
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Hardware Optimizations Enabled by a

Decoupled Fetch Architecture

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

from the Department of Computer Science and Engineering

by

Glenn Reinman

Committee in charge:

Professor Brad Calder, Chairperson

Professor Todd Austin

Professor Paul Chau

Professor Matt Farrens

Professor Andrew Kahng

Professor Dean Tullsen

2001

Copyright

Glenn Reinman, 2001

All rights reserved.

The dissertation of Glenn Reinman is approved, and it is

acceptable in quality and form for publication on micro-

�lm:

Chair

University of California, San Diego

2001

iii

Dedications

I dedicate this work to the many friends and family who have made such a di�erence in my life and

who have encouraged me throughout my career.

To my parents, who have always o�ered me unconditional support through all of my en-

deavors with their unbridled enthusiasm. They have managed to tolerate my often moody disposition

and �ercely independent nature with compassion and understanding. Without them (and Domino),

this work would not have been possible.

To the many faculty who have illuminated my path towards the PhD. To my advisor, Dr.

Brad Calder, for many years of putting up with me and for pushing me that extra mile or twenty

(and for teaching me the meaning of the word both). To Dr. Dean Tullsen, for your expert advice

and encouragement. To Dr. Todd Austin, for showing me the lighter side of academia. To Dr. Norm

Jouppi, for your patience and for a great opportunity. To Dr. Rich Wolski, for numerous sessions of

expert advising { even on nonacademic issues. To Dr. Geo� Voelker, for sharing his experience and

advice. To Dr. Matt Farrens, for serving on my committee and showing me that Professors can have

balance in their lives too. To Dr. Andrew Kahng for �lling in on my committee at the last moment.

Thanks to all of my friends in the architecture lab. To Lori, who has been my great friend

since we started the PhD program so many years ago. I will always appreciate your laughter, kindness,

advice, perspective, and compassion { not to mention your volleyball skills. You are the sister I never

had. To Suleyman, for his incredible patience for bad jokes and abuse. Thanks to both you and Sule for

BBQs, biking, blading, and hiking. It is rare to �nd someone so good-natured and honest. To Tim, my

co-conspirator, partner in crime, and author of wacky stu�. Thanks for introducing me to hockey { and

for countless schemes and Suley-snares. To Chandra (Dr. Krintz that is), for always going �rst and for

her incredible ability and drive. And of course, for passing on her thesis formatting wizardry. To John,

for his sense of humor and for hours of hard work administering machines. Remember your martial arts

training well. To Barbara, who's compassionate nature and contagious laughter a�ected the whole lab

(and to Hillary for her enthusiastic welcomes). To Beth, master coordinator and networker. To Eric,

for asking questions. To Je�, for bringing laughter to the lab. To Jamison, for his unique perspective

and Intel advice. To Erez, for the gift of music. To Wei, for his vast Intel knowledge. To Floria, for

her bravery in a new country.

Thanks to the sta� at UCSD for countless hours of help and patience. To Julie Conner,

who somehow manages to stay sane and amiable while coordinating this department. To CSE support

for answering many, many questions. To the administrative sta� for their ready smiles and patience.

And, of course, my thanks to my best and closest friend Taraneh. You have been a source

of strength and compassion in my life, and have taught me a great deal about myself. The real future

work in my life begins with the next chapter that we will write and share together. To your family, for

welcoming me into their culture and home, and for many, many trips to Javan.

iv

I met a traveller from an antique land

Who said: `Two vast and trunkless legs of stone

Stand in the desert. Near them, on the sand,

Half sunk, a shattered visage lies, whose frown,

And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,

The hand that mocked them and the heart that fed.

And on the pedestal these words appear {

\My name is Ozymandias, king of kings:

Look on my works, ye Mighty, and despair!"

Nothing beside remains. Round the decay

Of that colossal wreck, boundless and bare

The lone and level sands stretch far away.'

