
An Instruction Cache Design for use
with a Delayed Branch

Andrew R. Pleszkun and Matthew K. Farrens

Computer Sciences Department
University of Wisconsin
Madison, WI

ABSTRACT

_ In this paper, we present the design ofan instruction cache
for a machine that uses an "extended-" version of the delayed
branch instruction. The extended delayed branch, which we iall
the prepa,re to branch, or PBR instruction, permits the
unconditional execution of between 0 and 7 instruition parcels
after the branch instruction. The instruction cache is designed to
fit o-l_t!e. same chip with the processor and takes advanlage of
the PBR instruction to minimiZe the effective latencv associated
with memory references and the filling of the

-
instruction

register. Tlis paper discusses the design and implementation
issues associated with realizing such an instruction cache. We
pres_ent-critical aspects of the design and the philosophy used to
guidg the developm-ent 9{ the design. Finally, somir timing
results are presented which indicate-the performance of critica-i
circuits.

1. Introduction

The conditional branch instruction has long been known to
challenge the designers and implementors of hfuh performance
pipelined machines. It is undefstood that a conditibnal branch
instruction disrupts the flow of instructions in a pipelined
machine. Whiie a conditional branch instruction pussus tirrough
the stages of the CPU to the pipeline stage where the branih
cqnditio-n is finally evaluated, all the previous stages sit idle.
Tlrus, when the branch target is finally ilecided and instructions
o{ tbg branch target begin execution, the full latency of the
pipeline is experienced [8,3].

!-

'74

Some implementors have tried to minimize the effects of
this latency by guessing that one branch of the target will be
taken. Such a technique was reported on the 360 Model 91 t1l.
Since the 360/91, other schemes have been proposed to guess
which instructions should be conditionally executed t1+1.
Naturally, the cost of such guessing techniques lies in the extra
circuitry required to assure that before the conditionally
executed instructions change the machine state, these
instructions can be canceled, just in case the other target of the
branch is taken.

There is a second level of guessing that can take place
which does not involve the conditional execution of instructions.
This is not as complex as conditional execution and uses buffers
to store the first few instructions associated with each target of
the branch. Thus when the branch decision is finally made, the
full latency of main memory is not experienced. Variations of
these techniques include the previously mentioned 360/91 [1]
and machines such as the CDC 6600 t181. Instead of using
explicit instruction prefetch buffers, some machine designers
have chosen to use a cache to perform the function of an
instruction buffer [2]. We will discuss our use of a cache later in
this paper.

Recently, projects such as MIPS [6] and the 801 [12] have
proposed the use of the delayed branch to make more efficient use
of a pipeline. In the IBM 801, no instructions are unconditionally
executed after a normal branch instruction. Its issue logic,
however, always initiates the instruction that has been placed
immediately after a branch with execule instruction. This
permits the 801 to unconditionally execute one instruction
beyond the branch instruction. In MIPS [5], those branches
involving a memory reference fin-p indirect) have a branch
delay of two; others have a delay of one. A delay of two is used for
the jump indirect because it cannot complete in one clock period
since an additional clock period is needed to fetch the branch
target from memory.

In our investigations with the PIPE architecture 17,41 we
have expanded on this idea and believe that one could do better
by unconditionally executing more that one instruction. The
PIPE branch instruction permits up to 7 parcels to be
unconditionally executed before the actual change in control flow
occurs. We call this the prepare to branch or PBR instruction
(see Figure 1 for the instruction format). In the PIPE
architecture, a parcel is 16 bit quantity and instructions are 1 or
2 parcels in length. As can be seen from Figure 1, the
PBRinstruction is a 16-bit instruction. Bit 0 indicates that this a
short or single parcel instrrrction, while Bit 1 indicates that this
is a PBR instruction. The remaining bits indicate how the

75

branch is to be processed. Bit 2 of the instruction is used when
the PIPE processor is used in deooupled operation [16] with 2
processors. A discussion of this is beyond the scope of this paper
and does not effect the implementation of the instruction cache.
The 3-bit COND field specifies the branch condition to be
evaluated, Bit 6 is unused, and Bits 7-9 specify the general
purpose register which is to be compared against zero. Since we
wanted to make the PBR instruction a single parcel instruction,
instead ofspecifying the branch target address in the instruction,
one of 8 Branch Registers is specified. The branch registers are
not part of the general purpose registers, but a separate set of
registers that are loaded with branch target addresses. The final
field (CNT) contains a 3-bit braruch courut field. The branch count
specifies the number of parcels to be unconditionaily executed
after the PBR instruction. The number of unconditionally
executed instructions is variable and depends on the program.

