 1 million point FFT benchmark. Once we had the trace
generated by the Simics FFT simulation, we used Garnet to run a
network-only simulation in which each message was injected into
the network at the timestamp specified in the trace. The results
of this simulation matched the Simics results, which is what we
would expect; given the same network configuration and the same
messages injected at the same times, the network’s behavior should
match the actual Simics simulation. We then used the same trace to
re-run the network-only simulation on three different topologies: a
torus, a mesh, and a ring. The results of these trace-based simula-
tions are shown as the lighter bars in Figure 1.

As Figure 1(a) shows, the execution times for the trace-based
simulations hardly change for different topologies, because each
message is always injected into the network at a fixed time. Fig-
ure 1(b) shows that network latency is not affected until the trace
is run on a network with a low enough bandwidth that congestion
begins to occur. Basically, a trace by itself represents the packet in-
jection distribution for the specific network configuration on which
the trace was collected. When it is used on a different network con-

1Simulating a trace taken from a slower network on a higher per-
forming network is also a problem, because it may not show the
simulated networks true potential since packets are injected at a
lower rate than they would be in a real system.

60

80

100

120

140

160

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s) Simics

Trace

0

20

40

60

80

100

120

140

160

fcn torus mesh fattree ring

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s) Simics

Trace

(a) Execution Time

60

80

100

120

140

A
v

e
ra

g
e

 L
a

te
n

cy
 (

cy
cl

e
s)

Simics

Trace

0

20

40

60

80

100

120

140

fcn torus mesh fattree ring

A
v

e
ra

g
e

 L
a

te
n

cy
 (

cy
cl

e
s)

Simics

Trace

(b) Average Network Latency

Figure 1: 1M point FFT execution time (a) and average net-
work latency (b) for Simics full system simulation and trace-
based network simulation

figuration, it no longer represents the actual packet injection distri-
bution for the application and hence could yield erroneous results.
If the trace had knowledge of the inherent packet dependencies in
the application, then the packet injection would be closer to what
actually happens on a given network configuration, and the simula-
tion results would be more meaningful and reliable.

3. RELATED WORK
The relevant related work can be classified into three broad cate-

gories - software based functional/timing simulation, FPGA based
emulation of either the functional or the timing model (or both), and
high-level workload modeling using statistical techniques. Book-
Sim 2.0 [21] is one of the first and most basic network-on-chip
simulators. It does not use traces from real applications, but in-
stead uses synthetic traffic to predict the average latency of a net-
work. Garnet [20] is the successor to BookSim, and it incorporates
detailed timing and power models. In its stand-alone configuration
it also uses traces without any dependency information, so it suffers
from the pitfalls described above.

Simics [18] is a commercial tool (recently acquired by Intel) that
allows full-system functional simulation. However, as the bench-
marking data in [22] shows, it is very slow and does not scale
beyond approximately 16 cores. Furthermore, it does not have any
support for modeling on-chip networks and lacks a timing model
for the underlying architecture of the network. GEMS [19] pro-
vides a timing model and network model on top of Simics, making
it one of the most widely used simulators in the architecture com-
munity today. However, since it runs on top of Simics, it is (obvi-
ously) even slower and less scalable, and unsuitable for fast design
space exploration. Graphite [23] is a recent effort from MIT to
take advantage of multiple machines to accelerate functional sim-
ulation of as many as 1024 cores. However, Graphite does not
maintain strict ordering of events in the system, and as a result it
is unsuitable for evaluating on-chip networks (a point the authors
themselves mention in their paper.)

Hestness et. al [30] recognize the necessity for dependency in-
formation within traces, and propose a technique for inferring de-
pendencies based upon the ordering of memory references from a
single full system simulation.

In parallel with these developments, in the design automation
community (where fast design space exploration and application-
specific customization of networks is important) researchers are ex-
ploring the possibilities of high-level network traffic models [24].
Marculescu [25] was the first to propose a mathematical character-
ization of node to node traffic for the MPEG-2 application. Sote-
riou et. al [26] generalized this to a comprehensive network traffic
model based on hop-count, burstiness and packet injection distri-

butions. Gratz and Keckler [27] provide a detailed analysis of why
existing approaches to simulation are not appropriate, and make a
case for realistic workload characterization that includes the tem-
poral and spatial imbalances in network traffic distribution. Their
work supports the central argument in this paper, which is that ne-
glecting to properly model packet injection rate leads to substan-
tial inaccuracies. The solution advocated by Gratz and Keckler is
to provide synthetic traffic models enhanced by the network traf-
fic characteristics, while we propose the creation of traces from
full-system simulation that are augmented with a model for packet
injection that is application specific.