- Percy Bysshe Shelley

v

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xiv

Acknowledgments . xv

Vita and Publications . xvi

Abstract . xviii

I Introduction . 1

II Basic Processor Pipeline . 5

A. Front-End . 5

1. Branch Prediction Hardware 7

2. Instruction Cache . 8

B. Execution Core . 9

1. Issue Hardware . 9

2. Reorder Bu�er . 10

3. Functional Units . 10

4. Data Cache and MMU . 11

5. Commit Hardware . 11

III Motivation . 12

A. Hardware Concerns . 12

1. Wire Latency . 13

2. Clock Scaling . 18

3. Energy Dissipation . 19

B. Latency Concerns . 20

1. Instruction Cache . 20

2. Branch Prediction . 20

3. Interaction Between Branch Prediction and Instruction Cache . 21

vi

IV Prior Work . 25

A. Future Technology Scaling . 25

B. Out of Order Instruction Fetching 26

C. Helper Engines . 27

D. Branch Prediction . 27

E. Fetch Guided Cache Prefetch . 29

F. Decoupled PC-based Value Prediction 31

G. Low Power Cache Research . 31

H. Next Line and Set Prediction . 33

V Evaluation Strategy . 35

A. Prediction Rate . 35

B. IPC . 36

C. IPC with Timing . 38

D. BIPS . 38

E. Energy Delay Product . 39

F. Conclusion . 39

VI Simulation Methodology . 41

A. Architectural Simulator . 41

B. Benchmarks . 43

C. Timing Model . 44

VII CACTI . 47

A. New Timing Features . 48

1. Transistor Tuning . 50

2. Improving the Tag Path . 50

3. Fully Associative Cache . 53

4. Multiple Cache Ports . 58

5. Process Technology Scaling . 59

6. Cache Pipelining . 59

B. Power Modeling . 60

1. Power Estimation . 60

2. Automatic Supply Voltage Scaling 61

3. Power Model . 61

4. Integration of Timing and Power Models 62

5. Prior Work . 63

C. Sample Results . 63

1. SPICE Veri�cation . 64

2. Timing Results . 68

3. Power Results . 69

vii

4. Multiported Results . 70

D. Modi�cations for this Thesis . 71

VIIIDecoupled Front-End Architecture . 72

A. Fetch Target Queue . 72

1. FTQ Occupancy . 74

2. Speculative Recovery Structures 76

B. Results . 80

1. Performance . 81

2. FTQ Occupancy . 81

3. Sources of Occupancy . 83

4. FTQ Size . 87

IX Branch Predictor Optimizations . 88

A. Fetch Target Bu�er . 88

1. FTB Structure . 91

2. Branch Direction Predictor . 94

3. Functionality of the 2-Level FTB 96

B. Results . 98

1. Predictor Results with Ideal Interconnect Scaling 98

2. Predictor Results Assuming the Interconnect Scaling Bottleneck 106

3. Fetch Distance . 109

4. FTQ Occupancy . 109

5. Speculative History Queue Size 112

6. Further Enhancements . 113

C. Summary . 113

X Instruction Cache Performance Optimizations 114

A. Prior Instruction Cache Prefetching Work 115

1. Tagged Next Line Prefetching 115

2. Target and Wrong Path Prefetching 115

3. Stream Bu�ers . 116

4. Other Hardware Based Instruction Prefetching 116

5. Software Based Instruction Prefetching 117

6. Lockup-free Caches . 118

B. Cache Probe Filtering . 118

1. Stream Bu�er Modi�cations 119

2. Results . 120

C. Fetch Directed Prefetching . 124

1. Fetch Directed Prefetching Architecture 125

2. Filter Based on Number of FTQ Entries 126

viii

3. Cache Probe Filtering . 127

4. Fetch Block Evicted Prefetching 127

5. Cache Miss Filtering . 129

6. FDP Results . 130

7. Comparison to prior work . 133

8. Impact of FTQ size . 137

9. Impact of cache size . 137

10. Impact of cache ports . 140

11. Impact of reorder bu�er size 144

D. Summary . 146

XI Instruction Cache Energy and Complexity Optimizations 148

A. Cache Design Tradeo�s . 148

1. Set-Associative Instruction Cache 149

2. Predictive Sequential Associative Cache 151

3. Multi-component Serial Cache 152

4. Performance and Energy Comparisons 154

B. Single Cycle Instruction Cache Architectures 157

1. Next Cache Line and Set Architecture 158

2. FTB Architecture . 159

3. Way Prediction . 161

4. Results . 162

C. Way Prediction with Prefetching 164

D. Speculative Fetch Architecture . 167

1. Cache Block Queue . 173

2. Speculative Fetch Bu�er and Cache Misses 174

3. Consistency Mechanism . 174

4. Results . 176

E. Summary . 181

XII Conclusions . 182

XIIIFuture Work . 186

A. Branch Prediction . 186

B. Value Prediction . 187

Bibliography . 189

ix

LIST OF FIGURES

I.1 Two processing engines: the processor pipeline at a high level. . 1

I.2 The decoupled front-end design at a high level. 2

II.1 Simpli�ed Processor Pipeline 6

III.1 Interconnect Parasitics . 14

III.2 Example of predictor stalls in a coupled front-end design. . . . 22

IV.1 Look-Ahead PC of Chen and Baer [21] 29

VII.1 Cache model used in CACTI [92]. 48

VII.2 Cache division terminology used in CACTI [92]. 49

VII.3 Balancing the tag and data paths. 51

VII.4 Illustration of split comparator. 52

VII.5 Fully associative cache model. 54

VII.6 Layout of a fully associative cache with 16 subarrays. 54

VII.7 Multiple port example around a single SRAM cell. 57

VII.8 SPICE vs. CACTI { Access Time 63

VII.9 SPICE vs. CACTI { energy consumption 64

VII.10 Access times for a variety of cache con�gurations. 65

VII.11 Energy consumption for a variety of cache con�gurations. . . . 65

VII.12 Breakdown of energy consumption for a 64K 2-way associative

cache. 66

VII.13 Breakdown of energy consumption for a 64K fully associative

cache. 66

VII.14 Comparison of access times for a variety of cache con�gurations. 67

VII.15 Comparison of energy consumption for a variety of cache con-

�gurations. 67

x

VIII.1 Contemporary high level processor design. 73

VIII.2 The decoupled front-end high level design. 73

VIII.3 High level view of branch misprediction recovery 75

VIII.4 Speculative support structures. 77

VIII.5 Speculative History Queue (SHQ) example 78

VIII.6 FTQ performance comparison. 81

VIII.7 FTQ occupancy histogram. 82

VIII.8 Sources of FTQ occupancy (single ported caches). 84

VIII.9 Sources of FTQ occupancy (dual ported caches). 85

IX.1 The di�erence between the BBTB and FTB. 89

IX.2 The decoupled front-end architecture with fetch target bu�er. . 92

IX.3 BIPS comparison across three FTB/icache con�gurations. . . . 99

IX.4 Percent of predictions from the FTB that span multiple basic

blocks. 100

IX.5 IPC comparison across a variety of FTB con�gurations. 101

IX.6 BIPS comparison across a variety of FTB con�gurations. 102

IX.7 Accuracy comparison across a variety of FTB con�gurations. . 104

IX.8 IPC comparison with and without FTQ. 106

IX.9 BIPS comparison assuming non-ideal interconnect scaling. . . . 108

IX.10 BIPS comparison assuming non-ideal interconnect scaling. . . . 108

IX.11 Fetch distance histogram. 110

IX.12 FTQ occupancy histogram. 111

IX.13 Speculative History Queue (SHQ) size. 112

X.1 Stream bu�ers (high bandwidth L2 bus). 121

X.2 Stream bu�ers (low bandwidth L2 bus). 122

xi

X.3 Fetch Directed Prefetching Architecture. 125

X.4 Eviction Prefetching . 128

X.5 Fetch directed prefetching (high bandwidth L2 bus). 131

X.6 Fetch directed prefetch (low bandwidth L2 bus). 132

X.7 Prefetching comparisons (high bandwidth L2 bus). 134

X.8 Prefetching comparisons (low bandwidth L2 bus). 135

X.9 Impact of FTQ size on enqueue CPF (high bandwidth L2 bus). 138

X.10 Impact of FTQ size on enqueue CPF (low bandwidth L2 bus). . 139

X.11 Impact of cache size on CPF results. 140

X.12 Impact of extra tag port on single ported instruction cache. . . 141

X.13 Average IPC across di�erent port con�gurations. 142

X.14 Dual ported cache results with varied FTB con�gurations . . . 144

X.15 Impact of reorder bu�er size . 145

XI.1 Cache con�guration taken from CACTI [91] 149

XI.2 The direct mapped cache model. 151

XI.3 A 16KB 2-way set-associative multi-component (MC) serial cache.153

XI.4 MC cache base pipeline with way prediction. 160

XI.5 BIPS and Energy results for NLS and Way Prediction 163

XI.6 BIPS and Energy results for Way Prediction with FDP 165

XI.7 FDP complexity concerns. 166

XI.8 MC cache base pipeline. 168

XI.9 The speculative fetch architecture. 169

XI.10 The speculative fetch architecture with SFB. 172

XI.11 BIPS and Energy results for speculative fetch. 177

xii

XI.12 8KB 2-way set-associative cache results for speculative fetch. . 179

XI.13 8KB 4-way set associative cache results for speculative fetch. . 179

XI.14 8KB direct-mapped cache results for speculative fetch. 180

xiii

LIST OF TABLES

VI.1 Program statistics for the baseline architecture. 43

VI.2 Timing data from CACTI version 2.0 45

IX.1 FTB prediction accuracy . 105

IX.2 Timing data for Figure IX.9 . 107

X.1 Port Data for a 16KB 2-way set-associative instruction cache . 120

XI.1 CACTI 2.0 Data . 156

XI.2 Cycle Time Data . 158

XI.3 FTB Partial Tag Timing Data 159

xiv

Acknowledgments

The text of Chapter VII is in part a reprint of the material as it appears

in a summer internship report at COMPAQ's Western Research Laboratory under

the direction of Norm Jouppi. The report and model can be obtained at:

http://www.research.digital.com/wrl/people/jouppi/CACTI.html

The dissertation author was the primary researcher and author and the co-author

listed on this publication ([74]) directed and supervised the research which forms

the basis for Chapter VII.

The text of Chapters VIII, IX, and X are in part reprints of material as it

appears in the IEEE Transactions on Computers. The dissertation author was the

primary researcher and author and the co-authors listed on this publication ([73])

directed and supervised the research which forms the basis for Chapters VIII, IX,

and X

The text of Chapter IX is in part a reprint of the material as it appears

in the proceedings of the 26th Annual International Symposium on Computer

Architecture. The dissertation author was the primary researcher and author

and the co-authors listed on this publication ([70]) directed and supervised the

research which forms the basis for Chapter IX.

The text of Chapter X is in part a reprint of the material as it appears in

the proceedings of the 32nd International Symposium on Microarchitecture. The

dissertation author was the primary researcher and author and the co-authors

listed on this publication ([72]) directed and supervised the research which forms

the basis for Chapter X.

xv

VITA

September 1, 1974 Born, Miami, Florida

1996 B.S. in Computer Science and Engineering

Massachusetts Institute of Technology

1996{1997 Teaching Assistant, University of California, San Diego

1997{2001 Research Assistant, University of California, San Diego

1998 Internship, Intel MRL, Oregon

1999 M.S. in Computer Science

University of California, San Diego

2000 Internship, COMPAQ Western Research Lab

Palo Alto

2001 Doctor of Philosophy

University of California, San Diego

PUBLICATIONS

\Optimizations Enabled by a Decoupled Front-End Architecture." Authors:

Glenn Reinman, Brad Calder, and Todd Austin. IEEE Transactions on Comput-

ing. April, 2001.

\A Comparative Survey of Load Speculation Architectures." Authors: Brad

Calder and Glenn Reinman. Journal of Instruction Level Parallelism. May, 2000.

\Fetch Directed Instruction Prefetching." Authors: Glenn Reinman, Brad Calder,

and Todd Austin. 32nd International Symposium on Microarchitecture, Novem-

ber 1999.

\Classifying Load and Store Instructions for Memory Renaming." Authors:

Glenn Reinman, Brad Calder, Dean Tullsen, Gary Tyson, and Todd Austin.

ACM International Conference on Supercomputing, June 1999.

\A Scalable Front-End Architecture for Fast Instruction Delivery." Authors:

Glenn Reinman, Todd Austin, and Brad Calder. 26th International Symposium

on Computer Architecture, May 1999.

\Selective Value Prediction." Authors: Brad Calder, Glenn Reinman, and Dean

Tullsen. 26th Annual International Symposium on Computer Architecture, May

1999.

xvi

\Predictive Techniques for Aggressive Load Speculation." Authors: Glenn Rein-

man and Brad Calder. 31st International Symposium on Microarchitecture, De-

cember 1998.

xvii

ABSTRACT OF THE DISSERTATION

Hardware Optimizations Enabled by a

Decoupled Front-End Architecture by

Glenn Reinman

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2001

Professor Brad Calder, Chair

In the pursuit of instruction-level parallelism, signi�cant demands are placed on a

processor's instruction delivery mechanism. In order to provide the performance

necessary to meet future processor execution targets, the instruction delivery

mechanism must scale with the execution core. Attaining these targets is a

challenging task due to I-cache misses, branch mispredictions, and taken branches

in the instruction stream. Moreover, there are a number of hardware scaling

issues such as wire latency, clock scaling, and energy dissipation that can impact

processor design.

To address these issues, this thesis presents a fetch architecture that

decouples the branch predictor from the instruction fetch unit. A Fetch Target

Queue (FTQ) is inserted between the branch predictor and instruction cache.

This allows the branch predictor to run far in advance of the address currently

being fetched by the instruction cache. The decoupling enables a number of ar-

chitectural optimizations including multi-level branch predictor design and fetch

directed instruction prefetching.

A multi-level branch predictor design consists of a small �rst level predic-

tor that can scale well to future technology sizes and larger higher level predictors

that can provide capacity for accurate branch prediction.

xviii

Fetch directed instruction cache prefetching uses the stream of fetch ad-

dresses contained in the FTQ to guide instruction cache prefetching. By following

the predicted fetch path, this technique provides more accurate prefetching than

simply following a sequential fetch path.

Fetch directed prefetching using a contemporary set-associative instruc-

tion cache has some complexity and energy dissipation concerns. Set-associative

caches provide a great deal of performance bene�t, but dissipate a large amount

of energy by blindly driving a number of associative ways. By decoupling the tag

and data components of the instruction cache, a complexity e�ective and energy

e�cient scheme for fetch directed instruction cache prefetching can be enabled.

This thesis explores the decoupled front-end design and these related

optimizations, and suggests future research directions.

xix

Chapter I

Introduction

At a high level, a modern high-performance uniprocessor is composed

of two processing engines: the front-end processor and the execution core. The

front-end processor is responsible for fetching and preparing (e.g., decoding, re-

naming, etc.) instructions for execution. The execution core orchestrates the

execution of instructions and the retirement of their register and memory results

to non-speculative storage. Typically, these processing engines are connected by a

bu�ering stage of some form, e.g., instruction fetch queues or reservation stations

{ the front-end acts as a producer, �lling the connecting bu�ers with instructions

for consumption by the execution core. This is shown in Figure I.1.

...Instruction
Fetch

Execution
Core

Issue
Buffer

Figure I.1: Two processing engines: the processor pipeline at a high level.

The instruction fetch unit prepares and decodes instructions and supplies them to

the issue bu�er. The execution core consumes instructions from the issue bu�er

and then orchestrates their execution and retirement. The instruction fetch unit

is a fundamental bottleneck in the pipeline: the execution core can only execute

instructions as fast as the instruction fetch unit can prepare them.

1

2

Branch
Predictor

Instruction
Fetch

Execution
Core

... ...

FTQ Issue
Buffer

Figure I.2: The decoupled front-end design at a high level.

The fetch target queue (FTQ) bu�ers fetch addresses produced by the branch pre-

dictor. They are queued in the FTQ until they are consumed by the instruction

fetch unit, which in turn produces instructions as in an ordinary pipeline. The

FTQ allows the branch predictor to continue predicting in the face of an instruc-

tion cache miss. It also provides the opportunity for a number of optimizations,

including multi-level branch predictor designs and fetch directed cache prefetch-

ing.

This producer/consumer relationship between the front-end and execu-

tion core creates a fundamental bottleneck in computing, i.e., execution perfor-

mance is strictly limited by fetch performance. The trend towards exploiting more

ILP in execution cores works to place further demands on the rate of instruction

delivery from the front-end. Without complementary increases in front-end de-

livery performance, more exploitation of ILP will only decrease functional unit

utilization with little or no increase in overall performance.

In this thesis, we focus on improving the scalability and performance of

the front-end by decoupling the branch predictor from the instruction cache. A

Fetch Target Queue (FTQ) is inserted between the branch predictor and instruc-

tion cache, as seen in Figure I.2. The FTQ stores predicted fetch addresses from

the branch predictor, later to be consumed by the instruction cache. The FTQ

serves two primary functions: latency tolerance and fetch stream look-ahead.

Typically, the branch predictor and instruction cache work together in

the processor pipeline. If the instruction cache misses or there are insu�cient

ports on the instruction cache to consume an entire branch prediction, the branch

predictor must stall. The FTQ bu�ers fetch block predictions and can allow the

branch predictor and the instruction cache to operate relatively independently

3

and better tolerate latency in the instruction cache. Moreover, the ability of the

FTQ to tolerate latency enables the design of a multilevel branch predictor. A

multilevel branch predictor has a small, fast �rst level predictor along with mul-

tiple larger higher levels that have greater capacity and accuracy, but which take

longer to access. This type of predictor can provide highly accurate predictions

while keeping the structure's access time low, operating much like a multilevel

cache hierarchy. This technique can be used with virtually any branch predictor,

and may become even more useful as process technology sizes shrink and the

access time for large structures grows [2, 60]. The FTQ allows the instruction

cache to continue in the face of a �rst level miss in a multilevel branch predictor

hierarchy { if there are su�cient fetch predictions stored in the FTQ.

The second primary function of the FTQ is to provide a look-ahead

mechanism. The FTQ enables the branch predictor to run ahead of the in-

struction cache and provide a glimpse at the future stream of instruction fetch

addresses. These addresses can then be used to guide a variety of PC-based

predictors, such as instruction and data cache prefetchers, value predictors, and

instruction reuse tables. In prior architectures, some of these structures are ac-

cessed after the decode stage, and may need to be quite large to provide high

accuracy. This also means that the structures will likely have high latency. How-

ever, by bringing the predictor access before even the instruction cache is ac-

cessed, the processor can tolerate longer latency predictors. Alternatively, this

look-ahead can enable intelligent multi-level predictors. Furthermore, the fetch

address stream made available is no longer constrained by the number of ports

on the instruction cache. The rate at which predictions can be made determines

the rate at which fetch addresses are delivered to the FTQ, which can then be

consumed by prediction mechanisms. A single ported instruction cache can only

provide a cache block every cycle, but a high bandwidth branch predictor can

4

provide several fetch block addresses each cycle. In this thesis, we investigate

an instruction cache prefetching scheme that uses the FTQ to guide instruction

cache prefetch into a fully-associative bu�er. We investigate the use of di�erent

�ltration methods to reduce the bus utilization of the prefetcher.

The remainder of the thesis is organized as follows. Chapter III looks

at some of the hardware trends and pipeline dependency issues that motivate

this work. Chapter IV reviews some of the relevant prior work in this area. The

choice of metrics we use to evaluate the architectures in this thesis is described

in Chapter V. Chapter VI describes the simulation and timing methodology and

Chapter VII explores the changes made to the timing model for this thesis in

more depth. In Chapter VIII we present the FTQ and the decoupled front-end it

enables. The bene�ts and implementation of a multi-level branch predictor are

described in Chapter IX. In Chapter X, we investigate the optimizations made

possible by using the stream of fetch addresses stored in the FTQ. Chapter XII

provides a summary and we conclude with future directions in Chapter XIII.

