
d d

AN EVALUATION OF FUNCTIONAL UNIT LENGTHS
FOR SINGLE-CHIP PROCESSORS

Matthew K. Farrens Andrew R. Pleszkun

Computer Science Division Department of Electrical and
University of California, Davis Computer Engineering

Davis, CA 95616 University of Colorado-Boulder
(farrens@american.ucdavis.edu) Boulder, CO 80309-0425

(arp@tosca.colorado.edu)

ABSTRACT

When designing a pipelined single-chip processor
(SCP) with pipelined functional units of varying length,
the processor issue logic must deal with scheduling of the
result bus. In order to prevent serious performance degra-
dation due to result bus conflicts, some pipeline schedul-
ing techniques developed in the 1970’s may need to be
incorporated into the issue logic. Since this is a non-
trivial complication of the issue logic, a set of simulations
were performed in order to evaluate the effectiveness of
the combination of multiple length functional units and
scheduling techniques. Analysis of the simulation results
indicates that providing relatively short multiple length
functional units is not worthwhile. Multiple length func-
tional unit configurations employing result bus scheduling
do perform slightly better than uniform length
configurations, but the difference is often less than 1%.
Thus, the SCP designer should not waste valuable time
improving the performance of each functional unit, but
rather should produce a good design for the most compli-
cated unit and design all other units to match it.

1. Introduction

When designing a single-chip processor (SCP) to
support a particular instruction set architecture, the design
engineer must carefully choose among the many different
options available. The types and size of on-chip caches
(if any), the type of instruction fetching strategy to pur-
sue, the amount and degree of pipelining to incorporate,
and whether or not to include on-chip floating point units
are just a few of the design decisions that must be made.
To aid in the option selection process, it is important to
provide the designer with as much information as possi-
ble.

If the processor is to be pipelined, the designer
must decide the structure and organization of the pipeline,
including the extent the functional units will be pipelined.
The first instinct of a high-performance processor

designer is to make each individual functional unit as fast
as possible, in order to avoid wasted clock cycles. For
example, the more complex floating point units may be
designed to take several clock cycles to produce a result,
while the simpler logical unit may be able to produce its
results in a single clock cycle. While on the surface this
approach seems logical, closer inspection reveals certain
problems with supporting multiple length functional units.
When different length functional units are implemented
with a CRAY-like issue strategy [Russ78], the issue logic
must ensure that an instruction waiting to issue will not
require the use of the result bus during a clock cycle when
the result bus will be used by an already issued instruc-
tion. Being able to detect and deal with this result bus
busy condition can significantly complicate the issue
logic, and it is not clear that having multiple length func-
tional units in a single chip processor provides a
justifiable performance improvement.

In this paper, we will investigate the performance
improvement resulting from using variable length func-
tional units. This work is done in the context of SCPs
where moderate amounts of pipelining are supported
(most of today’s SCPs). We first describe, by example,
how pipeline scheduling for multiple variable length func-
tional units leads to improved performance. Then,
through simulation, we evaluate the performance of
machines with different combinations of functional unit
lengths.

2. Result Bus Scheduling

In a machine with multiple length functional units
that are relatively short in length, conflicts over the use of
the result bus frequently occur. Consider an instruction
(Instruction A) that is prevented from beginning execu-
tion because the result bus will be in use during the clock
cycle in which Instruction A wants to write its result back
to the register file. By preventing Instruction A from issu-
ing, the instructions behind it are also prevented from
beginning. Overall throughput may be reduced if some of
these instructions do not have the same result bus conflict



d d

as Instruction A. Special pipeline scheduling techniques
[PaDa76] exist that can be used to reduce the impact of
these result bus conflicts and which are much less compli-
cated than supporting out of order issue and execution
[Toma67].

Figures 1 and 2 demonstrate how the technique of
result bus scheduling improves the performance of a sim-
ple sequence of code. (In this example, we assume that
arithmetic operations require two full clock cycles to
complete, while logical and move operations require only
one.) Without using pipeline scheduling, the code
sequence shown in Figure 1 takes six clock cycles to
complete. As can be seen in the figure, the OR instruction
following the ADD cannot issue until the ADD com-
pletes, because at time 2, when the issue logic is first
presented with the single cycle OR instruction, the issue
logic knows that the result bus will be busy at the time the
OR instruction will generate its result. This blocking of
the OR instruction also delays the issue of the subsequent
SUB instruction, which faces no such result bus conflict.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Time →iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiInstruction

1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ADD Issue Finish
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Issue
OR Finishiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SUB Issue Finish
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Issue
MOVE Finishiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

Figure 1.