4. MODELS AND ALGORITHM
There are two ways of capturing packet dependencies - a top-

down approach which instruments the source code of the applica-
tion to record dependency information during a full-system run, or
a bottom-up approach which infers the dependencies. We feel the
latter is the better approach for a number of reasons. The source
code of applications is frequently unavailable, for example, espe-
cially if a system has hard IP blocks. In addition, a detailed knowl-
edge of the source code is required in order to instrument it cor-
rectly. An inference based approach is more practical, although it
will not be quite as accurate as the top-down approach.

Problem Formulation
Our goal is to generate a packet dependency graph (PDG) for an ap-
plication. To do this, we assume a computing system with N nodes
(processors), and that the application has already been partitioned
to fit on the N nodes. The generation of the PDG is a onetime ac-
tivity for a given application and partition, and these PDGs will be
used to design and optimize on-chip networks just like SPEC, PAR-
SEC, and EEMBC benchmarks are used today to explore processor
and memory configurations. Thus, the generation of the PDG will
require an investment of time and computing resources equal to
that required by full-system simulation, but the use of the PDGs
will be on trace-based simulators, and will therefore be much less
resource-intensive.

We use a two-step approach, which consists of a sampling step
followed by the use of an inference heuristic to infer the PDG from
the samples generated in the first step. Sampling involves running
a number (m) of full system simulations, where m≥ 1.

There are several important questions that must be addressed -
for example, what network topology and parameters/conditions are
used to generate the samples? How many samples are needed?
How does one validate that the inferred PDG is correct? We start by
describing a formal model for a PDG, then describe the heuristics
we use with an example. In the next section, detailed results and
metrics are discussed.

Abstract Model
A trace is defined as a time-ordered list of events. An event Ei is a
4-tuple < Ti,Li,Ri,Pi >, where i is the entry number in the list, Ti
is the time stamp of the global clock, Li is the local node, Ri is the
remote node, and Pi is the unique packet ID. If Li is the sender of
the packet and Ri is the receiver of the packet, then Ei is a transmit
event. Each transmit event results in one or more receive events.
For example, the transmit event, Ei =< Ti,Li,Ri,Pi > results in a
receive event at node E j =< Tj,Ri,Li,Pi >, where Tj is the clock
cycle at which the packet is received by node Ri. Note that Tj−Ti
is the network latency for the packet Pi. Each transmit event Ei can

be modeled as a complex gate C 2 with t ≥ 1 inputs. This set of t
inputs is defined as the dependency set for Ei, which implies event
Ei happens after all the t inputs have arrived, and some delay Di
has elapsed. (The dependency set is primarily the set of reception
dependencies, although a transmit can depend upon the previous
transmit or the start of the simulation.)

A transmit event is modeled by the firing of the complex gate
C. The intrinsic delay Di is used to model the computation or pro-
cessing delay required before producing the data being transmit-
ted. We will exploit this property when developing the algorithm
PDG_GEN (described below) to infer dependencies. A PDG which
models the on-chip network is an interconnection of these gates.
Network latency is modeled as the propagation (or wiring) delay
between the output of one gate and the input of another gate.

Transmit event Ei in node Ni generally depends on "some" trans-
mit events in other nodes N j, where j 6= i. These events form the
reception dependency set for the event Ei. Thus the task of inferring
the PDG boils down to determining the reception dependency set,
and an estimate of the intrinsic delay Di, for each transmit event Ei
in the trace.

To determine the reception dependency set for each event, we
first need to ensure that causality is not violated, since a given trans-
mit event cannot depend on a transmit event that is going to happen
in the future (in other words, Ei cannot depend on any event E j
where Tj ≥ Ti.) Hence, we need at least one trace that is generated
on a network that exposes causality of events. We can accomplish
this by modeling it as a network of gates with zero wire delay. Such
a network is called speed-independent in asynchronous logic liter-
ature. A speed-independent network can be emulated using a fully
connected topology with single cycle latency and infinite receive
buffers, so there is no delay due to routing, arbitration, switching,
or flow control. Thus any delay observed can be attributed solely
to the computation or processing delay. We use a trace generated
on such a network as the initial base trace.

PDG_GEN Algorithm
In general, for a given transmit event Ei, any event at that node that
has occurred before Ti could be in its dependency set. This is a
problem, since there are usually millions of packets in a trace. In
order to deal with this we make two simplifying assumptions - that
transmit events in a given node are ordered, and that a given trans-
mit can only depend on the packets received in a window of time
since the k previous transmits at that particular node. For example,
if k=1, it means that a transmit can only depend on packets that
have arrived since the previous transmit event at the same node; if
k=2, a transmit can only depend on packets that have arrived since
the transmit event before the most recent one.