Chapter II

Basic Processor Pipeline

Processor pipelines vary greatly from one machine to another. The high-

level pipeline we examine in this thesis is shown in Figure II.1. This pipeline has

two major components, the front-end processor and the execution core.

II.A Front-End

The basic front-end design has three major components: the branch

prediction hardware, the instruction cache, and the decode hardware. The front-

end provides instructions to the issue bu�er. The front-end of the machine tracks

the current program counter (PC) of the instruction currently being fetched. This

PC indexes into the branch prediction hardware and instruction cache, which

collectively return a branch prediction and an instruction cache block { assuming

that the branch predictor hardware can process a single branch per cycle and the

instruction cache is single ported. The decode hardware takes the cache block

and branch prediction and masks out instructions in the cache block that will

not be executed. The instructions to be executed are placed in the issue bu�er.

5

6

Issue
Buffer

Front-End

Issue

Execution
Core

Writeback

Commit

Ex/Mem
Reorder
Buffer

Level 2
Cache

Decode

Instruction
Cache

Branch
Predictor

Figure II.1: Simpli�ed Processor Pipeline

Simpli�ed view of the front-end and execution core of the processor pipeline.

Instructions are prepared by the front-end and placed in the issue bu�er where

they can then be consumed by the execution core. A data cache exists in the

Execute/Memory (Ex/Mem) stage(s) of the pipeline and shares a second level

cache with the instruction cache.

7

II.A.1 Branch Prediction Hardware

Branch prediction is an essential part of the processor pipeline. There

are a variety of di�erent branch types: conditional, unconditional, returns, and

indirect branches. When a branch goes through the pipeline, its type is not

known by the processor pipeline until the decode stage. In the case of a condi-

tional branch, the direction (i.e. whether or not the branch is taken) is not known

until the value that the branch is predicated on has been computed. Therefore, a

processor without any form of branch prediction mechanism would need to stall

the pipeline until a branch had been resolved in order to know the control path

of the processor. This would seriously hamper the performance of the processor.

Instead, if a control path is predicted, the processor can continue to insert in-

structions into the pipeline while the branch is being resolved. If the prediction

is correct, no performance has been lost. If the predictor is incorrect, the pipeline

must be ushed and restarted with the correct path. The penalty for an incorrect

prediction is dependent on the depth of the pipeline, as this will impact the length

of time it takes for the pipeline to re�ll with useful instructions. Therefore, as

pipelines get deeper and deeper, the branch prediction hardware becomes even

more critical to processor performance. Much research has gone into improving

the accuracy of branch prediction hardware in an attempt to minimize the impact

of mispredictions.

Many forms of branch prediction hardware exist. The prior work sec-

tion of this thesis (Chapter IV) explores this in more detail. In the pipeline we

simulate, there is a branch target predictor, a branch direction predictor, and

a return address predictor. The branch direction predictor guesses whether a

branch is taken or not, the branch target predictor guesses what address a taken

branch goes to, and the return address predictor tracks the addresses of proce-

dure calls so that subroutines can return to the original program control ow

8

upon completion.

II.A.2 Instruction Cache

The PC provides a unique identi�er of a given instruction for a particular

program, but in order to be executed, the PC must be translated into an actual

instruction. The program itself is loaded into a portion of memory, and the PC

represents the address where a particular instruction is stored. The instruction

cache provides a means of hiding the latency to memory for instruction addresses.

The instruction cache contains a small subset of the total instruction addresses,

and can dynamically swap these instruction addresses in and out of the cache

to match the access pattern of the program. Instructions are moved in and out

of the cache as part of a cache block of instructions. In our simulations, eight

consecutive instruction addresses map to the same cache block.

The more instruction addresses that hit in the instruction cache, the

more memory latency that is hidden. Therefore, it is critical to manage the

contents of the instruction cache to maximize the hit rate of the cache (the ratio

of instruction memory accesses that are actually in the cache). One part of this

is determining when to bring in what blocks. Our base architecture only brings

in new cache blocks on demand. This means that cache blocks will only be

brought in from higher levels of the memory hierarchy when a miss occurs in

the stage of the pipeline that accesses the instruction cache (so called demand

fetches because the cache block is \fetched" from memory when the processor

\demands" the block). The alternative to this is to prefetch cache blocks before

they are needed (demanded). We will explore prior instruction cache prefetching

strategies in Chapter IV and will introduce a novel cache prefetching scheme in

Chapter X. Prefetches and demand fetches both bring new cache blocks into the

instruction cache, and therefore require some means to choose which cache blocks

9

need be removed from the cache to make room for the incoming blocks. Our base

architecture makes use of an optimal least recently used (LRU) strategy [68]

for cache replacement. This strategy orders cache blocks by their use, and will

replace the cache block that has not been used in the longest amount of time.

We examine a novel cache block replacement strategy in Chapter X.

II.B Execution Core

The execution core is responsible for executing and retiring instructions

from the front-end. In our simulations, instructions are issued into a reorder bu�er

where they may then execute out-of-order and commit in-order. Figure II.1 shows

a simpli�ed execution core pipeline. The major structures of the execution core

include the issue hardware, the reorder bu�er, the functional units, the data cache

(and memory management unit), and the commit hardware. This thesis focuses

mainly on the structures of the front-end processor, but it is still important to

clarify the operation of the structures of the execution core at a high level. A

more detailed study of these issues can be found in [36].

II.B.1 Issue Hardware

If the reorder bu�er is not full, the issue hardware takes instructions

from the issue bu�er and allocates space for them in the reorder bu�er. Due

to design and complexity constraints, the number of instructions that can be

issued in a given cycle is limited. We examine an architecture that can issue 8

instructions in a single cycle. The Alpha 21264 issues 4 instructions in a single

cycle [44].

10

II.B.2 Reorder Bu�er

The reorder bu�er allows instructions to execute out-of-order. Instruc-

tions issue in-order to the reorder bu�er, but once their data dependencies have

been met, they may execute whenever functional units are available. This tech-

nique allows the processor to more fully utilize functional unit resources and

tolerate data dependence delays. In order to maintain correct processor state,

instructions do not a�ect the register �le or memory hierarchy { but rather write

their results to the reorder bu�er. When instructions issue, the issue hardware

determines the input dependences of each instruction. If there is an input de-

pendency from one instruction to another, and the instruction that is depended

upon executes speculatively and writes a value to its reorder bu�er entry, then

the dependent instruction can also execute speculatively using that value.

II.B.3 Functional Units

The functional units of the execution core do the actual computation.

There are a number of di�erent functional unit types in our simulated processor:

integer adders, load/store units, oating point adders, integer multiply/divide

units, and oating point multiply/divide units. In practice, multiply and divide

may use di�erent functional units. Each functional unit has a di�erent latency

(see Chapter VI for the details on this), except for the multiply/divide unit which

has two latencies (one for divide and one for multiply) and the load/store unit

which depends on the data cache. Except for divide operations, all functional

units are fully-pipelined, so a given functional unit can begin a new operation in

each cycle.

11

II.B.4 Data Cache and MMU

The data cache and memory management unit (MMU) help to handle

load/store instructions in the pipeline. The data cache hides the latency of data

memory accesses in the same way that the instruction cache hides the latency

of instruction memory accesses. It can also be limited by the number of ports,

size, associativity, and block size of the structure - and it can be pipelined to

be accessed over several cycles. The MMU schedules memory operations to use

di�erent levels of the memory hierarchy in the event of a memory hierarchy miss

(i.e. on a data cache miss, the MMU can schedule the instruction to use the next

level of the memory hierarchy).

II.B.5 Commit Hardware

Instructions in the reorder bu�er remain in the bu�er until committed.

Upon commit, the instruction writes its result to the register �le and its reorder

bu�er entry is deallocated. Because instructions execute out-of-order, it is possi-

ble for an instruction down a mispredicted branch path to �nish executing before

the branch misprediction is detected (for example, if the branch is dependent on

a long latency instruction like a load or divide). To avoid disrupting the register

�le with data from an incorrect path, instructions in the reorder bu�er commit

in-order. Thus, instructions can only commit once they have completed execution

and after all prior instructions in the reorder bu�er have committed.

Chapter III

Motivation

The scalability of the front-end of the processor pipeline is complicated

by a number of factors. These include the ability of devices to scale to future

technology sizes, which are referred to as hardware concerns, and the inherent

dependencies between the di�erent stages of the front-end, which are referred to

as latency concerns.

III.A Hardware Concerns

There are a number of hardware challenges that future microarchitects

will need to face to design the next generation of microprocessors. One of the

primary means of increasing the speed of microprocessors has been to scale the

feature size of the current technology. As feature sizes continue to shrink, it has

become evident that wire latencies are not scaling with transistor latencies. This

trend has been termed the interconnect scaling bottleneck [8, 9]. Architects have

been adding a variety of components to the chip, such as new speculative struc-

tures, additional pipelines, and larger caches, to improve processor IPC. But as

the clock speed of the processor continues to increase, correspondingly dropping

the cycle time of the processor, the addition of large memory structures to an

12

13

architecture may be constrained by how fully they can be pipelined. Agarwal

et al. [2] report that current processor designs will improve at best 12.5% per

year over the next fourteen years due to hardware concerns. Finally, as the clock

speed of the processor continues to grow, the amount of energy dissipated by the

processor becomes more and more critical to the design of the microprocessor. In

addition to limiting the battery life of mobile computers, the amount of energy

dissipated by a chip can inuence packaging and cooling of the chip as well as

the layout of structures on the chip.

III.A.1 Wire Latency

Interconnect is expected to scale poorly due to the impact of resistative

parasitics and parasitic capacitance. The resistance of wire is proportional to

the cross sectional area of the wire (and therefore the width and thickness of the

wire). Wire width must scale with the feature size. Therefore, the thickness of

the wire may not be able to scale proportionally to the width due to the increased

resistance that would result from the smaller cross sectional area. Electromigra-

tion, or ion transport, could also result if wires become too thin. Electromigration

is the physical breakdown of the wire itself, and is therefore a major concern for

processor reliability. Finally, thinner wires are more di�cult to manufacture.

Wire capacitance has two components that compose the overall para-

sitic: parallel plate capacitance and fringing capacitance. Parallel plate capaci-

tance is the capacitance between the wire and the substrate and is proportional

to W

H
, where W is the wire width and H is the distance between the wire and the

substrate. Fringing capacitance is the capacitance between the side-walls of the

wires and the substrate and is proportional to T

H
, where T is the wire thickness

and H is the distance between the wire and the substrate. Parasitic capacitance

exists between wires and the substrate and between wires themselves. This lat-

14

L

T

W Substrate

M1

M2

(a) (b)

Figure III.1: Interconnect Parasitics

(a) Physical dimensions of a wire. W is wire width, T is wire thickness or height,

and L is wire length.

(b) Layout of wires with capacitative parasitics. Shown are three wires, two in

metal layer 1 (M1) and one in metal layer 2 (M2). The straight lines represent

parallel plate capacitance between a wire and either another wire or the substrate.

The curved lines represent fringing capacitance between a wire and either another

wire or the substrate.

ter component, known as coupling capacitance, also has both a parallel plate

component and a fringing component, and is proportional to the distance be-

tween wires on the same layer or in di�erent layers. As this distance shrinks, the

coupling capacitance increases. As W decreases in size, the fringing capacitance

component begins to dominate the overall capacitance. The following equation

from [90] provides an empirical formula for capacitance:

C = �[(
W

H
) + 0:77 + 1:06(

W

H
)0:25 + 1:06(

T

H
)0:5] (III.1)

The � in this equation is permittivity of the insulator. Figure III.1 illustrates the

di�erent capacitative parasitics.