Without Pipeline Scheduling.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Time →iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiInstruction

1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ADD Issue Finish
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

OR Issue Finish
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SUB Issue Finish
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

MOVE Issue Finish
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

Figure 2.

With Pipeline Scheduling.

When result bus scheduling is employed, as shown
in Figure 2, delays are inserted into the datapath forcing
selected instructions to take longer to complete. The OR
is issued at time 2, and although it can complete in the
same clock cycle, the issue logic has it wait an extra clock
cycle before writing a result. Since the OR has been
issued at time 2, the issue logic can issue the SUB one
cycle sooner. Thus, the blocked instruction and the ones
behind it are able to proceed normally (assuming the issue
logic detects no other hazards).

As can be seen by comparing Figure 1 to Figure 2,
the use of pipeline scheduling will improve the perfor-
mance of this code sequence by over 16%. Based on the
results of the small section of code presented above and
the results presented in [HsPG84], it would appear that
performing some sort of result bus scheduling in an SCP
could be a valuable performance enhancing technique.
Scheduling the result bus, however, requires hardware
that is capable of dynamically recognizing the situations
in which adding additional delays to an instruction will



d d

improve program through-put. In our example, the OR
instruction may take two cycles or one cycle to execute,
depending on its context in the instruction stream. Its
execution time is dynamically determined by the issue
logic. Results to be presented later in this paper indicate
that a much simpler and less hardware-intensive scheme
can achieve nearly the same performance benefits.

3. The Simulation Environment

In order to study the effectiveness of result bus
scheduling, a performance metric was needed. The one
chosen for use in this study was the the total number of
clock cycles required to execute a set of benchmark pro-
grams. This metric was chosen because the best way to
evaluate the performance of various internal processor
configurations is to monitor the amount of time the pro-
cessor takes to complete a test program with a given
configuration [Smit88]. It is important to remember that a
solution that takes fewer clock cycles but requires
significantly more complicated hardware may actually
take more real time to execute than a simpler scheme with
less complicated hardware. (This is, in fact, the basic
argument behind reduced instruction set processors
[Patt85].)

3.1. The Simulator

The simulator used in this study was a modified
version of the PIPE simulator, which was written to facili-
tate the study of the PIPE processor [Farr89]. The PIPE
processor, a single chip processor designed and built at
the University of Wisconsin, is an outgrowth of the PIPE
project [GHLP85] and employs a load/store register-
register architecture similar to the CRAY and CDC archi-
tectures [Russ78, Thor70] with an elemental (or reduced)
instruction set (designed both for ease of decode and to
simplify the hardware issue logic), a 5-stage pipeline, a
small on-chip instruction cache and sophisticated instruc-
tion fetch support logic [FaPl89], limited subroutine call
support, a branch mechanism that allows the compiler to
specify the number of delay slots after a branch, and
architectural input and output queues at the
processor/memory interface.

These I/O queues are perhaps the most distinctive
feature of the PIPE processor, and are used to provide an
insulating buffer between the processor internals and the
outside world. This allows the processing elements of the
chip to be clocked at a rate determined solely by the
delays through the various processing elements, and
prevents external effects such as memory speed from
affecting the internal system clock. Making the queues
visible to the programmer also makes it possible to
schedule memory requests such that the impact of a slow
external memory on processor performance is
significantly reduced [YoGo84]. The use of I/O queues
also impact the design of a processor in ways that are

more subtle and less obvious. Throughout the rest of this
paper we will attempt to point out some of these unex-
pected advantages.

In order to perform this study, the modifications to
the PIPE simulator gave the processor issue logic the
capability of doing a very simple type of result bus
scheduling. The result bus scheduling was done as fol-
lows: If an instruction waiting to be issued requires the
result bus at time t, and the issue logic determines that the
result bus will be busy at that time, the issue logic checks
to see if the result bus will be free at time t+1. If it is free
at t+1, the output of the instruction in question is delayed
by a single clock cycle, the result bus is marked busy at
time t+1, and the instruction is allowed to issue. If, on the
other hand, the result bus is also busy at time t+1, the
instruction is not allowed to issue during that clock.

3.2. The Simulation Model

The memory system is modeled as a single large
memory that services both instruction and data requests,
connected to the processor chip by unidirectional input
and output busses. The external floating point unit is
memory mapped, so that a pair of data stores to the
appropriate locations will cause a multiply to occur. The
simulation model gives bus precedence to instruction
fetches, followed by data loads and stores, with multiply
results getting the bus whenever it is idle.