In addition to the base trace, m other traces are created by par-
titioning the nodes into m sets such that pairs of nodes with the
most communication between them are put in different sets. The
m additional traces are generated using networks with skewed link
latencies, such that the outgoing links of the nodes in one of the m
partitions has high latency, while the remaining links have a latency
of one.

The highly skewed latencies in the partitioned network config-
urations serve to expose the dependencies between packets, since
some packets will be delayed while waiting for dependent pack-
ets arriving on slower links, while others with no dependencies on
packets from slower links will not. The PDG_GEN algorithm has
3 steps:
2The analogy with a Muller C element in asynchronous logic is
intentional as it helps us define parameters such as network latency
more intuitively and accurately

Table 1: Trace Fragment - TX denotes transmit event and RX
denotes a receive event. For simplicity only the time is shown,
the rest of the details of the packet are omitted

TX RX RX RX RX
Sample # T13 T6 T7 T8 T9

1 1000 900 950 980 990
2 1050 1020 1000 1030 1100
3 1100 1045 1050 1075 1095

STEP 1: For each transmit event Ei, add all the receive events
within the window of W to the set of potential receive dependen-
cies, Si.
STEP 2: Remove all receive events from Si that violate causality,
i.e. arrive after the transmit event Ei, in any of the m traces.
STEP 3: Find the computation time (Di) associated with the trans-
mit event Ei.

The computation time associated with a transmit event is cal-
culated as follows: The initial computation delay for each event
is computed using the base trace. Let Ei =< Ti,Li,Ri,Pi > be a
transmit event in node (or processor) Li. Recall that this event will
happen in cycle Ti after all the packets in its reception dependency
set have arrived. Let Tj be the clock cycle at which the last member
of the reception dependency set arrives. The initial computation
delay D j is then calculated as Ti−Tj. We define two properties:

Property 1: If node N transmits a packet Pi at time Ti and if the
initial computation delay as computed above is Di, then any packet
received by node N at time Tj > Ti−Di cannot be a reception de-
pendency for Pi.

Property 2: If node N transmits packet Pi at time Ti, and Pi’s
computation time is Di, then any packet received by n at time Tj <
Ti−Di cannot be Pi’s last reception dependency.

These properties are used to prune the set of possible dependen-
cies as follows. The last reception dependency for each packet is
found in each of the m traces, and if it violates Property 1 in any
trace, it is removed from the set Si. If any of the elements in Si
violate Property 2, it means that the estimated computation time
Di was too small, so the corresponding reception dependency is re-
moved from Si. This process continues until no pruning occurs for
an entire iteration of all the traces.

Note that the choice of m is up to the developer of the PDGs. A
small value of m will require a lower upfront investment in terms
of simulation time, because m+1 is the number of full system sim-
ulations that are needed. However, it will also lead to less accurate
results, since it might not be possible to expose many packet de-
pendencies.

PDG_GEN Example
The following is an example of how we determine the computa-
tional delay and reception dependency set for a given packet. Ta-
ble 1 gives the transmission and reception times for a packet (P13)
in three different traces. STEP 1 of the algorithm would result in
adding events E6, E7, E8, and E9 as potential reception dependen-
cies for packet P13. In STEP 2 of the algorithm any events that
violate causality will be removed - in this example, E9 will be re-
moved from the reception dependency set since it arrives after the
transmission of P13 in trace sample 2.

In STEP 3, the computational delay is estimated first, which
in this case is 20 (E8 is the last in the set to be received before
transmission of P13 in the first trace). Next, Properties 1 and 2 are
used to iteratively prune the set of initial dependencies generated
in STEP 1. At this point Property 1 holds - however, trace sample

Node A Node B Node C Node D

T1

R1

T6

R6

T3

R3

T7

R7

T4

R4

T5

R5

T2

R2

T
im

e

TX

RX

Dependency

Receive X

Transmit X

Packet

Legend

Figure 2: Space-Time Diagram to Illustrate Quasi-
dependencies

3 violates Property 2, because the computational delay exhibited in
trace sample 3 is 25 (E8 is received 25 before transmission of P13).
Therefore, E8 is removed from the reception dependency set. The
third step repeats by calculating the new computational delay, now
estimated to be 50 (E7 is received at 950). Property 1 does not hold
now, since event E6 occurs within the window of the transmission
of P13 and 50 before that in trace sample 2. E6 is removed from the
dependency set, and at this point all Properties hold for the third
step for all traces. Thus the PDG_GEN algorithm will indicate P13
is dependent upon only E7, with a computational delay of 50.

5. METHODOLOGY AND RESULTS

5.1 Validation
In the previous section, we described how a PDG is generated

for a given application mapped to N processors. In this section we
describe a methodology to validate the proposed approach.