One result of parasitics between wires is noise. The Miller e�ect is

one example of this. When adjacent wires both switch at the same time in

di�erent directions (i.e. one wire switches from VDD to 0 and the other from 0

to VDD), the voltage swing between the two wires is actually 2VDD. This can

impact the delay time of the interconnect. Another example of noise is crosstalk.

Crosstalk involves a static wire (not exhibiting switching behavior) that receives

15

an involuntary voltage spike due to neighboring wires that switch in the same

direction. This e�ect is typically addressed by adding shielding wire (GND or

VDD) between wires. This can also be done to reduce inter-layer crosstalk by

adding a GND or VDD metal plane between each layer. However, there will still

be capacitative e�ects between the metal plane and the wires.

Global wires are more impacted by resistative e�ects due to their longer

length, while local wires are plagued by capacitative e�ects, especially in dense

interconnect. A more complete discussion of these parasitic e�ects can be found

in [69].

There has been a signi�cant amount of analytical [55] and empirical [8,

59] analyses of the interconnect scaling bottleneck in the process technology liter-

ature. Recently, these analyses have carried over into the computer architecture

literature where their e�ects on the execution core have been examined [60].

There are three important results of the interconnect scaling bottleneck:

1. memory structures experience the full extent of this trend because they are

composed of signi�cant amounts of closely packed interconnect

2. larger memory performance scales worse than small memory performance

because larger memory is composed of signi�cantly more interconnect

3. interconnect scaling degrades as process feature size decreases due to increas-

ing parasitic capacitance e�ects; if current trends continue, wire latency will

no longer scale and may increase in future process generations.

To better understand why on-chip memory performance scales poorly

with process feature size, we need to examine more closely the structure of on-

chip memory. On-chip memory devices are composed of large two-dimensional

arrays of memory cells. Connecting these memory cells to other parts of the chip

is a tapestry of wire that forms two buses. The wordline bus runs the rows of the

16

array, bringing signals to the cells that indicate if the cells are being accessed.

The bitline bus runs the columns of the array, providing access to memory cell

contents. To access the memory, a decoder activates a row of the memory array

by asserting a single wordline, this results in the contents of every cell in the

row being asserted on the bitline bus. A multiplexor at the end of the bitlines is

used to select the accessed data. A more complete analysis of cache structure is

presented in Chapter VII.

The latency of a memory device, to a �rst order, is the latency to exercise

the logic in the decoder, assert the wordline wire, read the memory cell logic,

assert the bitline wire, and �nally exercise the logic in the bitline multiplexor to

select the accessed data. As the process feature size is scaled, the latency of the

transistors is scaled proportional to their size, thus the latency of the logic scales

linearly with feature size reductions.

The latency of the wordlines and bitlines, on the other hand, does not

scale as well due to parasitic capacitance e�ects that occur between the closely

packed wires that form these buses. As the technology is scaled to smaller fea-

ture sizes, the thickness of the wires does not scale. As a result, the parasitic

capacitance formed between wires remains �xed in the new process technology

(assuming wire length and spacing are scaled similarly). Since wire delay is

proportional to its capacitance, signal propagation delay over the scaled wire re-

mains �xed even as its length and width are scaled. This e�ect is what creates

the interconnect scaling bottleneck.

Since on-chip memory tends to be very wire congested (wordlines and

bitlines are run to each memory cell), the wires in the array are narrowly spaced

to minimize the size of the array. As a result, these wires are subject to signi�cant

parasitic capacitance e�ects. Agarwal et al. [2] conclude that architectures which

require larger components will scale more poorly than those with smaller com-

17

ponents. They further conclude that larger caches may need to pay substantial

delay penalties.

Recently, some process technologies have begun employing copper inter-

connect and low-k dielectrics as a way to reduce the impact of poor interconnect

scaling [48, 49]. These materials lower the resistance and capacitance of wires,

respectively, thereby improving signal propagation performance. Copper wires

are also more resistant to electromigration. However, these techniques only o�er

a one time reprieve for the �rst process generation that employs them. Poor

interconnect scaling trends continue. It has been shown that splitting long wires

with bu�ers can reduce their propagation delay [6]. However, this approach can-

not be applied to the the densely packed interconnect of memory arrays without

signi�cantly increasing their area (due to the bu�ers required).

In order to avoid the potential hazards of the interconnect scaling bot-

tleneck on the memory structures of the front-end, architects will need to observe

the following:

1. prediction structures that have intercycle dependences (i.e. where the pre-

diction from cycle i depends on cycle i�1 - such as branch predictors) must

be kept small in order to reduce the processor cycle time

2. other predictors will need to be pipelined to keep up with decreasing cycle

times (such as instruction caches) | the fundamental limitations on how

far a structure may be able to be pipelined may require these structures to

be kept small as well

3. to o�set the loss in performance due to decreased predictor size, architects

will need to make use of techniques like multilevel predictor hierarchies,

helper engines [82], and aggressive prefetching

18

III.A.2 Clock Scaling

As processor clock speeds increase, and cycle times decrease, structures

in the processor pipeline need to either decrease their access time or increase the

degree to which they are pipelined. Unfortunately, in order to decrease the access

time of a memory structure, the size or complexity (i.e. number of ports, asso-

ciativity, etc) of the structure would also likely need to be reduced. Reducing

the size or complexity of a memory structure can mean reduced performance.

Although a structure can be pipelined to be accessed in multiple cycles, there

may be a limit on the amount of pipelining that is possible for a given struc-

ture. Agarwal et al. [2] used the fanout-of-four (FO4) delay metric to study the

limitations of pipelining processor structures in future technology sizes. They

found that pipelining was limited by the overhead associated with latches be-

tween pipeline stages and the amount of data dependencies between instructions

in di�erent stages of the pipeline. According to their study, architects may no

longer be able to both improve IPC and increase the clock speed of the processor.

These goals may become antagonistic in conventional microarchitectures.

As an example of this, consider the instruction cache. Instruction cache

misses stall instruction delivery until instructions are returned from the next level

of the instruction memory hierarchy. One solution to this is to increase the size or

associativity of the instruction cache. However, as processor cycle times continue

to decrease, this option becomes less viable, especially in light of the intercon-

nect scaling bottleneck. A larger instruction cache could be pipelined to �t a

particular cycle time, but in a contemporary front-end architecture, this would

also imply that the branch prediction architecture would need to be pipelined.

Pipelining the branch predictor is di�cult, since each prediction relies on the

previous prediction, although this design has been proposed in [77]. Moreover,

there may be a fundamental limitation on how far the instruction cache can be

19

pipelined.

III.A.3 Energy Dissipation

In the pursuit of high performance processors, microarchitects have at-

tempted numerous strategies to improve throughput or exploit ILP, some of which

have also increased the complexity of the processor or hastened the frequency of

the clock. Such strategies can result in greater power consumption, which in

turn impacts cooling, packaging, and in the case of mobile computers, battery

lifetime [69]. Gwennap [34] points out that power consumption may limit not only

what can be integrated onto a chip, but also how fast the chip can be clocked.

Pollack [67] observes that the power density of current microprocessors is growing

at an alarming rate - at a 0.5�m feature size, the Pentium line of microprocessors

has a power density around 10 W=cm2 (the power density of a hot plate).

While structures that are closer together on chip may have less delay

between them (shorter wires), this will also imply that the energy dissipated by

these structures will be distributed over a smaller area { implying that more heat

must be removed from a smaller area to avoid thermal failure. While standard

processors make use of circulated air as a cooling medium, novel heat sink designs

coupled with liquid or inert gas cooling mediums are becoming more popular in

supercomputing and may be more important in standard processors as clock

speeds continue to increase. [69]

In order to address these concerns, architects must consider the impact

a potential processor enhancement might have on power consumption, in addition

to examining ways of making current processor components more energy e�cient.

Brooks et al. [11] report that instruction fetch and the branch target bu�er are

responsible for 22.2% and 4.7% respectively of power consumed by the Intel

Pentium Pro. Brooks also reports that caches comprise 16.1% of the power

20

consumed by Alpha 21264. Montanaro et al. [25] found that the instruction

cache consumes 27% of power in their StrongARM 110 processor.

III.B Latency Concerns

In addition to examining the hardware scaling implications that can

impact the front-end processor, the actual structures of the front-end have fun-

damental interdependencies which can impact processor performance. First, we

will examine the two major structures of the front-end: the instruction cache and

the branch predictor. Then, the relationship between these structures will be

examined.

III.B.1 Instruction Cache

Instruction cache performance is vital to the front-end of the processor.

As mentioned in Chapter III.A, larger instruction caches will scale poorly com-

pared with smaller instruction caches to future technology sizes. The number

of ports on the instruction cache directly impacts the area of the cache and can

impact the timing and energy dissipation of the cache, even within the same tech-

nology size [74]. The number of ports on the instruction cache directly impacts

the available fetch bandwidth of the processor.

III.B.2 Branch Prediction

There are several complications that arise in the design of a branch

prediction architecture. The misprediction of the address or direction of a branch

forces a pipeline ush, resulting in wasted fetch bandwidth between the time the

branch was mispredicted and the time the misprediction was detected. Therefore,

a predictor must keep mispredictions at a minimum [57, 18].

21

Secondly, in modern front-end designs, predicting the target of a branch

requires an access to the branch predictor and branch target bu�er (BTB). As

a result, the rate at which these devices can be cycled times the average basic

block size places an upper limit on instruction delivery rates. Techniques such as

predicated execution [62] attempt to increase the size of basic blocks. Another

alternative is to increase the number of branches predicted in a single cycle via

traces [75], fetch blocks [70], or with multiple predictors [77].

III.B.3 Interaction Between Branch Prediction and Instruction Cache

In a conventional microprocessor architecture, the branch predictor and

instruction cache are accessed in parallel { coupled together in the same stage.

Both structures stall when the issue bu�er between the front-end and the execu-

tion core �lls. The branch predictor will stall if the instruction cache stalls.

Branch predictors produce basic or fetch blocks, which can span multiple

cache blocks. Because instruction caches have a limited number of ports, and

because adding ports to the instruction cache is expensive, the branch predictor

may need to stall while the instruction cache consumes an entire branch prediction

{ possibly over several cycles. Moreover, when the instruction cache stalls in a

contemporary front-end architecture, the branch predictor must also stall. Both

cases result in wasted cycles where the predictor could be generating a fetch

stream. Simply increasing the issue bu�er size will not alleviate this, as the

bottleneck in this case is the number of ports on the instruction cache. Stark et

al. [84] propose a mechanism to allow the instruction cache to continue in the

face of a miss, but are still limited by the number of ports on the instruction

cache.

Figure III.2(a) provides a sample fetch stream that has been organized

according to instruction cache blocks. In this �gure, cache blocks are represented

22

α

β

γ

δ

A

C D E

F

B

 Branch Cache Block
Predicted Provided

 B
STALL
 D
 F
STALL

α
β

γ
δ

γ

 Branch Cache Block
Predicted Provided

 B
 D
 F
 H

α
β

δ
γ

(a)

(b)

(c)

Cycle

Cycle

1
2
3
4
5

1
2
3
4

Figure III.2: Example of predictor stalls in a coupled front-end design.

(a) is a sample fetch stream of four cache blocks. �, �, , and � are cache block

labels. A{F are instructions in the cache blocks that bound the basic blocks of

the fetch stream. Darkened instructions are part of the fetch stream (A{B, C{D,

E{F are the basic blocks).

(b) shows how a coupled front-end design (with a single cache port and the ca-

pability to perform a single branch prediction per cycle) would handle the fetch

stream.

(c) shows how the performance of the front-end improves when the branch pre-

dictor stalls are removed. (H is the branch in basic block G{H, the next basic

block in the fetch stream { this is not shown in (a))

23

by an 8 entry rectangular bu�er (each entry represents a single instruction). The

sample stream ranges over four cache blocks that are labeled �, �, , and �.