As with the delayed branch, the PBR instruction attempts
to keep a pipeline stage busy after a conditional branch has been
encountered. The merits of the PBR are apparent only when a
machine is implemented with significant amounts of pipelining
or overlapped operations. (In this discussion, when we use the
term pipelining, we include every stage in a machine, such as
instruction fetch, decode, instruction issue, etc.) While adequate
for small degrees of overlapped operation that only involve
simple instruction prefetch, the delayed branch does not continue
to make performance gains when the machine implementation is
changed to a version having many pipeline stages. The PBR
instruction will improve machine performance as long as the
number of pipeline stages before the stage that performs the
condition evaluation is less than 7 and the program has a
sufficient quantity of operations that can be unconditionaily
performed after the branch instruction. Our experience with the
PBR instruction indicates that, for our benchmark programs, a
compiler can easily generate code with an average of 4 parcels to
be unconditionally executed after the branch instruction [19].
We did not try to schedule more code that this simply because the
target implernentation does not have more than 4 stages.

012356791012
0 1 1lE COND X COMP. REG. BR. REG. CNT

\-.

Figure 1. Prepare-to-branch instruction format.

76

Using the PBR instruction, one can keep the pipeline full
without the complex logic required in schemes that rely on
guessing. Within the context of VLSI design, this would not
really matter if one believes that chip logic is iruexpensiue. The
PBR instruction, however, has another impact on the
performance of a single chip processor. Since a single chip
processor has a limited amount of bandwidth for transferring
information on and off the chip, efficient utilization of available
bandwidth is extremely important. With the PBR instruction
the pipeline is kept full without the need to make guesses; thus,
no off-chip bandwidth is wasted in bringing unneeded
instructions on-chip.

While the PBR instruction helps keep the pipeline full and
guarantees every instruction brought on-chip will be executed,
the pins available for transferring items on and off chip are still
limited. Thus even with the PBR instruction, chip bandwidth
remains a scarce resource. In the PIPE implementation, 16 pins
are dedicated for input operations and 16 are dedicated for output
operations. Requests for instructions go through the 16 read
pins. This means that instruction input must be multiplexed
with data input. This is unreasonable and could severely impact
overall performance. To limit the effects of this sharing, we
decided to include an on-chip instruction cache. Instruction
caches have been suggested by others [11,17,15]. The PIPE
instruction cache is unique for two reasons; first, it is designed to
reside on-chip with the rest of the processor and second, its
control logic circuitry can take advantage of the PBR instruction
to check for cache hits and schedule main memory requests on a
miss.

2. The PIPE Instruction Cache

The structure of the PIPE instruction cache is intimately
connected to the pipelined structure of the PIPE machine and in
particular the instruction fetch unit. In addition, special
considerations must be made if the cache is to take advantage of
the PBR instruction.

The PIPE instruction cache is directed mapped and
composed of 16 4-word lines for a total of 64 words. Although we
would prefer a larger cache, we are limited by both technology
and the sharing of chip real estate with the rest of the PIPE
processor. This instruction cache, while small, proves sufficient
for our purposes. It allows us to verify the design of the control
logic and the results of our simulations indicate that each of the
Lawrence Livermore Loops [9] easily fit into a cache this large.
As will be seen in section 3.1, we use a static memory cell and a
bus structure that makes the design relatively insensitive to
additional cache lines.

7'7

Associated with the cache are several registers (see Figure
2). There is a 64-bit assembly register located above the cache
which holds 16-bit quantities as they arrive from memory. Once
the 4 entries for a line have been assembled, the entire line is
written into the cache. Below the cache are two 64-bit registers,
the instruction queue buffer (IQB) and the instruction queue (IQ).

From Main Memory

To Decode and lssue Logic

Demultiplexor

Assembly Register

lnstruction Cache Tag Memory

lnstruction Queue Buffer

Control
Logic

lnstruction Queue

Multiplexor

lnstruction Register

\-_

Figure 2. Instruction Cache Organization

i

78

Finally there are a pair of 16-bit registers that form the
instruction register (IR).