We validate our approach by comparing a reference PDG to the
PDG inferred by the PDG_GEN heuristic. Since reference PDGs
do not exist for benchmarks such as SPLASH or PARSEC, we cre-
ated our own set of reference PDGs using a traffic generator which
takes a wide range of user selectable parameters as inputs, and gen-
erates traffic based on well-known synthetic traffic models for on-
chip networks. Next we created m trace samples by simulating
the PDG on a modified version of Garnet that tracks dependencies,
and fed them into PDG_GEN to create PDG

′
. We then compared

PDG
′

to PDG to see how many dependencies were missed, as well
as the number of additional "quasi-dependencies" that were added
(we define quasi-dependencies as packets that are classified as de-
pendencies in PDG

′
, but are not explicitly stated as dependencies in

PDG.) We also compared the execution time for PDG and PDG
′
,

as well as the average network latency predicted from PDG′ to the
average network latency in PDG, when the two PDGs were simu-
lated on the modified Garnet.

Figure 2 illustrates the two types of quasi-dependencies. In this
figure packet 7 is actually dependent on packet 6, while packets
2 and 5 are quasi-dependencies. The PDG_GEN algorithm will
identify packets 2 and 5 as dependencies since the partitioning is
unlikely to be able to make either packet violate causality. For ex-
ample, a trace generated with Node A using slow outbound links
will also slow delivery of packet 4 and hence delay packet 6, and
slowing Node B in a partitioning will further exacerbate the prob-
lem. Fortunately, regardless of topology, packet 2 is highly unlikely
to ever be the last dependency met since it is sent before packet 4.
However, quasi-dependencies of the form of packet 5 are of greater
concern, since it is possible that for some topology packet 5 will be

2

2.5

3

3.5

4

4.5
N

o
rm

a
li

ze
d

 D
e

p
e

n
d

e
n

ci
e

s
F

o
u

n
d

true deps

quasi-deps

38.74

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

rand tree central ball nn tor inv trans hot ned

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d

Traffic Pattern

true deps

quasi-deps

38.74

Figure 3: Comparison of true and quasi-dependencies for the
various traffic patterns (normalized to number of depencies
present in the reference PDGs)

0.6

0.8

1

1.2

1.4

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Stripped PDG

0

0.2

0.4

0.6

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Traffic Pattern

Stripped PDG

Original PDG

Inferred PDG

(a) 8x8 Mesh

0.6

0.8

1

1.2

1.4

N
o

r
m

a
li

z
e

d
E

x
e

c
u

t
io

n
 T

im
e

0

0.2

0.4

0.6

N
o

r
m

a
li

z
e

d
E

x
e

c
u

t
io

n
 T

im
e

Traffic Pattern

(b) 3 Level FatTree

Figure 4: Normalized Execution Time for different traffic pat-
terns for Stripped PDG, Reference PDG and Inferred PDG on
8x8 mesh (a) and 3 level FatTree (b) networks

received after packet 6 (the true dependency). Property 1 and Prop-
erty 2 used in the PDG_GEN algorithm are more likely to prune
packet 5 from the set of reception dependencies than packet 2, thus
reducing the potential impact on predicted execution time.

The reference PDGs were created for the following traffic pat-
terns - uniform random (rand), nearest neighbor (nn), tornado (tor),
transpose (trans), bit inverse (inv), hotspot (hot), and NED [28].
We also used three additional traffic patterns - ball, central and tree
for further stress testing. The ball pattern simulates a selectable
number of tokens that are randomly sent to the next node based
on NED (modeling passing a beach ball in a crowd). The central
pattern simulates a central or hotspot node that receives requests
and responds to the source node (designed to model a central mem-
ory controller or a master node). The tree pattern models a barrier
synchronization, whose performance is critical in many parallel ap-
plications.

Figure 3 shows that PDG_GEN discovers almost all of the true
dependencies for most of the traffic patterns. With the exception of
ball, PDG_GEN also finds a large number of quasi-dependencies,
but we will next show that they have little impact on execution time
and network latency.

Execution time and average network latency are other important
metrics to evaluate the accuracy of the inferred PDGs. To perform
this analysis, we created reference PDGs of 1M packets for a 64

0.8

1

1.2

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 P

a
ck

e
t

La
te

n
cy

Stripped PDG

93.75 579.50 55.86

0

0.2

0.4

0.6

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 P

a
ck

e
t

La
te

n
cy

Traffic Pattern

Stripped PDG

Original PDG

Inferred PDG

(a) 8x8 Mesh

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 P

a
ck

e
t

La
te

n
cy

21.09 846.06 44.22

0

0.2

0.4

0.6

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 P

a
ck

e
t

La
te

n
cy

Traffic Pattern

(b) 3 Level FatTree

Figure 5: Normalized Latency for different traffic patterns for
Stripped PDG, Reference PDG and Inferred PDG on 8x8 mesh
(a) and 3 level FatTree (b) networks