Blocks � and � are sequential cache blocks, and blocks and � are sequential

cache blocks. The letters A-F represent di�erent instructions in the cache blocks.

Letters A, C, and E are the heads of basic blocks. Letters B, D, and F are the

tails of basic blocks and are branches. In this example, all branches are taken.

A{B, C{D, and E{F form three basic blocks in this sample fetch stream. Blocks

A{B and E{F span 2 cache blocks (A{B spans � and �, E{F spans and �).

Figure III.2(b) demonstrates how a contemporary fetch architecture

would handle this fetch stream, assuming a single ported instruction cache and a

branch predictor that can perform a single prediction per cycle. The �rst column

shows the cycle starting from 1, the second column shows the branch that is pre-

dicted in the given cycle, and the third column shows the cache block provided

by the instruction cache in that cycle. Using the PC of instruction A, branch

B is predicted in cycle 1, and cache block � is provided. Since the basic block

predicted spans two cache blocks, the branch predictor stalls in cycle 2 while the

instruction cache provides block �. In cycle 3, branch D is predicted, and the

instruction cache provides block . In cycle 4, branch F is predicted, and the

instruction cache must again provide block . Finally, in cycle 5, the instruction

cache provides block � { but the branch predictor must stall again. Thus, �ve

cycles are required to provide the four cache blocks from Figure III.2(a).

If the branch predictor did not have to stall, only 4 cycles would be

required to provide the prediction. Figure III.2(c) illustrates this. Again, branch

B is predicted in cycle 1, and the cache provides block �. But this time, the branch

predictor can continue even though the instruction cache has not yet completed

consuming the current prediction. In cycle 2, the instruction cache grabs the next

block (�) while the branch predictor predicts branch D using the target of the

24

�rst prediction (instruction C is the target and head of the next basic block). In

cycle 3, branch F can be predicted and block can be provided. Finally, in cycle

4, block � can be provided and the branch predictor can provide a prediction

for the next basic block in the fetch stream (assuming a basic block G{H not

shown in Figure III.2(a)). Here, only four cycles were required to provide the

same bandwidth, and one additional prediction is queued up to be used (branch

H) { potentially providing another opportunity for performance improvement.

Chapter IV

Prior Work

Much work has been put into the front-end architecture in an e�ort

to improve the rate of instruction delivery to the execution core. Techniques

to reduce the impact of I-cache misses include multi-level instruction memory

hierarchies [41] and instruction prefetch [87]. Techniques to reduce the impact of

branch mispredictions include hybrid [57] and indirect [18] branch predictors, and

recovery miss caches to reduce misprediction latencies [10]. A number of compiler-

based techniques work to improve instruction delivery performance. They include

branch alignment [14], trace scheduling [28], and block-structured ISAs [35].

We will now examine some of the more relevant prior work in detail.

IV.A Future Technology Scaling

Palacharla et al. [60] examined the e�ects of process technology scaling

on the performance of the execution core. They found that the performance of

operand bypass logic and datapaths scales poorly due to the large amount of

interconnect in their datapaths.

Agarwal et al. [2] also examined the e�ects of process technology scal-

ing, and found that current techniques of adding more transistors to a chip and

25

26

superlinear clock scaling will provide diminishing returns to processor perfor-

mance. Both studies show that larger memory performance scales worse than

small memory because it is composed of signi�cantly more interconnect.

IV.B Out of Order Instruction Fetching

Stark et. al. [84] proposed an out-of-order fetch mechanism that allows

instruction cache blocks to be fetched in the presence of instruction cache misses.

On an instruction cache miss, the branch predictor would continue to produce

one prediction per cycle, fetch the instructions, and put them into a result fetch

queue out of order. The instructions are decoded in-order however.

The main di�erence between our approach and the one by Stark et.

al. [84] is that our decoupled architecture can expose a larger address stream in

front of the fetch unit enabling additional optimizations. A branch predictor can

run farther ahead of the instruction cache, since it can produce fetch addresses

for several cache blocks per prediction, which is more than the instruction cache

can consume each cycle. These addresses can then be used for optimizations like

prefetching, building a multi-level branch predictor, or designing more scalable

predictors (e.g., value prediction). In their approach [84], the branch predictor is

tied to the lockup-free instruction cache, and produces addresses that are directly

consumed by the instruction cache. This keeps the instruction cache busy and

provides potential fetch bandwidth in the presence of instruction cache misses,

but does not expose the large number of fetch addresses ahead of the fetch unit

as in the decoupled design.

We call the number of instruction addresses stored in the FTQ at a

given time the occupancy of the FTQ. Results in Chapter VIII show that there

can be a large FTQ occupancy even when the instruction window doesn't �ll

up and stall, since the branch predictor can predict more cache blocks than the

27

instruction cache can consume each cycle.

IV.C Helper Engines

Smith [82] predicts a shift in processor design goals { from the goal

of maximizing ILP to facilitating inter-instruction communication. Because it

may be di�cult to communicate across the chip in a single cycle [2], the actual

communication of data between dependent instructions may become a critical

bottleneck to processor performance. Smith advocates a simple core pipeline,

designed with the fastest transistors possible, that is further augmented by helper

engines. These speculative engines can work to improve processor performance

further by specializing on particular aspects of the pipeline. He cites our branch

prediction architecture [70] as an example of such a speculative engine. The

instruction coprocessor [22] is another such engine.

IV.D Branch Prediction

Branch Target Bu�ers (BTB) have been proposed and evaluated to pro-

vide branch and fetch prediction for wide issue architectures. A BTB entry holds

the taken target address for a branch along with other information, such as the

type of the branch, conditional branch prediction information, and possibly the

fall-through address of the branch.

Perleberg and Smith [64] conducted a detailed study into BTB design

for single issue processors. They even looked at using a multi-level BTB design,

where each level contains di�erent amounts of prediction information. Because of

the cycle time, area costs, and branch miss penalties they were considering at the

time of their study, they found that the \additional complexity of the multi-level

BTB is not cost e�ective" [64]. Technology has changed since then, and as we

28

show in this thesis, a multi-level branch prediction design is advantageous.

Yeh and Patt proposed using a Basic Block Target Bu�er (BBTB) [94,

95]. The BBTB is indexed by the starting address of the basic block. Each entry

contains a tag, type information, the taken target address of the basic block,

and the fall-through address of the basic block. If the branch ending the basic

block is predicted as taken, the taken address is used for the next cycle's fetch.

If the branch is predicted as not-taken, the fall-through address is used for the

next cycle's fetch. If there is a BBTB miss, then the current fetch address plus

a �xed o�set is fetched in the next cycle. In their design, the BBTB is coupled

with the instruction cache, so there is no fetch target queue. If the current fetch

basic block spans several cache blocks, the BBTB will not be used and will sit

idle until the current basic block has �nished being fetched.

Several architectures have been examined for e�cient instruction through-

put including the two-block ahead predictor [77], the collapsing bu�er [24], and

the trace cache [75]. Seznec et. al. [77] proposed a high-bandwidth design based

on two-block ahead prediction. Rather than predicting the target of a branch,

they predict the target of the basic block the branch will enter, which allows

the critical next PC computation to be pipelined. Conte et. al. [24] proposed

the collapsing bu�er as a mechanism to fetch two basic blocks simultaneously.

The design features a multi-ported instruction cache and instruction alignment

network capable of replicating and aligning instructions for the processor core.

Rotenberg et. al. [75] proposed the use of a trace cache to improve instruction

fetch throughput. The trace cache holds traces of possibly non-contiguous basic

blocks within a single trace cache line. A start trace address plus multiple branch

predictions are used to access the trace cache. If the trace cache holds the trace

of instructions, all instructions are delivered aligned to the processor core in a

single access. Patel et. al. [63] extended the organization of the trace cache to

29

Processor Pipeline

LA-PC
Address

Prediction
Table

Level 2
Cache

Prefetch

Data
Cache

Level 2
Cache

+

is
 h

it?

ta
rg

et
 P

C

PC

Instruction
Cache

Branch
Predictor

Figure IV.1: Look-Ahead PC of Chen and Baer [21]

include associativity, partial matching of trace cache lines, and path associativity.

IV.E Fetch Guided Cache Prefetch

A form of fetch guided prefetching was �rst proposed by Chen and

Baer [21] for data prefetching. In their prefetching architecture they created a

second PC called the Look-Ahead PC, which runs ahead of the normal instruction

fetch engine. This LA-PC was guided by a branch prediction architecture, and

used to index into a reference prediction table to predict data addresses in order to

perform data cache prefetching. Since the LA-PC provided the address stream

farther in advance of the normal fetch engine, they were able to initiate data

cache prefetches farther in advance than if they had used the normal PC to do

the address prediction. This allowed them to mask more of the data cache miss

penalty. Chen and Baer only looked at using the LA-PC for data prefetching [21].

Figure IV.1 provides a summary of the architecture.

Chen, Lee and Mudge [19] examined applying the approach of Chen

and Baer to instruction cache prefetching. They examined adding a separate

30

branch predictor to the normal processor; so the processor would have 2 branch

predictors, one to guide prefetching and one to guide the fetch engine. The

separate branch predictor uses a LA-PC to try and speed ahead of the processor,

producing potential fetch addresses on the predicted path. This separate branch

predictor was designed to minimize any extra cost to the architecture. It only

included (1) a global history register, (2) a return address stack, and (3) an adder

to calculate the target address.

In their design, each cycle the cache block pointed to by the LA-PC

is fetched from the instruction cache in parallel with the normal cache fetch. If

it is not a miss, the cache block is decoded to �nd the branch instructions and

the target addresses are calculated. When a branch instruction is found in the

cache block it is predicted using the separate branch prediction structures, the

LA-PC is updated, and the process is repeated. This whole process is supposed

to speed ahead of the normal instruction fetch, but it is limited as to how far

it can speed ahead because (1) the prefetch engine uses the instruction cache to

�nd the branches to predict and to calculate their target addresses, and (2) their

prefetch engine has to stop following the predicted stream whenever the LA-PC

gets a cache miss. When the LA-PC gets a cache miss, their prefetcher continues

prefetching sequentially after the cache line that missed. The prefetching archi-

tecture that we describe in Chapter X follows the fetch stream prefetching past

cache blocks that miss in the cache and does not need to access the instruction

cache to provide predicted branch target and prefetch addresses since the branch

predictor is completely decoupled from the instruction cache fetch via the fetch

target queue.

31

IV.F Decoupled PC-based Value Prediction

Value prediction predicts the actual data value that is to be brought

in from memory, allowing instructions dependent on the load to speculatively

execute with the predicted value. If the prediction is correct, this breaks true

data dependencies since the value is produced without having to wait on the load

instruction.

When a load is value predicted, the value is used to update the current

value and status of the load's destination register. This value will then be seen

and used by subsequent instructions. The load still takes its normal path of

execution for a non-speculative load | it calculates its e�ective address, accesses

the store bu�er and memory. When the load's value becomes available it is

checked against the predicted value of the load instruction for miss-speculation.

This is called a check-load, since the load is used to check the predicted value.

Several architectures have been proposed for value prediction including

last value prediction [51, 52], stride prediction [29, 31], context predictors [76],

and hybrid approaches [89]. We have examined the use of con�dence to improve

value predictor accuracy [17].

Lee et al. [50] proposed a decoupled value prediction architecture that

worked in conjunction with a trace cache. Value prediction occurred in the write-

back stage, and predictions were stored in a Value Prediction Bu�er accessed in

parallel with the trace cache. This allows more exibility in the design of the

value predictor, as predictor access time is no longer on the critical path.

IV.G Low Power Cache Research

Recently, there has been a lot of research into creating power e�cient

caches. Kin et al. [45] looked at using a small L0 cache, called the �lter cache,

32

to capture the most frequently accessed cache blocks and to decrease energy

dissipation. Bellas et al. [7] examine using compiler techniques in conjunction

with the �lter cache to statically determine what to put in the instruction cache

and what to put in the �lter cache. The compiler can then lay out frequently

accessed blocks contiguously in memory to try and increase program locality and

the hit rate of the �lter cache. These techniques could be used in concert with

the speculative fetch architecture described in Chapter X.