The interaction of these registers can best be explained by
considering them in reverse order. The IR is one boundary of the
instruction cache/fetch subsystem. The output of the IR feeds
into the decode logic. The IR consists of a pair of 1&bit registers
since instructions can be one or 2 parcels long. This is similar to
the CIP and LIP registers of the Crayl-S [13]. One difference in
our implementation is the ability to place 2-parcel instructions
into the IR on every clock cycle. In the Cray, consecutive 2 parcel
instructions are placed in the CIP-LP registers on every other
clock. The ability to place 2 parcels into the IR on every clock
arises from having an entire cache line held in the IQ and the use
of a MUX that permits any consecutive pair of parcels in the IQ
to be placed in the IR during one clock (see Section 3.1).

Above the IR sits the IQ. As mentioned above, this register
is 64 bits long, matching the cache line size. Some subset of
parcels in this register is always guaranteed to be executed. The
number of instructions in the IQ that get executed depends on
the existence of a PBR instruction in the IQ, the location of the
branch target, and the value ofthe branch count.

Due to the encoding of the PIPE instruction set, the
existence of a branch instruction is determined by 1 bit of the
opcode. Furthermore, by looking at 3 more bits, the branch count
associated with branch instruction can be calculated. Thus,
before the instruction is issued or even loaded into bhe IR, the
cache can easily determine whether all the instructions in the IQ
will be executed. If the control logic determines that all the
instructions in the IQ and at least one instruction sequentially
beyond the instructions in the IQ will definitely be executed, the
control logic will load the IQB. The IQB acts as a prefetch buffer
for the IQ. To permit loading of the IR with 2 parcels per clock,
there is a special path from the left-most entry of the IQB
through the IQ into the multiplexors feeding the IR. This
feature exists to take care of the case when the last (right-most)
entry of the IQ is a 2-parcel instruction.

As long as the instructions being executed form straight-
Iine code, instructions are loaded one-by-one into the IR from the
IQ. The instructions in the IQ are scanned for a branch, and if no
branch is found (as would be the case for sequential code), the
IQB is loaded with the next sequential line. If the request for the
next sequential line causes a cache miss, a request is made lo
memory to load a cache liire. The incoming parcels are
assembled in the AR. When all the requested words have arrived
and have been assembled, the contents of the AR are written into
the cache and also into the IQB. On occasion, every entry in the
IQ will have been used before main memory can fill the AR. In

'79

such a situation, execution is blocked until the AR is filled, at
which time its contents are moved {irectly into the IQ.

When a PBR instruction is'encountered., keeping the IQB
filled with valid instructions presents a challenge. Depending on
the position of the PBR instruction in the IQ and the value of the
branch count, it is possible that some of the instructions in the IQ
will not be executed. Whether the instructions are executed
depends on the outcome of the branch. A further complication
with the PBR scheme is the fact that all of the instructions to be
unconditionally executed may not fit in the IQ. Due to a large
branch count, the unconditionally executed instruction may
spill-over into the IQB. In such a case, the control logic will try
to filI the IQB and make a memory request should the needed
line be missing from the cache. Once the contents of the IQ have
all been accessed, the IQB is moved into the IQ. The control iogic
must remember that a PBR instruction was issued and how
many parcels beyond the PBR instruction have been issued.
Until all the parcels specified by the branch count have passed
into the IQ, the control logic keeps the IQB filled using the same
strategy used for strictly sequential code. Once the last of these
parcels has moved into the IQ a different strategy is required.

If the branch outcome is not known at the time the IQB
becomes empty, by default an attempt is made to load the IQB
with the next sequential line. This forces a cache look-up. If the
result of the look-up is a cache hit, the line is moved into the IQB.
In this case, if the branch is not taken, the cache/fetch unit
operates as though sequential code were being executed. If the
result of the look-up is a cache miss, the control circuitry waits
until the outcome of the branch is determined before attempting
to load the IQB. When the branch outcome is determined, a
cache look-up is performed. The result of this look-up will be a
hit if the branch target is in the cache, and a miss if the next
sequential line or the branch target are not in the cache. If a
miss is experienced, a request is made to memory for the missing
line. Keep in mind that while the memory fetch is being
performed, depending on the branch count, the processor can still
be performing useful work.

