
Adapting Cache Line Size to Application Behavior �Alexander V. Veidenbaum , Weiyu Tang, Rajesh Gupta,Alexandru Nicolau, Xiaomei JiDept. of Information and Computer Science444 Computer Science, Building 302University of California IrvineIrvine, CA 92697-3425alexv@ics.uci.eduAbstractA cache line size has a signi�cant e�ect on miss rate andmemory tra�c. Today's computers use a �xed line size,typically 32B, which may not be optimal for a given ap-plication. Optimal size may also change during applica-tion execution. This paper describes a cache in whichthe line (fetch) size is continuously adjusted by hard-ware based on observed application accesses to the line.The approach can improve the miss rate, even over theoptimal for the �xed line size, as well as signi�cantlyreduce the memory tra�c.1 IntroductionA design of a computer system is an optimization prob-lem involving of a number of dependent variables ina very large design space. The variables include sys-tem performance, hardware constraints, cost, and ar-chitectural parameters. For general-purpose systems,performance is evaluated with respect to a particularbenchmark program or program suite for a given setof design parameters. To simplify the problem, depen-dences between parameters are frequently ignored. A�xed set of design parameters is selected for implemen-tation based on achieved performance and adherence tothe constraints.Designs are evaluated via a time-consuming opti-mization process based on simulation and the designspace is never completely explored. The optimizationprocess searches the design space guided by manual pa-rameter selection based on past experience. The re-sulting design is "optimized" for an average behavior�This work was supported in part by the DARPA ITO under GrantDABT63-98-C-0045.

of the benchmarks used. It thus comes as no surprisethat such a design is not optimal for a speci�c appli-cation. However, the expectation is that the loss ofperformance is small compared to optimal. Experiencehas shown that this is not always the case. This leadsto design of special-purpose systems when a signi�cantgain in performance (or cost) can be made, as in DSPor graphics applications.Another problem with a set of "�xed" design param-eters is the fact that application behavior changes dur-ing execution. Thus even within an application the opti-mal parameter choice is not �xed but is time-dependent.This leads to another form of performance loss, butagain the expectation is that the loss is small comparedto optimal. This time-domain aspect of performanceis much less understood and explored than the aver-age performance, although it has been investigated inthe past at IBM and CSRD for network behavior and,recently, by ourselves and [1], among others, for thememory hierarchy.The design of a memory hierarchy for high perfor-mance, general-purpose systems is central to achievingthe desired performance levels. Its design parameters,such as cache size, line size, associativity, fetch andwrite policy, coherence mechanism, etc. are selected us-ing the process sketched out above. Technological con-straints usually play a primary role in the selection. Itis a well known fact in the application community thata memory hierarchy can fail completely on some appli-cations whose behavior is di�erent from those presentin the workload used to optimize the design. However,given the design approach that has to arrive at a �xedset of parameters this is unavoidable.An alternative approach is to allow a design parame-ter to take on a range of values and provide a mechanismfor changing towards a more optimal parameter valuedynamically during execution. The same approach canalso be applied to an algorithm or a policy used byhardware. A general term "adaptivity" will be used torefer to this dynamic approach. Adaptivity can poten-tially allow each application to approach much closer an