Giving instruction fetches top priority like this
helps keep the instruction fetch unit ahead of the decode
unit, and since the processor has been designed to tolerate
slow memory, the extra clock cycles required by a data
fetch that has been preempted by an instruction fetch are
effectively hidden. This is an example of the less obvious
advantages of using I/O queues.

3.3. The Benchmark Program

The benchmark programs selected were the first 14
Lawrence Livermore loops as defined in [McMa84]. The
loops were first compiled by the SUN4 optimizing com-
piler, in order to get a feel for the kinds of optimizations a
compiler could perform. The loops were then completely
hand-written using the output of the SUN compiler as a
guide. A serious effort was made not to hand-optimize
the loops, however. The loops are not "tuned" to increase
performance, as this might limit the information that
could be gained from the interpretation of the results.

In an effort to make the results obtained from the
study applicable to the general case of processors that do
not use I/O queues, an additional set of Lawrence Liver-
more loops were created that do not take advantage of the
I/O queues. In these loops, a data load instruction is fol-
lowed immediately by the instruction that requires the
data item. Since the entire PIPE architecture and



d d

instruction set is designed to take advantage of these I/O
queues, the simulation results will only approximate the
general case. The PIPE processor can only behave simi-
larly to a machine without queues. It can behave simi-
larly enough, however, to allow some general conclusions
to be drawn.

The 14 loops were assembled as one large program,
so that each loop would run until finished and then fall
through to the next loop. The variant of each loop was
modified so that each loop executes approximately 10,000
instructions. This was done to balance the impact of the
different loops on the results. A total of 139,608 instruc-
tions are executed in a single run through the original
benchmark program, and 140,267 are executed in a run
through the modified benchmark that does not take advan-
tage of the I/O queues.

4. Discussion of Simulation Results

In this section, we evaluate the performance of
various functional unit lengths and the impact of result
bus scheduling techniques. The simulation results neces-
sary to perform this evaluation were generated by execut-
ing the two suites of benchmark programs (those with and
without queues) on the PIPE simulator, varying the fol-
lowing parameters:

1. The number of clock cycles required for the dif-
ferent functional units.

2. The ability of the issue logic to do dynamic bus
scheduling.

3. The time necessary to preform a floating point mul-
tiply.

The remaining simulation parameters were set so
that the simulation results would highlight the effects of
result bus scheduling and minimize the number of clock
cycles lost due to conditions not related to functional unit
length (such as the Instruction Register being invalid). In
order to accomplish this, the instruction cache size was
set large enough to contain the entire program and it was
started warm. In addition, the memory delay was set to a
single clock cycle to guarantee there would be no proces-
sor blocking due to waiting for a data item from memory.

The results of these simulations are presented in
Tables 1 and 2. Table 1 contains the results of the simula-
tions with a four cycle external multiply unit and the pro-
cessor queues fully enabled, while Table 2 contains the
simulation results for a four cycle external multiply unit
and the processor queues not fully utilized.

The simulation results are presented in tabular form
because, while looking at a graph is generally preferred to
reading numbers out of a table, this data does not lend
itself to graphical representation. A number of different
graphical formats were created, but in each case the infor-
mation of interest was easier to extract from the table

itself than from the graph. Therefore, the reader should
be prepared for frequent references to entries in Tables 1
and 2 throughout the following discussion.

The best place to begin is to look at where the
implemented PIPE processor falls in Table 1. PIPE
employs a two cycle arithmetic unit, single cycle shift and
logical units, fully utilizes its I/O queues, and does no bus
scheduling. Looking under the appropriate entry in
column 1 of Table 1, we see that the PIPE processor takes
a total of 172,776 clock cycles to execute the benchmark
program. Going across the table we see that providing
the ability to do result bus scheduling would provide a
10% performance increase.

The impetus behind this study was initially to try
and determine if replacing PIPE’s restricted single cycle
shift unit with a fully functional two cycle shift unit
would have a serious negative affect on performance.
(The PIPE processor was implemented in single layer
metal nMOS, and the amount of polysilicon necessary to
build the shifter prevented a fully functional design.)
Interestingly, Table 1 shows that the as-implemented
PIPE processor would actually perform slightly better
(1.7% better) with a two cycle shifter than it does with a
one cycle shifter. This is separate from the implementa-
tional difficulties of producing a single cycle shifter; these
simulation results show that the total number of clock
cycles used decreased with an increase in the time
required to do a shift. This result is not what one would
first expect, and has to do with the result bus scheduling
problem. When result bus scheduling is not being used,
the more uniform the lengths of the functional units, the
less time that is lost to result bus busy conditions.