In the above strategy, when there is a branch pending and
the next sequential line is not found in the cache, no attempt is
made to find the branch target in the cache. The reason for this
strategy arises from the use ofbranch registers and the pipelined
structure of the machine. At the time the PBR instruction is
encountered in the IQ, there is no guarantee that the branch
register specified in the instruction contains the correct branch
target address. An instruction that loads the branch register
may be in some stage of execution. The hardware only
guarantees that by the time the branch condition is evaluated
the branch register will have been loaded with the correct value.

80

These control strategies highlight the basic philosophy of
the PIPE instruction cache/fetch opelation. When possible, we
gu_ess to keep the IQB and IQ filled. The effects of this guessing
is--limited to on-chip operations. Whenever a guess may-force an
off-chip operation, the control logic waits until- it can ensure that
some portion of the requested instructions will be executed. We
have chosen not to prefetch instructions even though it may
appear to be a worthwhile option for a cache with our small line
size. This is mainly due to the limited bandwidth of a single chip
processor. For straight line code, we achieve the effect of
prefetchin-g by checking for branch instructions in the IQ.
Requests for a new set of instructions are made well before th-e
instructions in the IQ reach the issue logic. In the case of
branches, the degree of achieved prefetching effect depends on
the branch count and the positionbf the PBR instruction in the
queue. In either-case, the degree of effective prefetching depends
on the number of pipeline stages and the amount of bloc-king that
occurs due to dependencies between instructions. Unlike
prefetch strategies in a conventional cache, we are guaranteed
that some portion of every line we fetch is executed.

3. Implementation Issues

The implementation issues in the design of the cache can be
b_roadly 6iyided into the design of the datapath and the design of
the control logic. The datapath design issues are applicable to
general cache design issues, while the those related to the control
logic qre almost entirely dependent on the functionality needed
to take advantage of the PBR instruction. Throughout the
implementation a standard 2-phase non-overlapping clock is
used.

3.1 Datapath Design

The cache itself has two major sections: (1) the cache cell
array and (2) the tag cell array. The same static RAM cell is used
in both. This RAM cell is of standard design, using two inverters
co+nected together by a feedback path thrbugh a pass transistor.
All reads and writes to a RAM cell are performed via the same
bus. Reads and writes both occur during phi2 while bus
precharge occurs during phi1. A basic cell contains two of these
memory cells overlapped back-to-back to minimize total cell
area. To-improve the speed of a read operation, the output
inverter of the memory cell does not follow standard ratioed logic
design rules. _Since the bus is precharged, we do not need large
pullup transistors to drive the bus. Instead an oversiz6d
pulldown transistor with a length of 2 lambda and a width of 34
!+-biu is_used, allowing rapid-discharge of the bus (see Figure
3). The cell was optimized to make the control lines (read, wiite,
and refresh) as short as possible since they are run in poly. The

I

j

I

81

unusual appearance of the cell design is due to this optimization
and the large size of the pulldown transistor.

These 2-bit cells are arranged in 2 16x16 arrays with the
cache decode logic running down the middle between them. The
cache cell array was split in half and a superbuffer was placed in
the middle of each half to minimize the deiay due to the poly
control lines. One row in this matrix corresponds to a cache line.
The bit lines are run in metal, allowing cache lines to be added

Figure 3. Cache Memory Cell Layout. This basic cell contains
2 bits of the cache memory which are read and written via the

LBus and RBus. Refresh is done using the rsh signal.

82

without significantly effecting cache access time. If on the other
hand the line size is increased, significant performance penalties
may be experienced. Because the decoders are physically a small
part of the entire circuit area and because the speed of
generating the cache control signals is critical, the area allocated
to the decoders was doubled so that the input signals to the
decode logic have fewer gates to drive. Essentially, the input
lines to the decode logic are duplicated before being run through
the center of the cell array. Figure 4 shows the decode logic for 3
lines of the cache. Notice that there are 16 parallel metal lines
that run through the distributed NOR gates which are used to
select a row. The lef't set of 8 signals are duplicates of the 8
signals on the right. With such an arrangement, the
superbuffers driving the inputs to the decode logic have half the
capacitive load to drive. Each set of 8 signals represent the
complemented and non-complemented versions of the cache line
address. The criss-crossing that occurs just above the distributed
NORs simply switches an input and its complement so that the
proper signal is used by the pulldown of the NOR gate.
Superbuffers that drive the cache read and write lines are
located to the left and right ofthe decode logic.