optimal architecture/hardware con�guration and thusan optimal performance. It can also allow the systemresources to be better utilized and shared within andacross applications.Adaptivity is not a new concept in computer systemsand has been applied before in various forms. Selectedexamples of its use are:Adaptive routing pioneered by ARPANET in com-puter networks and, more recently, applied to multi-processor interconnection networks [2, 3] to avoid con-gestion and route messages faster to their destination.Adaptive tra�c throttling for interconnection net-works [3]. [13] show that "optimal" limit varies andsuggest admittingmessages into the network adaptivelybased on current network behavior.Adaptive cache control or coherence protocol choicewere proposed and investigated in the FLASH and JUMP-1 projects [5, 12].Adapting branch history length in branch predictorswas proposed in [8] since optimal history length wasshown to vary signi�cantly among programs.Adaptive adjustment of data prefetch length in hard-ware was shown to be advantageous [4], while in [6] theprefetch lookahead distance was adjusted dynamicallyeither purely in hardware or with compiler assistance.[10] is another version of selective prefetch, closest toour work in many ways but also quite di�erent. It issummarized and compared to our approach in Sec. 6.Much of the previous work mentioned above addresseda speci�c problem via adaptivity although not alwaysvia adaptive hardware. Adaptivity has received a lotof attention recently with a drastic increase in VLSIcomplexity and transistor count as well as advances inrecon�gurable logic. The research presented here ad-dresses the use of automatic, dynamic, hardware adap-tivity in the design of a �rst-level (L1) data cache. It isa part of a more general e�ort, the Adaptive MemoryRecon�guration and Management Project (AMRM) atthe University of California-Irvine, to apply adaptivityto the design of a memory hierarchy. This paper, how-ever, will only deal with the L1 data cache adaptivity.There are several possible L1 cache parameters onecan dynamically adapt. They include cache size, linesize, write policy, write bu�ering, prefetching, etc. Someof these are only adaptable in theory. For instance, thecache size is largely determined by technology param-eters and desired latency and can only be adaptivelydecreased. This does not make a lot of sense, exceptpossibly as a mechanism to reduce its latency and, as aresult, increase the processor clock rate which the cachelargely determines, as proposed in [1]. Write policy canbe switched between write-through and write-back, infact the Intel PentiumTM architecture [7] already al-lows this on a per-page basis but not automatically.However, the parameter that is likely to deliver a sig-

ni�cant performance improvement while being feasibleto implement adaptively is the cache line size. This pa-per introduces a cache design with a hardware-adaptiveline size. To our knowledge, such an organization hasnot been previously explored.An automatic hardware adaptive system needs tomonitor system behavior and performance and modifythe hardware con�guration based on the observed be-havior. We chose to use past behavior to predict thefuture hardware con�guration for a given program andadapt the con�guration accordingly. In general, the ar-chitecture for adaptivity requires the following capabil-ities:� An ability to modify hardware parameters dynam-ically� An ability to monitor performance as a functionof program execution and collect statistics� An adaptivity algorithm that monitors the statis-tics and decides when and how to change the hard-ware con�guration.The goal of this research was to investigate the poten-tial of such an L1 cache architecture, evaluate its per-formance and design, and study alternatives. An ad-ditional requirement was to seek an architecture thatdid not have a signi�cant hardware overhead and didnot a�ect the system clock rate. Such an architectureis presented here and its performance evaluated usingexecution-driven simulation of several standard bench-marks and compared with a non-adaptive cache.The rest of this paper is organized as follows. Ageneral system architecture, benchmarks used, and thesimulation environment are presented �rst. Cache be-havior for non-adaptive system is shown next support-ing the claim for the need to use adaptivity. A cachearchitecture with adaptive cache line size is describednext, followed by the adaptivity algorithm and its var-ious design alternatives. Lastly, the performance eval-uation of the adaptive system is presented followed byconclusions.2 Experimental MethodologyThe benchmark choice for performance evaluation con-sists of selected SPEC92 and SPEC95 integer and oating-point codes and an additional oating-point code, ARC3D.The benchmark description and some execution statis-tics are shown in Table 1. Except for GCC and ARC3D,a complete benchmark is executed, traced, and simu-lated. For GCC only subroutine CC1 and for ARC3Donly subroutine STEP are traced and simulated butthese account for most of the execution time. The fourSPEC95 codes were simulated for the �rst 500M refer-ences only. ARC3D was chosen because it has a sig-ni�cant fraction of memory accesses with long strides.