1.5

2

2.5

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d

0

0.5

1

0 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d

Number of Partitions (m)

True-Deps

Quasi-Deps

Figure 6: Accuracy vs. Number of Partitions

node system. We ran our algorithm with k=1 and m=4 to gener-
ate the inferred PDGs. The reference and inferred PDGs were then
simulated on an 8x8 mesh with two virtual channels. We compared
the total execution time (shown in Figure 4(a)) and average packet
latency (shown in 5(a)) of the inferred PDG and the reference PDG.
We also compared the inferred PDG performance to that of traces
with all dependencies removed, which are referred to as Stripped
PDGs. In the figures, the execution times and average packet la-
tencies are normalized to the original PDG, and they show that on
average the execution times of the inferred PDGs were within 3%
of the reference PDGs.

Figures 4(b) and 5(b) show the same PDGs running on a 3 level
FatTree network. The average difference of execution time between
the inferred and reference PDGs in this case was 1.5%, while the
execution time of the stripped PDGs varied widely between differ-
ent traffic patterns (for both the mesh and the FatTree) - a further
demonstration of the importance of augmenting the traces with de-
pendency information. The largest discrepancy in execution time
for the inferred PDG was 13.1%, seen in the tree traffic pattern.
This may seem large, but it pales in comparison to the Stripped
PDG, which exhibited a 94.8% difference.

5.2 Sensitivity Analysis
Figure 6 shows the performance of PDG_GEN for different val-

ues of m (the number of sample traces used to generate the inferred

5

6

7

8

9

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d
True-Deps

Quasi-Deps

0

1

2

3

4

1 2 3 4 5

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d

Static Window Size (w)

(a) Static

5

6

7

8

9

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d

True-Deps

Quasi-Deps

0

1

2

3

4

1 2 3

N
o

rm
a

li
ze

d
 D

e
p

e
n

d
e

n
ci

e
s

F
o

u
n

d
Dynamic Window Size (k)

(b) Dynamic

Figure 7: Effect of Window Size on Accuracy for NED traffic
pattern on 128 nodes with Static ((a)) and Dynamic ((b)) Win-
dow Sizes. Data is normalized to the number of true dependen-
cies in the reference PDG for the NED traffic pattern

PDG.) Notice that even for relatively small values of m, there are
very few missed true dependencies. The biggest impact of using a
larger value of m is that it lowers the number of quasi-dependencies
detected, and the quasi-dependencies do not appear to have a signif-
icant impact on execution time or average latency. This is encour-
aging, because it means that a small number of full system sim-
ulations will be necessary to generate the PDGs, even for a large
number of nodes. This ensures that the proposed approach is scal-
able, which is one of the goals of the work.

Figure 7(a) shows the performance of PDG_GEN on a system
with 128 nodes using a NED traffic pattern and m=8. In this figure
only w previous packets are examined when inferring dependen-
cies. The results show that as the window size grows the number
of true dependencies detected increases, but the number of quasi-
dependencies increases even faster. Figure 7(b) shows the results
for the same setup using various dynamic window sizes, where all
received packets since the k previous transmits are considered. The
results are normalized to the number of true dependencies in the
reference PDG, and they show that using a dynamic window of
k=1 tends to perform well due to its adaptive nature. The figure also
shows that increasing k does not dramatically improve the detection
of true dependencies, but does dramatically increase the number of
quasi-dependencies detected.

5.3 PDG Results for Shared Memory Bench-
marks

By using the simulation setup described in Section 2, we were
able to acquire traces from real shared memory benchmarks run-
ning on Simics for use with the PDG algorithm. We ran Simics sim-
ulations in a 16 core configuration for FFT, LU, and CHOLESKY
from the SPLASH 2 benchmark suite (other benchmarks from the
suite were omitted due to lack of adequate simulation resources).
We chose to use m=4 and k=1, which Figures 6 and 7 indicate will
yield a good tradeoff between accuracy and required simulation
overhead.

The traces obtained from the Simics simulations cannot be di-
rectly used by the PDG_GEN algorithm because the packets (or
messages) in each of the m runs of the simulator are not identical.
This is due to the fact that the traffic in shared memory systems con-
sists of coherence messages generated by cache misses, and con-

6

8

10

12

14

16

18

20

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s) Simics

PDG

Timestamp

0

2

4

6

8

10

12

14

16

18

20

fcn torus mesh fattree ring

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s) Simics

PDG

Timestamp

(a) Execution Time

60

80

100

120

140

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

a
te

n
cy

 (
cy

cl
e

s) Simics

PDG

Timestamp

0

20

40

60

80

100

120

140

fcn torus mesh fattree ring

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

a
te

n
cy

 (
cy

cl
e

s) Simics

PDG

Timestamp

(b) Average Network Latency

Figure 8: 64K point FFT execution time (a) and Average Net-
work Latency (b) for Simics full system simulation and PDG
trace-based network simulation

flicts resulting from each processor making requests to read/write
memory locations in the shared address space. Each trace will be
of a different length due to a slightly different sequence of coher-
ence events occurring when a given processor-to-directory latency
is higher or lower than it was originally.