The bitlines run vertically through the cache storage
arrays, the AR, IQB, and the IQ. A cache line is not physically
organized as a sequence of 16-bit words. Instead, Bit 0 of all 4
words are grouped together, followed by Bit 1, Bit 2, etc. The
check for the PBR instruction in the IQ is made easier by this
arrangement. In addition, when the AR is loaded, this
arrangements permits the use of 16 small 1:4 demultiplexors
instead of one large demultiplexor that would require massive
amounts of line crossovers. This also permits the use of 16 small
multiplexors at the output of the cache/fetch unit that feed the
IR.

As stated above, the tag array uses the same basic memory
cell to store the tags. The tag array also uses the same decode
logic as the cache cell array to select a tag. The tags are 10 bits
1ong, one tag associated with each line of the cache. Each tag
also has associated with it a valid bit. Given an instruction
address, the high order 10 bits (Bits 0-9) are used for the tag. The
next 4 bits of the address select a line, while the remaining 2
address bits are used to select the word with in the line.
Determining whether a given instruction address generates a
cache hit is a straightforward, though time critical operation.
Given a valid instruction address on phi2, the tag array will
determine if that line is in the cache during phi1, and on the
following phi2 the associated cache line can be ioaded into the
IQB.

The IQ and IQB are composed of cells similar the one used
in the cache cell and tag arrays. The major difference is that a

:

83

separate bypass bus must be provided from the IQB to the IQ to
enable the loading of the IR with g 2-parcel instruction every
clock. This bypass bus is used when the the last instruction in
the IQ is a 2-parcel instruction. In such a case, the second parcel
must be taken from the IQB. The bitline used to perform the
bypass is enabled by an extra control line that must be run
through the IQB.

L-_

F igure 4. Decode Logic for Selecting a Cache Line. This {igure
shows the decode logic for 4 cache lines.

84

The output of the IQ feeds into 16 pairs of 4:1 multiplexors .

These multiplexors are not true 4:1 multiplexors, however. The
fact that the IR always contains two sequential parcels allows
the multiplexor design to combine the 32 logical 4:l
multiplexors that are logically necessary into 16 "4;2"
multiplexors that accomplish the same task. This circuit could
also be interpreted as a special type of barrel shifter or {ield
extractor. The low-order 2 bits of the PC select the pair of parcels
in the IQ to be routed into the IR. The selected pair of parcels are
routed directly into the IR where they are latched on phil and
stored in pairs of bits. The actual separation of bit pairs into 2
distinct words is done as the instruction is transmitted to the
decode logic. Deferring this separation until after the
instruction has been latched in the IR removes the delays due to
interconnection problems from the cache, where timing is
critical, to a non-critical path. The first parcel, which is used by
the decode logic leaves the IR via metal lines and goes directly
to the decode logic. The second parcel crosses over these metal
lines in poly and is latched for later use. This way, the delays due
to interconnection affect a path whose data (i.e. the second
parcel) is not used by the decode or issue logic.

The AR also uses the same basic cell design as the other
registers. In addition, the AR never reads a bit line, it only
drives it, so there is no write control signal running through the
cell. The writing of a cell is controlled via the select signals in
the demultiplexor which is in turn driven by the input pins from
main memory. All the basic cell designs match pitch so that they
can be stacked.

3.2 Control Logic

The control logic is composed of five functional units: (1)
program control logic, (2) branch control logic, (3) buffer and
queue control logic, (4) validation logic, and (5) main memory
interface Iogic.

The program control logic is responsible for incrementing
and loading the program counter. Due to the buffering of
instructions and the PBR instruction, this presents some
problems. One of these is that in a pipelined machine, it is
difficult to define the PC. Should the PC correspond to the
instruction just issued, the instruction in the IR, or the next
instruction in the IQ? In our case, what would correspond to the
PC in a conventional machine is a register whose contents point
to the parcel that will be loaded into the IR on the next clock. In
reality, the high-order 14 bits of this PC are never needed, so
they are not implemented. Only the low-order 2 bits are
implemented and used to control multiplexors that route
instructions into the IR.

85

The PC must have the capability of being incremented by 1
or-2 depending on whether a 1 or 2 parcel instruction is being
referenced. Updating the PC is complicated when the lasl
instruction in the IQ is a 2-parcel instruction and the IQB does
not contain valid data (the next sequential line was not in the
cache) and when there is a branch pending. PC incrementation
also depends on whether the program counter has just been
loa4ed, whether the branch count is equal to or has gone to zero,
and whether there is a valid line in the IQ and/or IQB.