Since making the functional units more uniform in
length seems to provide a slight increase in performance,
the next logical step is to look at how the processor per-
forms when all functional units lengths are the same.
Looking at the results in Table 1 we see that the processor
actually performs best under these circumstances. This
says that the PIPE processor would perform 9.3% faster if
the shift and logical units were slowed down. This is
perhaps the most significant and initially counter-intuitive
result to come out of this study, and implies that an SCP
designer may be able to significantly improve the perfor-
mance of a processor by slowing down the different func-
tional units until they all function at the same speed.
Doing this has the added advantage of removing the need
for result bus scheduling.

A processor using result bus scheduling in conjunc-
tion with minimal length functional units is somewhat fas-
ter than a processor using uniform (slower) functional
units, as one would expect. Comparing the implemented
PIPE processor with result bus scheduling enabled to a
processor configuration with all functional units of length
two shows that the PIPE setup is in fact slightly faster.
However, the difference is just over 0.6%. It is highly



d d

Table 1. Multiple Length Functional Unit Simulation
Results, Processor Utilizing Queues.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
With I/O Queues,

Floating Point Unit Delay = 4 clocksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Functional Unit Delays Result Bus Scheduling

(in Cycles) OFF ONiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 140631 140631Arith.

= 1
Log.
= 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Shift=1 172776 157044iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 169945 157602

Log.
= 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Shift=1 162979 157817iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 158079 158079

Arith.
= 2 Log.

= 2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Shift=1 195284 185075iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 195131 185827iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 198574 189595

Log.
= 1

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 194168 181811iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 192946 182267iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 196394 184395

Log.
= 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 189027 184381iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 185397 185074iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 186776 186776

Arith.
= 3

Log.
= 3

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 217493 209466iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 219614 212643iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 222402 215402iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 225689 219029

Log.
= 1

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 221605 211881iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 221296 213250iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 224261 215688iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 227827 219457

Log.
= 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 222576 208494iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 222495 212438iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 224391 214457iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 227962 216726

Log.
= 3

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 218024 213552iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 215773 215450iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 217910 217710iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 219551 219551

Arith.
= 4

Log.
= 4

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2. Multiple Length Functional Unit Simulation
Results, Processor Not Utilizing Queues.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Without I/O Queues,

Floating Point Unit Delay = 4 clocksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Functional Unit Delays Result Bus Scheduling

(in Cycles) OFF ONiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Arith. Log. Shift=1 184058 184058

= 1 = 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 235403 218499iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 232097 219266

Log.
= 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Shift=1 228211 222511iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 222705 222705

Arith.
= 2 Log.

= 2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Shift=1 253847 244444iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 253497 245832iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 255762 247878

Log.
= 1

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 255825 244969iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 254427 244971iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 256349 246380

Log.
= 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 253873 249060iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 250292 249183iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 250014 250014

Arith.
= 3

Log.
= 3

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 292939 285769iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 294574 287333iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 296294 289439iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 299001 292147

Log.
= 1

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 295548 288817iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 294376 288865iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 295891 291013iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 298426 293207

Log.
= 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 299846 288941iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 299007 290610iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 299474 291519iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 301666 293053

Log.
= 3

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=1 299812 295002iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=2 295759 294823iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=3 296695 295856iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shift=4 296687 296687

Arith.
= 4

Log.
= 4

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c



d d

unlikely that a 0.6% performance improvement can jus-
tify a decision to choose incorporating the more compli-
cated result bus scheduling technique into the issue logic
over the much easier task of equalizing all functional unit
lengths.

The final thing to note in Table 1 is that as the
length of the functional units increases, the advantage
gained by having uniform length functional units
decreases. Once the functional unit length has reached
four clock cycles, several of the designs with unequal
lengths actually outperform the uniform length
configuration. (However, the difference is less than 2%.)
This implies that when functional units become long
enough maximizing the performance of individual units
may again become a useful approach. (This coincides
with what is actually done in machines like the CRAY.)

Moving to Table 2, some similar results are evi-
dent. Table 2 contains the results of simulations in which
the I/O queues were not fully utilized, and in these results
we see again the impact of I/O queues on performance.
As was the case in Table 1, the performance of the PIPE
processor configuration does increase as the functional
unit lengths become more uniform, but the performance
increase is not as appreciable.

This difference in performance is due once again to
the inherent properties of I/O queues. Programs for pro-
cessors using I/O queues try to maximize the distance
between a request for a data item and its consumption,
based on the assumption that some unspecified amount of
time after the request has been issued it will be serviced.
What is causing the delay is immaterial; whether the
delay is due to slow memory or multi-staged functional
units, it is hidden by the proper use of these queues.