Program Input Instr MemoryName (M) (M)GCC stmt.i 88 31SC loada1 862.6 128.6LI li-input.lsp 10,145 5,367FPPPP natoms 1335.1 672.6ARC3D - 64.2 24.2APSI apsi.in 1324.1 500IJPEG specmun.ppm 1718.5 500PERL scrabbl.pl 1264.9 500WAVE wave5.in 1481.8 500Table 1: Benchmark CharacteristicsInputs for SPEC codes used are also listed in the ta-ble. The benchmarks were compiled on an SGI systemfor an R4000 processor using MIPSPro compilers withthe following ags: -n32 (MIPS-III instruction set, 32bexecutable) and -O2 ag. They were used for execution-driven cache and memory simulation of the architecturedescribed in this paper. The cache simulator was in-voked and driven via MINT-3 [VeFo94] which models asingle-issue, statically-scheduled processor.A system architecture used in this study consists ofa processor, the L1 cache with adaptive line size, andmemory. We are not modeling the execution timingin this study and therefore the processor instructiontiming, lack of an L2 cache, blocking L1 cache behavior,etc. are orthogonal to the study. Given the benchmarksused and current processor implementations, a 16KBcache is studied. The cache is direct-mapped and usesa write-back policy. The line sizes ranges from 8 to 256bytes.Primary performance metrics used in the paper area cache miss rate and a memory-to-L1 data fetch tra�cvolume, either averaged over the execution of a programor shown in the time domain. In the latter case, eachdata value corresponds to an average behavior during a�xed interval of N memory references. N is chosen forpresentation purposes only to make data graphs read-able. The two main metrics are augmented with statis-tics speci�c to line size adaptivity.3 Lack of "Optimal" Cache Line sizeIt has been shown in the past that an optimal line size,the size producing minimalmiss rate, varies from bench-mark to benchmark. To demonstrate this for our bench-mark suite and support the claimed need for adaptiv-ity, a 16K cache with a �xed line size ranging from 8 to256Bytes is simulated. Similar results for SPEC95 havebeen shown in [9]. For each benchmark, the "optimal"miss rate was determined and a normalized miss rate

Figure 1: Normalized miss rate di�erence �Mdi�erence �M was computed for all possible line sizesas �M = Ml�MoptMopt � 100%The normalized miss rate di�erence for all benchmarksis shown in Figure 3. A missing bar indicates a 0%di�erence and corresponds to the optimal line size.The results show that there is no single, "optimal"line size for all benchmarks. In fact, an optimum mayeven be outside the range of line sizes chosen for thestudy. The loss of performance compared to "optimal"can be signi�cant. Consider a 32Byte line typical oftoday's processors, such as Pentium or DEC Alpha. Alarge miss rate reduction is possible in this case: 100%for SC and 25% for FPPPP, PERL, and WAVE.
Figure 2: Distribution of optimal line size in "time"Next, consider the intra-benchmark cache behavior.In each interval of 100K memory references a line sizeresulting in minimal miss rate is determined. Figure 2shows the resulting distribution of optimal sizes in the"time-domain" for GCC. As can be seen in the �gure,no single "optimal" line size exists within a benchmarkas well. The optimal size is 32B in approximately half



of the intervals, but it is 16B about 15% of the timeand 64B approximately 30% of the time. Even 128Bline is optimal a fraction of the time. Results for otherbenchmarks are not shown for lack of space, but theirbehavior is similar and strongly supports the need foradaptivity within a benchmark.4 A Cache Organization with Adaptive Line SizeGiven the need and possible performance advantages ofadapting the cache line size, an architecture that cansupport the adaptivity is described next. The architec-ture has many parameters that can signi�cantly inu-ence performance. Our a-priori concerns were an in-crease in tag lookup time and the memory bandwidthand thus our choices described below are primarily in-uenced by the desire to keep these low.As in the case of cache size, the line size is a built-in hardware parameter. It determines the RAM sizeused and the data path width, both of which are opti-mized for some �xed line size. Thus it cannot be "re-con�gured" in a standard sense as this would requirechanging the width of RAM blocks or redundancy andmultiplexing. Instead, our approach is to have a cachewith a small, "physical line, say 8Bytes (1 word), but tofetch and replace a variable number of words simultane-ously as a "virtual line". The MIPS R3000 architecture[11] had a cache implementation with such a variable-size line, but the line size could only be set at hardwarereset or power-up. A similar underlying hardware ar-chitecture is assumed, but allowing the line size to bechanged dynamically for each (virtual) line in the L1cache.The issues to be resolved in the design of such acache are:� when to change the size� how to change it� what information to keep and where� statistics needed to make the change decisionWe propose to change the size on line replacementand either reduce or increase the size as follows:� reduce the size if some fetched words were unused� increase the size if an "adjacent" line was presentin the cache. The "adjacent" line is a line of thesame size that would be part of a larger-size line.To make the decision, the virtual line usage statisticswill be kept while it is in the L1 cache. Thus theyreect the line behavior from a latest miss fetch to thesubsequent replacement. In particular, for each word inthe line, its usage will be monitored with a counter whilein the cache. An additional bit monitors the presence of