We addressed this issue by developing a matching algorithm that
correlates the messages that correspond to each other across all
traces. Most of the matching can be done by using only the mes-
sage contents (source, destination, memory address reference, co-
herence message type, etc.). Any messages that are not matched
across all the traces cannot remain in the trace as-is, because the
PDG_GEN algorithm requires each trace to consist of identical
messages. However, if only the successfully matched messages
are used, the overall traffic volume will be lower, thus changing the
trace’s impact on the network it is injected into. In order to keep the
volume of traffic consistent, we "fill out" the traces with messages
that are in the base trace but unmatched, by inserting the messages
into the traces that are missing them. The base trace was chosen
as the comparison since it represents the theoretical ideal (the base
trace should be closest to the true data dependencies).

After running the matching algorithm on the Simics traces, we
ran the PDG_GEN algorithm on them and generated PDG traces
for each benchmark. The PDG traces corresponding to each bench-
mark were simulated on a modified version of Garnet, using var-
ious network topologies; these results were then compared with
the results of Simics simulations on the same topologies. Figure 8
shows the execution times and average network latencies for Sim-
ics, PDG, and basic timestamp simulations for a 64K point FFT
on various topologies. Figures 9 and 10 show results for 256x256
LU and CHOLESKY with TK14.O input, respectively. The PDG
trace averaged 11.4%, 23.4%, and 5.2% error in execution time
and 0.16%, 0.34%, and 1.3% error in average network latency for
FFT, LU, and CHOLESKY, respectively. On average across all the
benchmarks, the PDG was 2.5 times more accurate than the basic
timestamp for execution time and 5.7 times more accurate for la-
tency. The PDG was the least accurate on the LU benchmark, a
problem that most likely could be remedied through increasing the
number of samples (m) used by PDG_GEN. These results show that
the PDG_GEN algorithm can be applied to real world benchmarks
that are commonly employed by researchers today.

5.4 Discussion
Several questions may have come to the reader’s mind regarding

this approach. For example, isn’t running m full system simula-
tions increasing the amount of work? Is a gate level model neces-
sary? Are there other approaches to solving this problem, and if
so, why was this one chosen? Can taint analysis techniques from
the security field be used to infer packet dependencies? Is the static

6

8

10

12

14

16

18

20
E

x
e

cu
ti

o
n

 T
im

e
 (

m
il

li
o

n
s

o
f

cy
cl

e
s) Simics

PDG

Timestamp

0

2

4

6

8

10

12

14

16

18

20

fcn torus mesh fattree ring

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s) Simics

PDG

Timestamp

(a) Execution Time

60

80

100

120

140

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

a
te

n
cy

 (
cy

cl
e

s) Simics

PDG

Timestamp

0

20

40

60

80

100

120

140

fcn torus mesh fattree ring

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

a
te

n
cy

 (
cy

cl
e

s) Simics

PDG

Timestamp

(b) Average Network Latency

Figure 9: 256x256 LU execution time (a) and Average Network
Latency (b) for Simics full system simulation and PDG trace-
based network simulation

6

8

10

12

14

16

18

20

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s)

Simics

PDG

Timestamp

0

2

4

6

8

10

12

14

16

18

20

fcn torus mesh fattree ring

E
x

e
cu

ti
o

n
 T

im
e

 (
m

il
li

o
n

s
o

f
cy

cl
e

s)

Simics

PDG

Timestamp

(a) Execution Time

30

40

50

60

70

80

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

a
te

n
cy

 (
cy

cl
e

s) Simics

PDG

Timestamp

0

10

20

30

40

50

60

70

80

fcn torus mesh fattree ring

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

a
te

n
cy

 (
cy

cl
e

s) Simics

PDG

Timestamp

(b) Average Network Latency

Figure 10: TK14.O CHOLESKY execution time (a) and Aver-
age Network Latency (b) for Simics full system simulation and
PDG trace-based network simulation. (Note: Simics simulation
errors forced us to use lower link latencies for fattree and ring
for the CHOLESKY experiments)

application partitioning in the full system simulation a limitation
due to this approach? Why does the heuristic perform poorly on
the hotspot traffic based reference PDG? Here we will attempt to
address these questions.

It is likely that the m full system simulations will require a sub-
stantial amount of work on useful (long) benchmarks, but the sim-
ulations only have to be performed once - the inferred PDG derived
from the full system runs will be used for future NoC exploration.
In addition, the required full system simulations will be run on fully
connected networks, and therefore will execute somewhat faster
than more complex multi-hop networks.