There is an other "PC" that contains the address of the next
line to be referenced. We call this the pending PC. The next line
is either the next sequential line or the branch target. Because a
line is being referenced, only the higher order 14 bits are needed.
To accomplish this task the pending PC is a chain of ripple
counters. A Manchester carry chain was considered but rejected
due to the poor performance of such a circuit in our ALU design.
The actual measured carry chain performance was much worse
than that predicted by Crystal (approximately 45Vo slower than
predicted, which is more noticeable since the rest of the ALU
circuit was almost 407o faster than Crystal predictions). Since
this pending PC update circuitry lies in a critical timing path of
the cache, we cannot afford to spend a clock phase to do the
precharging needed with a carry chain. The speed requirements
of this circuit outweigh the importance of such considerations as
regularity and minimum area.

The branch control logic recognizes that a branch
instruction is currently in the IR. It is responsible for keeping
track of whether there is a branch pending, and for recognizing
as soon as possible the result of the PBR instruction. It is also
responsible for decrementing the branch counter. When the
branch counter reaches zero, it is responsible for proper transfer
ofprogram flow based on the result ofthe branch. This involves
several operations. It must recognize when all the parcels that
are guaranteed to execute after the PBR instruction are finally
in the IQ. At this point, it must move the contents of the branch
register associated with the PBR instruction into the pending PC
register so that a cache look-up can begin. The logic for
decrementing the branch count value must be capable of
decrementing by I or 2 depending on whether the instructions
to be unconditionally executed following the PBR instruction are
I or 2 parcel instructions. Single and 2-parcel instruction are
indicated by Bit 0 of the instruction.

The buffer and queue control logic is responsible for
keeping the IQB and IQ full. This logic determines when to fill
the IQ or IQB and what with . It decides which memory cells
should drive the bit lines and which cells or registers receive the
data. For example, this logic is responsible for transferring the

86

contents of the IQB into the IQ on demand. It also permits the
AR to drive the bit lines and determines whether the cache line,
the IQB, or the IQ should receive this data. This control depends
on conditions such as: a valid IQB line, a vaiid IQ line, a cache
hit, and a pendingbranch.

The validation logic determines whether the lines in the IQ
and IQB are valid and whether the IR contains a valid
instruction. Sometimes, when the IQ and IQB are both invalid,
such as on a long memory access, the IR will contain a previously
executed instruction. Naturally, this instruction should not be
re-issued.

The main memory interface logic is probably the simplest
of all the control units. It determines when a main memory
access should be initiated based on signals from the other control
units. It is also responsible for loading the AR as words are
received from main memory.

This is a very brief summary and highlights the function of
each of the control units. A detailed description of all the control
signals is impossible in this paper. Although there are 5
different logical control units, the current implementation uses
10 PLAs. The assignment of operations to clock phases has been
carefully tuned to eliminate all idle clock cycles. In addition to
these 10 main PLAs there are a small number of random logic
circuits. If the logic equations governing the control logic were
to be implemented strictly with PLAs, the sizes of the PLAs
would cause unacceptable delays.

4. Implementation Status

As mentioned earlier, the cache subsystem is meant to
reside on-chip with the rest of the PIPE processor. Currently all
sections of the processor have been laid out and with the
exception of the cache subsystem and the issue logic subsystem,
are being or have been fabricated. The worst-case delay path
through the ALU and register file was estimated by the 1985
release of the Crystal circuit simulator from Berkeley to be
approximately 74ns. The actual fabricated circuits had on
average worst-case delays of slightly under 60ns. Three of the
returned chip experience sub-60ns delays whiie one had a 62.5ns
delay. We have used 60ns as the maximum delayed allowed in
any circuit. When designing all of the other circuits, we have
made sure that they have worst-case delays of less than this
value. As far as the cache is concerned, ail parts of the cache
have been laid out. Simulation results for critical paths in the
cache indicate that the wofst-case delay path is 59ns. This occurs
in the cache hit logic. We are using the MOSIS n-MOS 2 micron
technology.