the adjacent line during the line's residence in the cache.On line replacement, the statistics are used to decidewhat the line size should be next time it is fetched.The change can only be 2x or 1=2x of the current sizein this paper.This approach thus requires an additional memoryto keep the statistics for each line. In memory we need:� current virtual line size - log2 L, where L is thenumber of line sizes used� a counter for tracking the rate of changeEach "physical" line, e. g. each 8B word, in thecache needs the following items added to the standardtag:� current virtual line size� "adjacent" bit� the usage counterOne concern is the e�ect on system clock and anyadditional delays caused by adaptivity. Our approachminimizes these e�ects by adjusting the line size on re-placement only. Thus the tag look up is not a�ected andcan still be done in under a single clock cycle. There-fore, hit access time is not a�ected. Miss access time isa di�erent story and will depend on how we use the linesize information from memory. Finally, an additionalmemory tra�c is generated on replacing a clean linewhen its size changes because it needs to be updated inmemory. The e�ect of this on total memory tra�c isshown later in the paper.Finally, an initial or default virtual line size needs tobe de�ned for cold starts. This line size can potentiallyhave an e�ect on performance, but it should not be asigni�cant one as it is only used on cold starts. However,as with some of the other choices we made in designingthis architecture, it possible to set the initial line sizeper benchmark with compiler's help. It is also possibleto rely more heavily on the default size to eliminatethe need to update the size in memory more frequently.We will not pursue these issues further in the paper,however.4.1 Line Size Adaptivity AlgorithmThe algorithm and some of the alternatives possible inits design are discussed next. It is assumed that a tag isassociated with each 8B word in cache and the mappingfunction to �nd the addressed word is a standard one.The current line size (3bits), the adjacent bit, and thesaturating use counter (2 bits) are added to each tag.The line size can range from 8B to 256B and can onlybe increased/decreased by a factor of two. None of theabove has an e�ect on the tag lookup and thus the hitcase is not discussed here.



Given cache miss address Addr1. Lookup cache tag at AddrReturns l2: line size of entry e2 at Addr2. Start miss fetch for line e1 at Addr and its size l13. If l1 � l2 Then4. For each line ei to be replaced Do5. Get an entry ei for this line and it length li6. Perform line size analysis(ei, li)7. If size changes or line is modi�ed Then8. Write back to memory EndEnd9. Else /*decide on the next size for line: */10. decrease line size request (e2)End11. If adjacent cache line of same size is present Then12. Set adjacent bit for e1 and its adjacent lineEnd Figure 3: The adaptivity algorithmThe algorithm shown in Figure 3 follows the generaloutline of the discussion above. It starts by issuing themiss fetch request. The line size is not known untilthe data arrives. During the miss fetch one can readand store in a bu�er of maximum line size the line(s)which will be replaced and complete the replacementprocess when the miss fetch data arrives. The actionstaken at line replacement are discussed below. Severalalternatives in the design of the algorithm are shownand explained in the text below.A problem not present in the �xed-size case is re-placement when the size of the miss line is di�erentfrom the size of a line(s) to be replaced. Di�erent linesize recon�guration decisions are made depending onthe relationship between the miss line and the replacedline sizes. One or more lines may be replaced, if theincoming line size is larger than or equal to the existingline size. Every cache line to be replaced is analyzedand its next line size selected using a line size analysisalgorithm shown in Figure 4. When the miss line size issmaller than the line being replaced, there is a choice ofreplacing the entire existing line or replacing only halfof it and leaving the other half in the cache. In the for-mer case, cache under-utilization may occur since halfof the cache entry may remain unused. In the lattercase, half of the existing line stays in the cache but achange in the line size occurs not based on the line'sbehavior. The latter approach is used in the algorithm(line 10) to conserve the memory bandwidth.The line size analysis algorithm (Figure 4) consists