Bahar et al. [5] examined using a exible small cache (bu�er) in con-

junction with the instruction cache. They examined using the bu�er as a non-

swapping victim cache to conserve power. They also look at using the bu�er as

auxiliary storage for the instruction cache { �ltering references that were either

low in con�dence due to a potentially mispredicted branch or that were not de-

termined as critical (based on the number of entries in the dispatch queue or

RUU).

Su and Despain [85] suggest using block bu�ering, cache sub-banking,

and gray code addressing to reduce cache power consumption. Cache sub-banking

saves power by hashing the banks. Ko et al. [46] propose another form of sub-

banking called multiple-divided modules (MDM), which divides each sub-array

(module) even further. Ghose and Kamble [30] proposed using multiple block

bu�ering, with sub-banking, to reduce the energy dissipated by caches. This is

similar to a �lter cache, but the multiple block bu�ers are probed in parallel with

the cache. This technique could bene�t from the approach described in Chapter X

by only selectively accessing the bu�er (if any) that hits, or by avoiding the bu�er

access entirely. All of these techniques still keep all ways of an associative set

in the same sub-bank (or MDM) however, so they still consume power driving

all ways of an associative set. In using a serial cache, only ways that have been

veri�ed as cache hits are driven.

33

Albonesi [3] examined partitioning all ways of the data component of the

cache into separate sub-arrays. He examined selectively turning o� di�erent cache

ways to conserve energy. Agarwal and Pudar [1] proposed the column associative

cache as a way of reducing conict misses in a direct mapped cache. The cache is

split into two banks, each indexed by a di�erent hashing function. The �rst bank

is examined �rst, and on a miss, the second is probed. Calder et al. [16] followed

this work with the predictive selective associative cache as a means of providing

the same performance (and energy e�ciency) of a direct mapped cache, but with

the hit rate of a set associative cache. This approach speculates on the location

of the requested data in the cache, instead of probing the tag array initially.

Inoue et al. [38] also examined using an MRU algorithm to predict what way

of an associative cache to access. All of these caches are speculative in nature,

concentrate on data cache performance, and can result in wasted energy and

missed access opportunities on cache misses and mispredictions.

Another way of reducing the energy dissipated by a cache is to make

use of a serial cache. We demonstrate the ability of the serial cache to reduce

energy dissipation in Chapter X. Many researchers have examined serial cache

designs. In this design the tags are �rst checked, and afterwards the data is

looked up. This has been used for L2 caches, and recently for data caches on

graphics cards [54, 37]. For example, the Alpha 21264 [44] splits the tag and data

component of its direct-mapped second level cache, e�ectively creating a serial

L2 cache design.

IV.H Next Line and Set Prediction

Calder and Grunwald [15] proposed an alternative form of branch pre-

diction called next cache line and set prediction (NLS) that predicts an index into

the instruction cache rather than a branch target address. This predictor provides

34

a pointer into the instruction cache, indicating the target instruction of a branch.

This form of predictor is used in the Alpha 21264 [44] and provides extremely

accurate predictions. Moreover, it supplies a prediction of what associative way

the predicted cache block is located in. The authors refer to way prediction as set

prediction in [15], but essentially the predictor determines what associative way

contains the desired cache block. This way prediction, combined with an energy

e�cient cache design that allows a single cache way to be selectively enabled can

provide signi�cant energy savings. Calder et al. [16] demonstrate this, and we

examine this further in Chapter XI. Unfortunately, the NLS predictor can only

supply a single instruction cache block per prediction. This means that the NLS

predictor cannot run ahead of the instruction cache and provide the same latency

tolerance and look-ahead mechanism that our decoupled front-end can provide.

Wallace and Bagherzadeh [88] extended this work to provide multiple

cache blocks per cycle using multiple NLS predictors. However, they do not

examine providing multiple way predictions. They use the current cache block

to index into two predictors which in turn provide the next two cache block

predictions. There is a potential problem with their design however, as only a

single group of target blocks are stored for the secondary prediction. If the �rst

prediction is based on a conditional branch and can potentially lead to two cache

blocks (fallthrough and target blocks), then only one of these cache blocks will

have their prediction stored in the secondary predictor. In other words, if the

�rst prediction is not biased towards taken or not taken, then the prediction from

the secondary predictor may correspond to the wrong cache block.

Chapter V

Evaluation Strategy

Through the years, architects have made use of a variety of techniques

to quantify the performance of di�erent microprocessor designs.

V.A Prediction Rate

Initially, architects used prediction or misprediction rates to evaluate ar-

chitectural performance. Various structures, such as branch predictors or caches,

can be analyzed by reporting their prediction rate { the frequency with which

they return a correct prediction. However, this metric fails to capture the notion

of prediction importance. Some predictions are more important than others, and

continuously mispredicting a branch on the critical path could have considerably

more impact than mispredicting a branch o� the critical path. However, both of

these mispredictions would be equally weighed in a scheme that just measured

prediction rates. Moreover, processor pipelines are complex and require full sim-

ulations to make intelligent conclusions about the performance of a particular

architecture. For example, in an architecture that is severely fetch constrained,

improvements to the data cache will likely have minimal impact on the actual

processor performance. But, improvements to the branch predictor may greatly

35

36

improve performance. Simply looking at the misprediction rates of these struc-

tures will not necessarily demonstrate this.

V.B IPC

Instruction Per Cycle (IPC) is a metric that is used to capture the im-

pact of architectural decisions on the processor pipeline as a whole. Rather than

simply considering the prediction rate of a given pipeline structure, IPC captures

how fast instructions are committed from the pipeline, taking into account the

importance of predictions on the critical path.

IPC can be determined using two di�erent simulation techniques: trace-

based simulations and execution-based simulation. A trace is a recorded series

of instructions that was previously run on a real processor. This trace can then

be fed into a simulator to determine how well the architecture being simulated

performs. Unfortunately, because the actual program is not being executed,

this type of simulation does not model the e�ects of going o� the nonspecula-

tive path. Branch mispredictions impact performance by stalling the processor

pipeline (which can be simulated even when using a trace), but the e�ect of going

down a mispredicted path on the various structures of the pipeline (such as the

instruction cache and data cache) is not modeled. Mispredicted path instructions

can cause useful entries in the instruction cache to be replaced with entries that

may never be used. Conversely, mispredicted path instructions can provide useful

\prefetches" to the various structures { as would be the case for a mispredicted

short forward branch. In any case, these secondary e�ects cannot be modeled

using instruction traces.

The alternative is to use an execution-based simulator. Here, the actual

program is executed on top of a simulator architecture. The simulator tracks

microarchitecture state for each cycle of execution { and for each stage in the

37

processor pipeline. The state of the simulator represents the actual state of the

microarchitecture being simulated. So, if a microarchitecture would mispredict

a particular branch in a given program, the simulator will also mispredict that

branch and will execute instructions down the mispeculated path. The e�ects of

mispredicted paths on other speculative structures (caches and predictors) can

be fully explored in this type of simulation. If a branch is never taken during the

formation of a trace, that branch target address will not be known { but with an

execution-based simulator, since each individual branch is executed, each branch

target can be computed and potentially executed (even on a mispeculated path).

Another possible hazard is the simulation of initialization e�ects. It is

often not practical to simulate an entire program to completion on a execution-

based architectural simulator. Often, only a selected number of instructions are

simulated. Care must be given to selecting both the number of instructions

and the point in the program at which measurement will begin. First, enough

instructions should be executed to give a reliable estimate of the performance of

the program. This should include all major loops and procedures of the program.

Secondly, the measurement should start after the initialization portion of the

program (the part of the program where data is loaded into memory, arrays

are initialized, etc) as this part of the program does not accurately reect the

majority of the execution time of the program. Skipping the initialization section

of a program is known as fast forwarding. A more complete discussion of this

can be found in [78].

With decreasing cycle times and increasing pipeline depth, this metric

still does not capture the whole picture. A particular instruction cache might have

a greater hit rate and higher IPC than another design, but it might take longer

to access, and therefore could impact the cycle time of the processor. Consider a

processor with a cycle time of 1.0 nanosecond that can achieve an IPC of 2.5. This

38

processor would take 0.4 seconds to commit 1 million instructions. A processor

with a cycle time of 0.6 nanoseconds that could only achieve an IPC of 1.8 would

be able to commit the same number of instructions in only 0.33 seconds.

V.C IPC with Timing

The cycle time of the processor is di�cult to calculate precisely without

performing some form of layout. But, it can be estimated by examining the

access time to the structures of the processor pipeline. This can also provide

insight into the amount of pipelining necessary for the various structures of the

processor pipeline. For example, the cycle time of the processor can be set to

that of the branch predictor, and the instruction cache can be pipelined to �t

within the cycle time. This assumes that all other structures of the architecture

can be appropriately pipelined to �t this cycle time. Now, a branch prediction

design that improves IPC, but increases the cycle time can be compared to a

smaller branch predictor that has a lower IPC but a faster clock. However, a

single uni�ed metric would be better in making comparisons of architectures

with di�erent cycle times.

V.D BIPS

To compare architectures with di�erent cycle times, we propose a new

metric, Billions of Instructions Per Second (BIPS). BIPS is a combination of IPC

and the cycle time of the processor in nanoseconds:

BIPS = IPC

cycle time in nanoseconds

This metric captures both performance and timing information. Architectures

with di�erent cycle times can be compared using this metric.

39

V.E Energy Delay Product

Many architectures today are concerned with conserving energy, whether

it be for mobile computing or to simplify packaging of the processor. Energy dis-

sipation can be measured in Joules, but can also be incorporated into the BIPS

measurement. The energy delay product [32] is the product of the total time to

execute a particular program on the processor and the total energy dissipated by

the processor. In this thesis, we are primarily concerned with the energy dissipa-

tion of the front-end of the processor, and therefore will only consider the total

energy dissipated by the front-end processor in the calculation. Therefore, the

energy delay product will be calculated as follows:

EDP = number of instructions committed x total energy dissipated in Joules

BIPS

The number of instructions committed should not change when comparing two

architectures. Even architectures that dynamically reduce the number of in-

structions executed can still count the same number of instructions committed

by counting committed instructions based on the original instruction stream. If

an architectural improvement results in a smaller energy delay product for a par-

ticular architecture, this means that there has either been an improvement in

BIPS, a reduction in the amount of energy dissipated, or both.

V.F Conclusion

The rest of this thesis will make use of either BIPS or IPC with cycle

time considerations. IPC will be used whenever comparisons are made between

architectures that share a common cycle time, but the structures in the archi-

tecture will be appropriately pipelined to match the cycle time. BIPS will be

used to compare architectures which may have di�erent cycle times. To mea-

sure energy dissipation, Joules or the energy delay product will be used. With

40

any composite metric, it is useful to look at the other metrics which compose

it to better understand the result. For example, in the case of the energy delay

product, it is useful to examine IPC, cycle time, and total energy dissipation {

the three variable components of the energy delay product. The overall metric

simply provides a notion of the overall impact of the architectural enhancement

being investigated.

In this thesis, the processor cycle time will be based upon the structures

of the front-end, namely the instruction cache and branch predictor. This assumes

that all other structures in the pipeline can be pipelined to accommodate the

given cycle time.

Chapter VI

Simulation Methodology

This Chapter examines the simulator, benchmarks, and timing model

used to evaluate the various architectures in this thesis.

VI.A Architectural Simulator

The simulators used in this study are derived from the SimpleScalar/Alpha

3.0 tool set [12], a suite of functional and timing simulation tools for the Alpha

AXP ISA. The timing simulator executes only user-level instructions, perform-

ing a detailed timing simulation of an aggressive 8-way dynamically scheduled

microprocessor with two levels of instruction and data cache memory. Simula-

tion is execution-driven, including execution down any speculative path until the

detection of a fault, TLB miss, or branch misprediction.