5. Summary and Conclusions

The goal of this paper was to determine if a proces-
sor should employ functional units of varying lengths.
The natural instinct of many designers is to maximize the
performance of each individual functional unit, which
leads to multiple length functional units. If a processor
does use multiple length functional units, it must be able
to deal with the added issue condition of a busy result
bus. Some pipeline scheduling techniques developed in
the 1970’s may also need to be incorporated into the issue
logic to prevent serious performance degradation due to
the result bus conflicts. Since this is a non-trivial compli-
cation of the issue logic, a set of simulations were per-
formed in order to evaluate the effectiveness of the com-
bination of multiple length functional units and this
scheduling technique.

Analysis of the simulation results indicates that
having relatively short multiple length functional units is
not worthwhile. Multiple length configurations employ-
ing result bus scheduling do perform slightly better than

uniform length configurations, but the difference is less
than 1%. Since configurations with all functional units the
same length consistently outperformed configurations
with functional units of different lengths when result bus
scheduling was not enabled, the added complexity of sup-
porting this technique is not justified.

These results indicate that an SCP designer should
not waste valuable time squeezing performance out of the
various functional units, but rather should produce a good
design of the most complicated unit and design all other
units to match it. However, it should be pointed out that
these results are for a single set of hand-written bench-
mark programs, and processors without I/O queues could
only be emulated, so the results may or may not be
directly transferable to designs without queues. However,
the results themselves are very interesting, and indicate
that there is much more work that can be done in this
area.

Acknowledgements

This work was supported by National Science
Foundation Grants DCR-8604224, CCR-8706722, and
CCR-9011535. We would also like to extend a special
thanks to the members of the PIPE project, for creating an
excellent research environment.

References

[Farr89] M. K. Farrens, The Design and Analysis of a
High Performance Single Chip Processor,
Ph.D. Thesis, Department of Electrical and
Computer Engineering,, Madison,
Wisconsin, (August 1989).

[FaPl89] M. K. Farrens and A. R. Pleszkun,
‘‘Improving the Performance of Small On-
Chip Instruction Caches’’, Proceedings of
the Sixteenth Annual International
Symposium on Computer Architecture, vol.
17, no. 3 (June 1989), pp. 234-241.

[GHLP85] J. R. Goodman, J. T. Hsieh, K. Liou, A. R.
Pleszkun, P. B. Schechter and H. C. Young,
‘‘PIPE: a VLSI Decoupled Architecture’’,
Proceedings of the Twelveth Annual
International Symposium on Computer
Architecture(June 1985), pp. 20-27.

[HsPG84] J. T. Hsieh, A. R. Pleszkun and J. R.
Goodman, ‘‘Performance Evaluation of the
PIPE Computer Architecture’’, Computer
Science Department Technical Report #566,
University of Wisconsin-Madison ,
Madison, Wisconsin (November 1984).



d d

[McMa84] F. H. McMahon, LLNL FORTRAN
KERNELS: MFLOPS, Lawrence Livermore
Laboratories, Livermore, California, (March
1984).

[PaDa76] J. H. Patel and E. S. Davidson, ‘‘Improving
the Throughput of a Pipeline by Insertion of
Delays’’, Computer Architecture News
(ACM-SIGARCH), vol. 4, no. 4 (January
1976), pp. 159-164.

[Patt85] D. A. Patterson, ‘‘Reduced Instruction Set
Computers’’, Communications of the ACM,
vol. 28, no. 1 (January 1985), pp. 8-21.

[Russ78] R. M. Russell, ‘‘The CRAY-1 Computer
System’’, Communications of the ACM,
vol. 21, no. 1 (January 1978), pp. 63-72.

[Smit88] J. E. Smith, ‘‘Characterizing Computer
Performance with a Single Number’’,
Communications of the ACM, vol. 31, no.
10 (October 1988), pp. 1202-1206.

[Thor70] J. E. Thorton, Design of a Computer - The
Control Data 6600, Scott, Foreman and Co,
Glenview, Illinois, (1970).

[Toma67] R. M. Tomasulo, ‘‘An Efficient Algorithm
for Exploiting Multiple Arithmetic Units’’,
IBM Journal, vol. 11 (January 1967), pp.
25-33.

[YoGo84] H. C. Young and J. R. Goodman, ‘‘A
Simulation Study of Architectural Data
Queues and Prepare-to-Branch Instruction’’,
Proceedings of the IEEE INT Conference on
Computer Design: VLSI in Computers, Port
Chester, New York (October 1984), pp.
544-549.

d d