Input: line e of size l (words w0 ... wl�1)1. If all of the words w0:::wl=2�1 ORall of the wl=2:::wl�1 are not used Then2. decrease line size request(e)3. If the adjacent line is in the cache Then4. Reset its adjacent bitEnd5. Elseif adjacent bit is set AND6. adjacent cache line is not in cache AND7. most of the entries have low usageThen8. increase line size request(e)EndFigure 4: Next line size analysis algorithmof two parts. First, the word usage in each half of theline is checked. The future line size is changed to 1/2x,if one of the halves is not used and the adjacent lineis reset not to grow if it is in the cache. Otherwise,if the adjacent line has been present in the cache atsome point then line size needs to be increased. If theadjacent line is in the cache the increase action can bedelayed until its replacement. If not, given a low usageof the words in the line its size is increased to 2X. Thislast check is made in an attempt to reduce frequent linesize changes if the miss rate on the line is already high.The actual test is "if 50% of the word usage countersare � 2".Finally, there are several alternatives as to whenthe actual increase or decrease in the line size occurs.It does not have to occur immediately when one ofthe two functions, decrease line size request(e) or in-crease line size request(e) , is invoked. This decisionhas an e�ect on performance. Several possible choicesare described next, but other possibilities exist as well.� Change the line size immediately (direct). Linesize adapts fast, but thrashing may occur.� Change the line size only after N consecutive in-crease or decrease requests to prevent thrashing.An up-down counter or a �nite-state machine canbe used to implement this with the state stored inmemory.� Increase the line size immediately but decrease theline size only after N consecutive decrease requests(inc-fast). This alternative works better than theprevious two. Line size is increased immediatelyto exploit spatial locality and delayed line size de-crease can prevent loss of spatial locality from ran-



dom events such as conict misses. A drawback ofthis alternative is an increase in bandwidth due todelay in line size decrease.� Similarly, a decr-fast algorithmcan be de�ned whichdecreases the line size immediately, while increas-ing the size after N consecutive increase requests.� Apply the inc-fast for a small line size and the decr-fast mechanism for the large line size (partial-fast).The last alternative was found to be the most e�ec-tive in bandwidth reduction. The performance resultspresented in the next section were obtained using thepartial-fast mechanism with N=2.5 Performance Evaluation
Figure 5: Miss rate vs initial adaptive line sizeLet us start by presenting the miss rates for theadaptive case as a function of initial line size. The re-sults shown in Figure 5 clearly demonstrate the adap-tivity working: the miss rates are almost independentof the initial line size. The miss rate for each bench-mark does not have a distinct minimum as in the caseof �xed-size lines. This indicates that the initial adap-tive line size selection is not important, although thesmallest size should, perhaps, be avoided (more on thisbelow).The miss rate is not always improved by adaptivity,however. Figure 6 shows the miss rate for 32B �xed, op-timal �xed, and 256B adaptive line sizes. In GCC andPERL the miss rate is lower than in the optimal �xedcase. In LI and ARC3D it is slightly worse, while otherbenchmarks have a miss rate noticeably worse than op-timal.The reason lies in the nature of the (partial-fast)algorithm used. It is trying to avoid thrashing and pre-vent frequent line size increase. The worst results in the

Figure 6: Miss rateadaptive case are obtained for WAVE, APSI, and SC:benchmarks which in the �xed case achieve best per-formance with a 256B line. To investigate the e�ect,the inc-fast algorithm was used instead, which growsthe line size immediately but decreases it slowly. Theperformance of some benchmarks became comparableto the �xed case, others improved, although not su�-ciently.
0

10

20

30

40

50

60

70

8 16 32 64 128 256

A
v
er

ag
e 

li
n
e 

si
ze

gcc
sc
li

fpppp
arc3d
ijpeg
perl

wave
apsiFigure 7: Average line size for adaptive organizationTo understand the reasons for the behavior of theadaptive cache under the part-fast algorithm, the av-erage line size observed during program execution isshown Figure 7. The average line size is between 10and 20Bytes. Overall, the optimal line size is also atvis a vis the initial line size for all benchmarks. This isanother indication that the adaptivity is working well.Still, one would expect the average line size for bench-marks such as SC and FPPPP to become larger withadaptivity since larger �xed size line have lower miss



rate. It does not happen primarily for two reasons: theforced decrease in the line size when a shorter line ismiss fetched and a limited de�nition of adaptivity andallowed line growth.
9

10

11

12

13

14

8 16 32 64 128 256

L
in

e 
si

ze
 c

h
an

g
e 

ra
te

inc
dec

Figure 8: % misses producing line size change in GCCWhile the average line size may be relatively con-stant with adaptivity, it does not mean that size changeis infrequent or that the line size is approximately thesame throughout program execution. Figure 8 showsthe frequency of line size change during the execution ofGCC. It is measured as a fraction of miss fetches result-ing in replacement with a size change. The adjustmentis frequent, with over 20% of all the lines replaced, ei-ther increasing or decreasing on replacement. As can beexpected, the relative number of increases vs decreaseschanges with the initial virtual line size.
0