The baseline simulation con�guration models a future generation out-

of-order microprocessor architecture. Parameters have been selected to capture

underlying trends in microarchitecture design. The processor has a large window

of execution; it can fetch up to 8 instructions per cycle (from up to two cache

blocks) and issue up to 16 instructions per cycle. The architecture has a 128

entry re-order bu�er with a 32 entry load/store bu�er. In [71], we examined the

41

42

performance of store sets [23] to perform dependence prediction. This technique

provided nearly perfect dependence prediction for the architectures examined.

Therefore, for this thesis, we assume perfect dependence prediction for all runs -

a very close approximation of the performance bene�t of using store sets.

There is an 8 cycle minimum branch misprediction penalty. The pro-

cessor has 8 integer ALU units, 4 load/store units, 2 FP adders, 2 integer

MULT/DIV, and 2 FP MULT/DIV. The latencies for these units are: ALU

= 1 cycle, MULT = 3 cycles, Integer DIV = 12 cycles, FP Adder = 2 cycles,

FP Mult 4 = cycles, and FP DIV = 12 cycles. All functional units, except the

divide units, are fully pipelined allowing a new instruction to initiate execution

each cycle.

Both instruction and data caches have block sizes of 32 bytes. The

data cache is a 32K 4-way set associative cache with 2 read/write ports. The

instruction caches used vary according to Chapters in this thesis and will be

described within each Chapter. There is a uni�ed second-level 1 MB 4-way set-

associative cache with 64 byte blocks, and a 12 cycle cache hit latency. If there

is a second-level cache miss it takes a total of 120 cycles to make the round

trip access to main memory. The L2 cache has only 1 port. The L2 bus is

shared between instruction cache block requests and data cache block requests.

We modi�ed SimpleScalar to accurately model L1 and L2 bus utilization. A

pipelined memory/bus is modeled, in which a new request can occur every 4

cycles { so each bus can transfer 8 bytes/cycle.

There is a 32 entry 8-way associative instruction TLB and a 32 entry

8-way associative data TLB, each with a 30 cycle miss penalty.

We used the McFarling gshare predictor [57] for conditional branch pre-

diction. The predictor has a 2-bit meta-chooser and a 2-bit bimodal predictor,

both stored in the branch predictor entry with their corresponding branch. In

43

Table VI.1: Program statistics for the baseline architecture.
Program Input fast fwd (M) % br exe % il1 miss % dl1 miss

compress ref 0 19.3 0.0 2.6

crafty ref 2000 11.3 10.6 0.6

deltablue ref 0 8.2 0.4 16.4

eon rushmeier 2000 10.1 8.0 0.1

gcc 1cp-decl 400 17.4 7.1 1.9

go 5stone21 1000 13.4 2.7 1.0

gro� someman 0 17.3 5.3 0.5

ijpeg specmun 2000 4.7 0.0 0.8

li ref 2000 18.0 0.0 1.4

m88ksim ref 1000 19.7 1.7 0.1

perl scrabbl 2000 17.1 3.3 0.4

vortex ref 1000 14.7 12.7 1.0
The �rst column gives the benchmark name, the second column provides the

data set used in the simulation runs, and the third column shows the number

of instructions fast forwarded before simulation (measured in millions and taken

from [78]). The �nal columns provide results for an architecture with a 16K 2-

way set associative instruction cache and a 32K 4-way set associative data cache:

the percent of committed branches and the percent instruction cache and data

cache miss rates.

addition, a tagless gshare predictor is also available, accessed in parallel with

the branch predictor. The meta-chooser is incremented/decremented if the bi-

modal/gshare predictors are correct. The most signi�cant bit of the meta-chooser

selects between the bimodal and gshare predictions.

VI.B Benchmarks

We examined a number of SPEC95 and SPEC2000 C benchmarks, as

well as two additional benchmarks. Groff is a text formatting program and

deltablue is a constraint solving system. The programs were compiled on a DEC

Alpha AXP-21164 processor using the DEC C and C++ compilers under OSF/1

V4.0 operating system using full compiler optimization (-O4 -ifo). Table VI.1

shows the data set used in gathering results for each program, the number of

44

instructions executed (fast forwarded) before actual simulation (in millions), the

percent of committed branches in each program, and the instruction and data

cache miss rates. In this case, a 16K 2-way set associative instruction cache is

assumed. Each program was simulated for up to 200 million instructions.

For each Chapter, di�erent benchmarks may be used in the evaluation of

di�erent processor architectures. For example, results for ijpeg will not be shown

in Chapter X since ijpeg has very few instruction cache misses. The results for

this benchmark show no change from a base architecture to any architecture with

a form of instruction cache prefetch.

VI.C Timing Model

In order to get a complete picture of the relative performance of vari-

ous architectural designs, it is useful to investigate the cycle time of the designs.

IPC results obtained through SimpleScalar can be combined with timing anal-

ysis to provide results in Billion Instructions Per Second (BIPS)(as shown in

Chapter V).

The timing data we need to generate results in IPS is gathered using

the CACTI cache compiler version 2.0 [74]. CACTI contains a detailed model of

the wire and transistor structure of on-chip memories. CACTI uses data from

0.80�m process technology and can then scale timing data by a constant factor to

generate timings for other process technology sizes. This thesis reports timings

for the 0.10�m process technology size. However, this scaling assumes ideal

interconnect scaling, unlike the model used in [70]. This provides a lower bound

on the performance improvement that the decoupled front-end and associated

optimizations might make possible. Chapter VII details the modi�cations made

to the original CACTI model [92] to create version 2.0.

Table VI.2 contains the timing parameters for the multilevel branch

45

Table VI.2: Timing data from CACTI version 2.0
Number of Predictor Entries Access Time (ns)

64 0.58

128 0.59

256 0.62

512 0.65

1024 0.70

2048 0.81

4096 0.91

8192 1.06

(a)

Instruction Cache Size Associativity Access Time (ns)

16K 2 0.67

16K 4 0.68

32K 2 0.76

32K 4 0.77

(b)

Table (a) shows timing data for various �rst level FTB con�gurations. For each

FTB speci�cation (shown as the number of entries in a 4-way associative FTB),

the cycle time in nanoseconds computed with CACTI is shown. Table (b) shows

the cycle times for a variety of cache con�gurations. The �rst column speci�es

the size of the cache. The second column speci�es the associativity.

46

predictor and cache con�gurations examined for the 0.10�m technology size. Ta-

ble VI.2(a) lists the branch predictor sizes (in number of entries) and the CACTI

timing data in nanoseconds for each con�guration, showing the access time in

nanoseconds. All branch predictor organizations are 4-way set-associative. Ta-

ble VI.2(b) lists the timing data for the instruction and data cache con�gurations

examined, showing the access time in nanoseconds.

Chapter VII

CACTI

The original CACTI [92] model calculates access and cycle times of

hardware caches. It uses an analytical model to estimate delay down both tag

and data paths to determine the best con�guration for a given cache size, block

size, and associativity (at 0:80�m technology size). Figure VII.1 demonstrates

the architecture of the cache in the analytical model. In addition to providing

timing data for each portion of the data and tag paths, CACTI also returns the

number of data and tag arrays (in terms of the number of wordline and bitline

divisions), and the number of sets mapped to a single wordline, for both tag and

data arrays. The original CACTI model does not model cache area, but does

estimate wire resistance and capacitance based on cache con�guration.

Figure VII.2 illustrates the use of the Nspd, Ndwl, and Ndbl parameters

from CACTI. These parameters are optimally computed for the particular cache

con�guration speci�ed by the user. These parameters are for the data array, and

the corresponding Nspd, Ndwl, and Ndbl parameters are for the tag array.

CACTI 2.0 introduces several modi�cations to the CACTI model. First,

the transistor widths used in the original CACTI model are tuned to improve the

access time and scalability of the model. Next, the potential bottleneck of the tag

path is addressed through a number of techniques. Several new features are in-

47

48

Column muxes

Sense Amps

Comparators

Output Driver

Valid Output?

Mux Drivers Output Driver

D
ec

o
d

er

Word lines

Bit lines

Ta
g

 A
rr

a
y

D
at

a
A

rr
ay

Input

Data Output

Figure VII.1: Cache model used in CACTI [92].

troduced into the CACTI model: fully associative cache modeling, multiple cache

port modeling, and cache power modeling. The timing optimization techniques,

fully associative modeling, and multiple cache port modeling are described in

Chapter VII.A. The power model is described in section VII.B. The CACTI

2.0 model is veri�ed with hspice. For details of this veri�cation, and for sample

input and output, refer to [74]. Finally, we detail the modi�cations made to the

CACTI 2.0 model for this thesis in VII.D.

VII.A New Timing Features

A number of enhancements were made to the CACTI timing model. The

access times for set associative caches were optimized by scaling transistor widths

and improving the performance of the tag comparison hardware. In addition,

support was added for fully associative caches and for caches with multiple access

49

8 x B x A

S

8 x B x A

S/2

Double Nspd

8 x B x A

S

8 x B x A

S/2

Double Ndbl

8 x B x A

S

4 x B x A

S

Double Ndwl

8 x B x A

S/2

4 x B x A

S

Figure VII.2: Cache division terminology used in CACTI [92].

In this Figure, A is the cache associativity, B is the cache block size, and S is the

number of cache sets. The grey box is a data array of a particular cache with

the given dimensions in terms of B, A, and S. The left side of the Figure shows

the original cache con�guration, and the right side of the Figure shows the result

of doubling a particular parameter. The �rst part of the Figure demonstrates

the Nspd parameter as it extends the width of the given data array by two and

correspondingly reduces the length. The second part of the Figure demonstrates

the Ndbl parameter as it splits the bitlines of the given data array and creates

two data arrays half the length of the original. The third part of the Figure

demonstrates the Ndwl parameter as it splits the wordlines of the given data

array and creates two data arrays half the width of the original.

50

ports. Finally, the handling of process technology sizes and cache cycle time

generation was changed.

VII.A.1 Transistor Tuning

Throughout the extension of the CACTI model, it was necessary to scale

the width of some transistors on the critical path. Care was taken to avoid making

these widths too large and wasting chip area or increasing capacitance. For the

most part, the changes to transistor widths were on the tag path, especially in

the multiplexor drivers. Avant! AvanWaves (version 1999.2) was used along with

a spice model of the cache to determine which sections of the circuit required

transistor tuning. By plotting the rise and fall of the transistor voltages, it

was possible to determine potential bottlenecks in the circuit. Slowly sloping

waveforms indicated a delay which might be alleviated. Changes were made to

both spice and CACTI models to determine the overall e�ect.

VII.A.2 Improving the Tag Path

In set associative caches, the cache tags need to be checked to deter-

mine which set of output drivers to select. According to the cache model in

Figure VII.1, it can be seen that the access time of the cache is equal to

Max(delaydatapath; delaytagpath) + delayoutputdriver

where the data path delay does not include the output driver. In many instances,

the tag path takes longer than the data path. For example, in the original cacti

model, the tag path of a 16K 2-way associative cache takes 7.8 ns, while the data

path takes 4.9 ns (both excluding the data output driver).

We explored three di�erent techniques to lessen the delay of the tag

path. First, we provided the option to move the output drivers on the data path

51

Sense Amps

Comparators

Mux Drivers

Output Driver

From Tag Array From Data Array

Wire Length =

((8 x B x A x Nspd x Ndbl)/2) x
scaling fraction

Wire Length =

((8 x B x A x Nspd x Ndbl)/2) x

 (1-scaling fraction)

Figure VII.3: Balancing the tag and data paths.