There are other approaches to developing the PDG from full sys-
tem simulations. While modifying the full system simulator to
produce the packet dependencies may seem to be the most intu-
itive approach, there are many pitfalls that would need to be ad-
dressed. Tracking dependencies within an application would re-
quire not only modification of the full system simulator, but also the
application source code as well. This fact alone may make the mod-
ified simulator approach infeasible, since source code is not always
available for both the applications and the full system simulators.
Furthermore the tracking of the dependencies within the simulator
becomes so cumbersome that this approach is unrealistic. Unlike
taint tracking, commonly used in security [29] which requires only
a logical or of the taint tag bit, dependency tracking requires cre-
ating list unions for each operation. Consequently, a taint tracking
approach would be unpractical for any application that executes for
a reasonable length of time. In addition "taint explosion" would
result in unwieldy dependency lists for most memory locations.

Recall that the PDG is generated for a given application map-
ping. Clearly, if the application mapping changes, a new PDG
has to be generated. However, this limitation is shared by all trace

based simulation techniques, and we consider it a fair tradeoff for
the potential gains in simulation speed and accuracy.

The PDG_GEN algorithm performs poorly on the hotspot and
central traffic patterns since many packets are sent to a hotspot
node, and few are transmitted from it to the other nodes. This re-
sults in the high rate of quasi-dependencies (for hotspot), as well
as the low detection rate of the true dependencies. The way we
partition the m runs (all outgoing links from a node are slowed, for
example) does not help to expose the true dependencies in this case,
and a method that marks only some outgoing links of a particular
node as slow may provide for more accurate results.

6. CONCLUSION AND FUTURE WORK
In this paper we have shown that using network traces which

have only total ordering information to predict system level per-
formance (such as execution time or network latency) can lead to
erroneous conclusions, because in a real system there are reception
dependencies between packets - i.e., some packets cannot be sent
until some other packets have been received. We have presented a
methodology to infer PDGs from traces that can be used for future
design space exploration. The proposed PDG_GEN algorithm has
been shown to accurately detect the true dependencies over a wide
range of traffic patterns.

The number of quasi-dependencies detected by the current im-
plementation of the PDG_GEN algorithm has limited impact on the
execution time or average latency of the inferred PDG, but they do
increase the time necessary to perform the simulation. An investi-
gation into techniques to reduce the number of quasi-dependencies
should be completed in the future. Different partitioning schemes,
as discussed in the previous section, may also be useful in reducing
the number of quasi-dependencies and may increase the detection
of true dependencies. In addition, the matching algorithm that we
use to correlate messages between shared memory traces has room
for improvement. It may be possible to identify sections of each
trace that correlate well, and in some way account for the sections
of each trace in which memory access and coherence events played
out differently. We plan to address these and other issues in the
future.

Despite the shortcomings of the matching algorithm, our exper-
iments show that inferred PDGs can predict execution time for ap-
plications running on shared memory systems with an average er-
ror of 13.4% (2.5 times more accurate than trace based simulation
without dependencies). We expect our approach to yield even more
accurate results for message passing systems, where there is no
layer of indirection caused by cache coherence protocols. We plan
to investigate the application of this approach to message passing
systems in the future.

7. REFERENCES
[1] C. H. van Berkel, “Multi-core for mobile phones,” in DATE,

2009, pp. 1260–1265.
[2] A. Adriahantenaina et al., “Spin: A scalable, packet

switched, on-chip micro-network,” in DATE ’03:
Proceedings of the conference on Design, Automation and
Test in Europe. Washington, DC, USA: IEEE Computer
Society, 2003, p. 20070.

[3] A. Pullini et al., “Fault tolerance overhead in
network-on-chip flow control schemes,” in SBCCI ’05:
Proceedings of the 18th annual symposium on Integrated
circuits and system design. New York, NY, USA: ACM,
2005, pp. 224–229.

[4] P. Abad, V. Puente, and J.-A. Gregorio, “Mrr: Enabling fully
adaptive multicast routing for cmp interconnection
networks,” in High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposium on,
Feb. 2009, pp. 355–366.

[5] P. Abad et al., “Rotary router: an efficient architecture for
cmp interconnection networks,” in ISCA ’07: Proceedings of
the 34th annual international symposium on Computer
architecture. New York, NY, USA: ACM, 2007, pp.
116–125.

[6] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti,
“Circuit-switched coherence,” in NOCS ’08: Proceedings of
the Second ACM/IEEE International Symposium on
Networks-on-Chip. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 193–202.