87

5. Conclusions

In this paper we have discussed the design issues associated
with the implementation of an on-chip instruction cache that
takes advantage of an extended delayed branch instruction to
minimize off-chip memory requests. In the architecture for
which this cache is designed, an extended version ofthe delayed
branch instruction is used. In our case, the instruction permits
up to 7 instruction parcels to be unconditionally executed after
the instruction. The number of instruction parcels to be
unconditionally executed vary from 0 to 7 and is specified in the
branch instruction. With this type of branch instruction, the
machine's pipeline is more easily kept full when a branch occurs.
Before all the instructions to be unconditionally have been
executed, the branch outcome will have been determined, giving
the cache and fetch logic time to access the branch target,
minimizing the effects of memory latency and off-chip
communications delay, and keeping the pipeline full even when a
branch is taken. The instruction cache is used to minimize off-
chip memory accesses for instructions. Simulation results
indicate that worst-case delays are under 59ns. The logic to
control instruction fetching and changing control flow has been
moved to reside side-by-side with the cache control logic.

Acknowledgments

This work was funded in through NSF Grant MCS82-02952.

References

i 1l D. W. Anderson, F. J. Sparacio and R. M. Tomasulo,"The
IBMSystem/360 Model 91: Machine Phiiosophy and
Instruction Handling," IBM Journal of Research and
D euelop ment, pp. 8-24, J anuary 1967.

l2l R. W. Doran, "The Amdahl 470V/8 and the IBM 3033:
AComparison of Processor Designs," Computer, pp. 27-36,
April1982.

t 3l M. J. Flynn," Very High-Speed Computing Systems,"
Proceedings of the IEEE, Vol. 54, No. 12, pp. 1901-1909,
December 1966.

t4l J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B.
Schechter, and H. C. Young, "PIPE: a VLSI Decoupled
Architecture,"Proc. of the Twelueth Annual Symposium on
Computer Architecture, pp.20-27 , June 1985.

[5] T. R. Gross and J. L. Hennessy, "Optimizing Delayed
Branches," Proceed.ings, 1Sth " Anniat Woihshop on
Microprogrammirug, pp. 114-120, October, 1982.

L-

88

t 6l J. Hennessy, N. Jouppi, F. Baskett, T. Gross and J. Gill,
"Hardware/Software Tradeoffs for Increased
Performance," Symposium on Architectural Support for
Programming Languages and Operatirug S ystems, pp. 2-
11, March 1982.

171 J. T. Hsieh, A. R. Pleszkun and J. R. Goodman,
"Performance Evaluation of the PIPE Computer
Architecture," Technical Report #566, Computer Sciences
Department, University of Wisconsin-Madison, November
1984.

t 8l P. M. Kogge, The Architecture of Pipelined Computers,
McGraw Hill, New York, 1981.

t 9l F. H. McMahon, "FORTRAIV CPU Performance Analysis,"
Lawrence Livermore Laboratories, Livermore, CA, t972.

t10l D. A. Patterson, "Reduced Instruction Set Computers,"
Commuruications of the ACM, Vol. 28, No. 1, pp. 8-21,
January 1985.

i11l D. A. Patterson and C. H. Sequin, "Design Considerations
for Single-Chip Computers of the Future," IEEE Trans. on
Computers, Vol. C-29, No. 2, February 1980.

ll2l G. Radin, "The 801 Minicomputer," Symposium on
Architectural Support for Programming Languages and
Operating S ystems, pp.39-47, March 1982.

[13] R. M. Russel, "The CRAY-1 Computer System,"
Communica.tions of the ACM, Vo1. 21, No. 1, pp. 63-72,
January 1978.

t14l J. E. Smith, "A Study of Branch Prediction Strategies,"
Proc. of the Eighth Annual Sympostum on Computer
Architecture, pp. 135-141, May 1981.

t15l A. J. Smith, "Cache Memories," ACM Computing Surueys,
Vol. 14, No.3, September 1982.

t16l J. E. Smith, "Decoupled Access/Execute Computer
Architectures," ACM Trans. on Computer Systems, Vol. 2,
No.4, pp.289-308, November, 1984.

t17l J. E. Sfnith and J. R. Goodman, "Instruction Cache
Replacement Policies and Organizations," IEEE Trans. on
Computers, Vol. C-34, No.3, pp.234-24I, March 1985.

t18l J. E. Thornton, Design of a Computer - The Control Data
6600, Scott, Foreman and Co., Glenview, IL, 19?0.

t19l H. C. Young and J. R. Goodman, "A Simulation Study of
Architectural Data Queues and Prepare-to-branch Instru
ction," Proceedings, IEEE lruternational Conference on
C o mputer D esign, pp. 544-549, October 1984.