20

40

60

80

100

120

140

160

8 16 32 64 128 256

T
ra

ff
ic

 r
at

io

gcc
sc
li

fpppp
arc3d
ijpeg
perl

wave
apsiFigure 9: Fetch tra�c ratio RlT to same-size �xed caseThe last performance metric presented is a normal-ized memory fetch tra�c ratio, RlT , for each line size l.It is de�ned as

RlT = T ladapt:T lfixed � 100%RlT is shown in Figure 9. As should be clear from theabove discussion, it was of great concern to us and inu-enced our adaptive algorithm design a great deal. Thecache to memory "tra�c" counts the total number ofdata bytes moved by miss fetches. The e�ect of adap-tivity is very pronounced, it automatically reduces theutilization of the memory interface, one of the criticalmemory hierarchy resources.The tra�c is signi�cantly reduced for all initial linesizes, except 8B. For the 8Byte case, adaptive organi-zation actually ends up using a larger line size and thusgenerates more tra�c. In general, starting at 32B ini-tial line size, the total tra�c is, on average, close to 1=2of the tra�c for the same �xed-size case. The resultsare not entirely surprising given the average line sizeobserved for various codes (see Figure 7).
0

20

40

60

80

100

120

140

160

8 16 32 64 128 256

T
ra

ff
ic

 r
at

io

gcc
sc
li

fpppp
arc3d
ijpeg
perl

wave
apsiFigure 10: Fetch tra�c ratio R32T to 32B �xed caseNext, consider the memory tra�c for each initialadaptive line size over a 32B �xed case, R32T , shown inFigure 10. The tra�c is quite at for all benchmarks.Except for one benchmark, IJPEG, the decrease is inexcess of 50% over the widely-used 32B line size.Another view of the memory tra�c reduction for32B adaptive line size is shown in Figures 11 and 12for ARC3D and GCC, respectively. The tra�c changessigni�cantly within an application as well. The tra�cratio to the 32B �xed line is computed and presentedfor each time interval (100K memory references). Thedecrease can be in excess of 50% over a signi�cant por-tion of application's execution time. Large variationsare also observed from one interval to another in GCC,showing the adaptivity adjustment to occur fast enoughto make an "instantaneous" e�ect.



0

20

40

60

80

100

0 50 100 150 200 250

T
ra

ff
ic

 r
at

io

0.1M Memory AccessFigure 11: Time-domain tra�c ratio R32T for ARC3D
0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

T
ra

ff
ic

 r
at

io

0.1M Memory AccessFigure 12: Time-domain tra�c ratio R32T for GCC6 DiscussionDesign choices for caches with adaptive line size were al-ready discussed in various earlier sections. This sectionre-examines some of them in light of the performanceresults obtained. The overall system architecture is re-visited to discuss the e�ect of having an L2 cache.Let's start with the question of hardware overheads.Much of the overall adaptivity design was inuencedby hardware choices to keep it implementable. The twomain sources of overhead in the cache itself are use coun-ters and extra address bits in the tag due the "physi-cal" line size of 8B. The use counters simulated in thisstudy are only 2 bits. However, it appears that theymay not be really needed and a single "use" bit wouldwork equally well. The overhead of extra tag addressbits is higher. However, it can be signi�cantly reducedby setting the minimal line size to be 16B. This is quan-ti�ed in the next section. Finally, the current line size