[7] N. D. Enright Jerger, L.-S. Peh, and M. H. Lipasti, “Virtual
tree coherence: Leveraging regions and in-network multicast
trees for scalable cache coherence,” in MICRO ’08:
Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 35–46.

[8] N. E. Jerger, D. Vantrease, and M. Lipasti, “An evaluation of
server consolidation workloads for multi-core designs,” in
IISWC ’07: Proceedings of the 2007 IEEE 10th International
Symposium on Workload Characterization. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 47–56.

[9] D. Vantrease et al., “Corona: System implications of
emerging nanophotonic technology,” in ISCA ’08:
Proceedings of the 35th International Symposium on
Computer Architecture. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 153–164.

[10] G. Hendry et al., “Analysis of photonic networks for a chip
multiprocessor using scientific applications,”
Networks-on-Chip, International Symposium on, vol. 0, pp.
104–113, 2009.

[11] Y. Pan et al., “Firefly: illuminating future network-on-chip
with nanophotonics,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 429–440, 2009.

[12] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi,
“Phastlane: a rapid transit optical routing network,”
SIGARCH Comput. Archit. News, vol. 37, no. 3, pp.
441–450, 2009.

[13] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache
coherence,” in MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
321–332.

[14] J. Kim et al., “A novel dimensionally-decomposed router for
on-chip communication in 3d architectures,” SIGARCH
Comput. Archit. News, vol. 35, no. 2, pp. 138–149, 2007.

[15] D. Park et al., “Design of a dynamic priority-based fast path
architecture for on-chip interconnects,” in HOTI ’07:
Proceedings of the 15th Annual IEEE Symposium on
High-Performance Interconnects. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 15–20.

[16] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual circuit tree
multicasting: A case for on-chip hardware multicast
support,” SIGARCH Comput. Archit. News, vol. 36, no. 3, pp.
229–240, 2008.

[17] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly
topology for on-chip networks,” Microarchitecture,
IEEE/ACM International Symposium on, vol. 0, pp.
172–182, 2007.

[18] P. Magnusson et al., “Simics: A full system simulation
platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb 2002.

[19] M. M. K. Martin et al., “Multifacet’s general
execution-driven multiprocessor simulator (gems) toolset,”
SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92–99,
2005.

[20] L.-S. Peh et al., “Garnet: A detailed on-chip network model
inside a full-system simulator,” International Symposium on
Performance Analysis of Systems and Software (ISPASS),
vol. 0, April 2009.

[21] W. Dally and B. Towles, Principles and Practices of
Interconnection Networks. San Francisco: Morgan
Kaufmann, 2004.

[22] Z. Tan et al., “A case for fame: Fpga architecture model
execution,” in Proceedings of the 37th annual international
symposium on Computer architecture, ser. ISCA ’10. New
York, NY, USA: ACM, 2010, pp. 290–301. [Online].
Available: http://doi.acm.org/10.1145/1815961.1815999

[23] J. Miller et al., “Graphite: A distributed parallel simulator
for multicores,” in High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, 9-14
2010, pp. 1 –12.

[24] R. Marculescu et al., “Outstanding research problems in noc
design: system, microarchitecture, and circuit perspectives,”
IEEE Transactions on Computer Aided Design of Integrated
Ciruits and Systems, vol. 28, no. 1, pp. 3–21, 2009.

[25] G. Varatkar and R. Marculescu, “On-chip traffic modeling
and synthesis for mpeg-2 video applications,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 12, no. 1, pp. 108 – 119, Jan. 2004.

[26] V. Soteriou, H. Wang, and L. Peh, “A statistical traffic model
for on-chip interconnection networks,” in Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, 2006. MASCOTS 2006. 14th
IEEE International Symposium on, Sep. 2006, pp. 104 – 116.

[27] P. V. Gratz and S. W. Keckler, “Realistic workload
characterization and analysis for networks-on-chip design,”
CMP-MSI, 2010, available at http://cegroup.ece.tamu.edu/
~pgratz/papers/CMP-MSI2010-workload.pdf.

[28] A.-M. Rahmani et al., “Negative exponential distribution
traffic pattern for power/performance analysis of network on
chips,” in VLSID ’09: Proceedings of the 2009 22nd
International Conference on VLSI Design. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 157–162.

[29] G. E. Suh et al., “Secure program execution via dynamic
information flow tracking,” in Proceedings of the 11th
international conference on Architectural support for
programming languages and operating systems, ser.
ASPLOS-XI. New York, NY, USA: ACM, 2004, pp.
85–96. [Online]. Available:
http://doi.acm.org/10.1145/1024393.1024404

[30] J. Hestness, et al., “Netrace: dependency-driven trace-based
network-on-chip simulation,” In Proceedings of the Third
International Workshop on Network on Chip Architectures.
ACM, New York, NY, USA, 2010, pp. 31–36.