stored in each physical line can be reduced to 1 bit bymarking just the start of each new line.An important issue related to the timing is how thereplacement is done once the miss fetch is completed. Ifone waits to know the incoming line size, then the cachewill be busy reading out and possibly writing back thereplaced line(s) after the fetch is completed. Ignoringthe expensive, brute-force approach of multi-porting thecache, one can use a replacement bu�er of the size equalto maximum allowed line size. It can be �lled fromthe cache during the miss fetch assuming the maximumsize line is being replaced. Upon completion of the missfetch and determination of precisely which lines needto be replaced, the replacement can proceed from thereplacement bu�er. This largely eliminates the need toaccess the cache except for setting some of the adjacentbits. Those can likely be placed in a separate register(s)rather than the tag itself to eliminate the need for thisextra access to the cache.Overheads in the memory are harder to reduce be-yond what is suggested above for the cache. The pri-mary concern in memory is, perhaps, the additionalaccesses needed to just adjust the size. They do notappear to be numerous enough but further investiga-tion is required. Overall, given the projected capacityof DRAM chips in the next few years, the size shouldnot be a source for concern.The architecture used in this study did not have anL2 cache. An interesting question is how to use adap-tivity in the L1 cache in the presence of the L2 cache,not to mention the question of using adaptivity in theL2 itself. We feel that adaptivity would be less e�ec-tive in L2 given the typically very low L2 miss ratesfor standard benchmarks [HePa96]. But it may be thatit can allow a smaller L2 cache with adaptivity to havethe same performance as a larger, standard cache. Also,for codes that cannot �t into the L2 cache the approachmay be worthwhile.Regardless of the adaptivity in the L2 cache, the L2can be used to keep the L1 line size instead of using thememory. In fact, this may allow one to forgo keepingany additional information in memory and start withthe default or average size whenever an L2 miss wouldoccur. As mentioned above, the best initial line sizechoice appears to be one of the large line sizes. Thee�ect of periodically re-starting with a default value isprobably not signi�cant.The e�ect of adjusting the algorithm in Figure 3, line10, to forgo the line size decrease when the incoming lineis smaller appears small. Our preliminary results showthat this leads to increased memory tra�c without anoticeable improvement in miss rates.Finally, let us compare and di�erentiate our workwith [KuWi98]. Their idea was to use a large, �xed-sizeline but only fetch words predicted to be used. They



fetch a variable set of words in a 128B line, based onwhich words were used on a previous fetch. A predictorsimilar to 2-level branch history predictors [YePa91] isused to record word usage. One way to compare thiswith our approach is to say that we allow a variablesize line and predict the size of a line rather than whichwords are used in a large, �xed-size line. Our "predic-tor" is simpler and requires very little hardware. It alsoincurs no lookup delay before a miss fetch can be is-sued. Finally, we fetch a standard, contiguous line fromDRAM's, not a random set of words.We believe that our approach is more e�cient inavoiding conicts and keeping more distinct lines in thecache. This is important when associativity and size aresmall. Possible improvements to the algorithm used sofar can lead to further performance increases if the missrate rather than the tra�c reduction is targeted.7 Possible Improvements
Figure 13: Miss rate di�erence �M168 : tag per 8B vs16BFirst, let us consider the performance of an adaptivecache with a 16B "physical" line. The advantage of thisorganization is reduced cache tag overhead. The missrate di�erence, �M168 , for 256B adaptive line and 8Band 16B "physical" line sizes is computed as follows:�M168 = M16256�M8256M8256 � 100%�M168 for the 256B adaptive line are shown in Fig-ure 13. They clearly demonstrate that the performanceis improved when using a longer tagged line, except forone benchmark. The relative di�erence can be signi�-cant, up to 38%, with the average over 20%.The tra�c change due to the increase in the mini-mal line size/transfer unit from 8B to 16B is shown inFigure 14 as the relative tra�c di�erence, �T 168 :

�T 168 = T16256�T8256T8256 � 100%The tra�c is increased indicating that our algorithmoften reduces the line size to its minimum. The rela-tive di�erence can be signi�cant, although under 50%,and, given the improvement in miss rate may be toler-ated. The 80% increase is in PERL, which also su�ersincreased miss rate.
Figure 14: Tra�c di�erence �T 168 : tag per 8B vs 16BAs mentioned above, other modi�cations to the algo-rithm can further improve the miss rate. Three speci�cchanges were made which are briey summarized next.First, an adjacent line can be of equal or smaller size.In the latter case it can be located anywhere in the ad-jacent "half". Second, a test to increase a line size hasa higher priority than a test to decrease the line size.These changes increase the chances to discover adjacentlines and double the line size. Lastly, when an incomingline is smaller than an existing line in the cache, onlythe exact part of the existing line to be occupied by theincoming line is replaced. Multiple "sub-lines" of a re-placed line can thus remain in the cache increasing itsutilization and reducing conict misses. Using a 256Binitial line size for the adaptive case, Figure 15 showsthe di�erence �Mnewfixed opt between the miss rate of thenew algorithm and the optimal miss rate of �xed linesize cache:�Mnewfixed opt = Mnew�Mfixed optMfixed opt � 100%For all but one benchmark, the new algorithm achievesa better miss rate than the optimal �xed line size.8 ConclusionThis paper presented a cache design in which the linesize adjusts dynamically based on application behavior.A hardware algorithm to achieve this is based on moni-toring the access to a given line and changing the future



Figure 15: Miss rate di�erence �Mnewfixed optline size accordingly. The size adjustment is computedduring line replacement based on what was observedduring the line's current stay in the cache. The size iskept in memory and takes e�ect on future fetches.The performance results show that with adaptiv-ity the miss rates are largely independent of the ini-tial line size. The miss rate is improved in some ofthe benchmarks even over the optimal for the �xed sizecase. More importantly, the amount of memory tra�cis signi�cantly decreased in all benchmarks comparedto �xed size case (except for 8B line). The tra�c de-creases by over 50% for an initial line size of 32B andeven more for larger line size. The best strategy for ap-plying adaptivity is to use a large initial line size andhave the adaptivity decrease it as needed.The results clearly show the feasibility of the adap-tive approach. Hardware requirements of the approachare modest and can be further improved by increasingthe physical line size. This also leads to signi�cant im-provement in miss rates, but the tra�c increases as well.Miss rates can be improved over the optimal �xed casewhen tra�c is not a concern.References[1] D. H. Albonesi, Dynamic IPC/Clock Rate Opti-mization, Intl. Symposium on Computer Architec-ture, pp. 282-292, June 1998.[2] A. Chien and J. Kim, Planar Adaptive Rout-ing: Low-cost Adaptive Networks for Multiproces-sors, Intl. Symposium on Computer Architecture,pp. 268-277, July 1992.[3] W. J. Dally and H. Aoki, Deadlock-free adaptiverouting in multicomputer networks using virtualchannels, IEEE Transactions on Parallel and Dis-tributed Systems, vol. 4, pp. 466{475, Apr 1993.

[4] Fredrik Dahlgren, Michel Dubois and Per Sten-strom, Fixed and Adaptive Sequential Prefetchingin Shared Memory Multiprocessors, Intl. Confer-ence on Parallel Processing, Aug, 1993.[5] J. Kuskin et al, The Stanford FLASH Multipro-cessor, Intl. Symposium on Computer Architecture,pp. 302-313, April 1994.[6] Edward H. Gornish and Alex Veidenbaum, AnIntegrated Hardware/Software Data PrefetchingScheme for Shared-Memory Multiprocessors, Intl.Conference on Parallel Processing, Aug. 1994.[7] PentiumTM Processor User's Manual, Intel Corpo-ration, 1993.[8] T. Juan, S. Sanjeevan, and J. Navaro, DynamicHistory Length Fitting: a Third Level of Adap-tivity for Branch Prediction, Intl. Symposium onComputer Architecture, pp.155-166, July 1998.[9] K. Inoue, K. Kai, and K. Marukami, HighBandwidth, Variable Line-Size Cache Architecturefor Merged DRAM/Logic LSIs, Japanese IEICETransactions on Electronics, Vol. E81-C No. 9, pp.1438-1447, September 1999.[10] S. Kumar and C. Wilkerson, Exploiting Spa-tial Locality in Data Caches Using Spatial Foot-prints, Intl. Symposium on Computer Architec-ture,pp. 357-368, June 1998[11] MIPS R3000 hardware manual, MIPS Corpora-tion.[12] T. Matsumoto, K. Nishimura, T. Kudoh, K. Hi-raki, H. Amano, and H. Tanaka, DistributedShared Memory Architecture for JUMP-1: AGeneral-Purpose MPP Prototype, Intl. Sympo-sium on Parallel Architecures, Algorithms, andNetworks, pp. 131-137, June 1996.[13] Steve Turner and Alex Veidenbaum, Scalability ofthe Cedar System, Supercomputing, pp. 247-254,1994.[14] Jack E. Veenstra and Robert J. Fowler, MINT:A Front End for E�cient Simulation of Shared-Memory Multiprocessors, Intl. Workshop on Mod-eling, Analysis and Simulation of Computer andTelecommunication Systems , pp. 201-207, Jan.1994.[15] T.-Y. Yeh and Y. N. Patt, Two Level AdaptiveTraining Branch Prediction, Intl. Symposium onMicroarchitecture, pp. 51-61, Nov. 1991.