CACTI will determine the scaling factor for the wire length between the mux

drivers and output drivers that will result in the lowest overall cache delay.

closer to the multiplexor drivers on the tag path. This decreases the delay of

the tag path by reducing the load on the multiplexor drivers, but does increase

the delay on the data path. This technique e�ectively attempts to balance the

data and tag paths. Second, we looked at splitting the comparator on the tag

path into two structures to reduce its latency. Third, we increased the amount of

column multiplexing done on the data path prior to the sense amp stage, while

decreasing the amount of multiplexing done on the data path after the compare

stage. This has the added bene�t of reducing the number of sense amps needed

on the data path.

Balancing the Tag and Data Path

The output drivers on the data path were moved closer to the multi-

plexor drivers on the tag path, trading cache area, power, and data path delay, for

decreased tag path delay. In order to drive the increased distance to the output

drivers, two inverters were inserted on each sense amp output on the data path.

52

Comparator

Mux Driver
Unconnected nodes derived from address bits

1/2
address

bits

1/2
address

bits

Figure VII.4: Illustration of split comparator.

Each split comparator handles half of the address bits - each performing half of

the comparisons of the original single comparator. A NAND gate replaces the

inverter in the mux driver and is used to join the signals from the two halves.

This can be seen in Figure VII.3. The CACTI model attempts a range of values

for the scaling factor seen in the �gure, and will choose the relative position of

the output drivers that results in the smallest overall delay. If the bene�t of

this optimization does not outweigh the cost, the tag path will be left as before,

without the additional inverters.

Split Comparator

The second technique involves splitting the comparator on the tag path

into two smaller comparators. Each comparator handles one half of the address

bits to be compared. This reduces the capacitative load on the comparison line.

The two comparators can then be recombined using a NAND gate in the subse-

quent multiplexor driver stage. The NAND gate will replace the existing inverter

used to drive the multiplexor driver. This can be seen in Figure VII.4. The com-

53

parator is only split once, as merging more than two signals would likely prove

more costly than the savings obtained by further reducing the capacitative load

on the comparison line.

Multiplexing Shift

This �nal change again involves shifting more of the delay from the tag

side to the data side. Originally, the multiplexors following the compare stage on

the tag path would select from both the di�erent associative entries in the data

array and the possible output bits in a single cache line. For example, in a 2-way

associative cache with 32 byte lines and 64 output bits, there would need to be

8-way multiplexing at this stage. The multiplexors would have the choice of 512

bits to potentially drive, but only 64 bits are actually output. The 512 bits come

from two 32 byte lines, as the cache is 2-way set-associative and two cache lines

would share a common wordline. The output bit selection does not depend on the

tag path, and therefore can be handled by the bitline column multiplexors that

lead to the sense amps (as shown in Figure VII.1). Since the column multiplexors

are already responsible for converging bitlines from various subarrays, we limit

the degree of multiplexing to 16 (i.e. 16 bitlines to a single sense amp) for the

column multiplexor. We introduce this limitation to avoid allowing too many

bitlines to share a single sense amp.

VII.A.3 Fully Associative Cache

The new version of CACTI includes support for fully associative caches.

In the fully associative cache model, the customary tag path is replaced by a fully

associative cache decoder. Rather than tracking a separate tag and data path, the

fully associative cache has a single path. The decoder will drive the wordlines of

the data array as in the original cache model, but there will only be a single cache

54

Tag bit Tag bit
b bb b

p
rech

p
rech

To Wordline

am an

Figure VII.5: Fully associative cache model.

Each dotted square represents a portion of one tag cell. Each tag cell handles

half of the address comparisons for a particular tag entry.

Address
Input Bits

Subarray

Buffering
Node

Figure VII.6: Layout of a fully associative cache with 16 subarrays.

The address bits are brought in using an h-tree structure.

55

entry associated with each wordline. In the decoder, all tag entries are checked

for a match. Should a match exist, a single data array wordline will be enabled.

Once the data array wordline is enabled, the data path of the fully associative

cache proceeds in the same manner as the direct mapped cache. All decode and

selection occur prior to the data array access (i.e. there is no multiplexor as in

the set associative model). Moreover, as each wordline is associated with a single

cache entry, there is no need to try di�erent values of Nspd, Ntspd, Ndwl, or Ntwl.

Ndbl may be varied, as dividing the bit lines will help reduce the delay associated

with searching the entire tag array. Since selection occurs before the wordline

is even driven, there are less bitlines brought low in a fully associative design -

which helps in reducing the power consumed by the cache. However, since the

tag comparison cannot proceed in parallel with the data array access, the delay

of a fully associative cache is typically larger.

The �rst stage of the fully associative cache involves checking each bit

of the probe address with each corresponding bit of the cache addresses. The

probe address is delayed by using a number of inverters. This simulates the

probe address drivers and timing chain of the cache. The tag comparison stage

of the fully associative cache is split in a manner similar to the comparator in

the set associative cache { each comparator only looks at half of the address bits.

The two comparator halves are then combined via a NAND gate into a single

signal. This can be seen in Figure VII.5. Tag bits am and an belong to the probe

address, and are compared, along with their inverses, to the tag bits of the cache.

Each half of the comparator stage has e lines, where e is the number of entries

(and the number of wordlines) in the cache subarray. Each of these lines has x=2

comparator pairs, where x is the number of address bits in a tag. Every address

line in the comparator is initially precharged high, and if any bits in the probe

address do not match the line address, the line is brought low. On a cache access,

56

at most one line will remain high.

To maintain correct timing of the cache, a dummy line (shown at the

bottom of Figure VII.5) is used with each subarray. The dummy line has the

same comparators as a regular line, but one of the comparators is �xed to bring

the dummy line low when the probe address bits arrive at the comparator. Only

a single comparator is �xed to pull down the address line to model the maximum

delay of the address line discharge. The dummy line then passes through an

inverter and is used to enable the selection of a wordline using NOR gates. Each

real address line is fed into its own NOR gate which controls access to the wordline

driver that corresponds to the address line. Each address line is NORed together

with the dummy gate to determine when to drive the wordline. This prevents

wordlines from being driven before all probe address bits have arrived. Once a

wordline is driven, the data path will behave exactly as a direct mapped cache.

To model the extra space required by the tag comparison stage, the tag

cell height is doubled. Tag cells for the fully associative cache are 8�m by 32�m,

while data cells are 8�m by 16�m.

Because each address bit must travel to a comparator on every address

line in the fully associative cache decoder (since we must compare the address

to every tag in the cache), a tiled layout approach must be used to reduce the

length of the incoming address bit wires. Figure VII.6 shows our strategy. In this

�gure, we tile 16 cache subarrays and route wire using an h-tree strategy. The

address lines are shown meeting at several black nodes - each node represents a

bu�ering mechanism. The tile shown in grey is a single cache subarray. Using

this approach, the worst case distance to reach a subarray is reduced from n to

log(n).

5
7

Port 0
Port 1
Port 2

F
ig
u
re

V
II.7

:
M
u
ltip

le
p
o
rt
ex
a
m
p
le
a
ro
u
n
d
a
sin

g
le
S
R
A
M

cell.

P
o
rt

0
is
a
rea

d
/
w
rite

p
o
rt.

P
o
rt

1
is
a
rea

d
p
o
rt.

P
o
rt

2
is
a
w
rite

p
o
rt.

E
a
ch

a
d
d
itio

n
a
l
p
o
rt
im

p
a
cts

th
e
cell

size
a
n
d
w
ire

len
g
th
s.

58

VII.A.4 Multiple Cache Ports

CACTI previously assumed a single read/write port on the cache model.

We have expanded this model to allow the user to specify how many read/write

ports (maximum of 2), read-only ports, and write-only ports to model on the

cache. The extra ports are modeled as an increase to cell size, along with extra

wordline and bitline lengths. All auxiliary structures (i.e. comparators, multi-

plexors) are assumed to be duplicated but are not included in the timing cal-

culation. The auxiliary structures are included in the power model discussed in

Section VII.B.

Figure VII.7 demonstrates a three port con�guration on a single RAM

cell. It consists of a read/write port (Port 0), a read port (Port 1) and a write

port (Port 2). If the design were single-ended, it would not require both bit lines

to be added for each port, however we do not model this.

The impact of extra ports on cell size is as follows:

For each extra read port:

� increase cell size by (2 � wire pitch) in the y direction (a�ects bitline

metal)

� increase cell size by (wire pitch) in the x direction (a�ects wordline

metal)

For each extra read/write or write port:

� increase by (2 � wire pitch) in both the x and y directions

For example, consider the following parameters:

Cmetal = 275fF

Rmetal = 48mO

wirepitch = 4�m

59

A cache with a single read/write port would have the following characteristics:

Cellsize = 8� 16

Cbitmetal = 4:4pF

A cache with two read/write ports would have the following characteristics:

Cellsize = 16� 24

Cbitmetal = 6:6pF

VII.A.5 Process Technology Scaling

As a minor tweak, the technology scaling factor already present in

CACTI was made into a required command parameter. The user speci�es the

feature size (in microns) of the technology that is to be modeled, and the CACTI

model scales measurements made at the 0:80�m size down (or up) to the desired

technology size. This scaling factor a�ects both timing and power measurements.

VII.A.6 Cache Pipelining

In recent years, some microprocessors (e.g., the DEC 21264 [44]) have

used caches that are e�ectively pipelined on half cycle boundaries. This can

provide most of the functionality of true dual porting without the access time,

power, and area penalty incurred by true dual porting. Because the cache arrays

still take a full cycle to access, there are e�ectively two cache accesses in the

cache arrays at any given time. No intermediate latches are placed in the cache,

rather the cache is pipelined using an approach similar to wave pipelining [33].

Wave pipelining uses circuits that have similar minimum and maximum delays

independent of input values to keep waves of logic values separate and distinct

while traveling through the circuitry. Caches are particularly well suited to wave

pipelining, since their access time is largely independent of the cache line being

accessed.

60

Wave pipelining is only possible if one logic stage does not account for

approximately 33% or more of the delay through the whole circuit. In the current

timing model we compute the ratio of the maximum stage delay time to the total

access time. If this is less than 0.333X, we assume the cache can be wave pipelined

by a factor of two. This makes the cycle time equal to half the cache access time.

If this is not possible, we report the minimum cycle time possible based on the

maximum stage delay time.

VII.B Power Modeling

To more accurately assess the tradeo�s inherent in cache design, we

extended the cache model in CACTI to model power consumption.

VII.B.1 Power Estimation

According to [69] and [90], energy consumption can be modeled as

EDD = CL � V 2
DD � P0!1

where CL is the physical capacitance of a device and P0!1 is the probability that

the device will consume energy. We fully account for power dissipation when

a capacitor is charged, and ignore discharge events. The energy value obtained

from this formula can then be combined with the cycle frequency to provide the

dynamic power consumption. For example, a device that consumes 3nJ of power

and is clocked at 500MHz will consume 1.5W of power. Our goal with CACTI

is to provide the energy consumption in nanoJoules, which can then be used to

�nd the dynamic power consumption, depending on the frequency of the cache.

61

VII.B.2 Automatic Supply Voltage Scaling

CACTI requires the user to specify a technology size as a parameter to

the model. Aside from being used to scale the access time reported by CACTI,

this parameter scales the capacitances and the value of VDD used by the power

model. The value of VDD is scaled by

VDD = 4:5V

(0:8

TECH

):67

Where TECH is the feature size of the technology. This means that voltage

will scale at a slower rate than capacitance and therefore than access time. The

voltage level to which the bitlines are charged is calculated as a fraction of the

scaled value of VDD. We allow a maximum VDD of 5V and a minimum value of

1V.

VII.B.3 Power Model

Since the CACTI model tracks the physical capacitance of each stage of

the cache model, we use the energy consumption equation from Chapter VII.B.1

to calculate the power consumed at each stage. Additionally, we need to factor

in the switching activity and the number of such devices in the cache (as CACTI

models the activity down one particular path in the cache).

As an example, consider the power consumption modeled for the decoder

on the data path of a set associative cache. CACTI models the decoder as being

composed of three stages: the inverter that drives the probe address bit, the

NAND gate that generates the 1-of-8 code, and the NOR gate that combines the

1-of-8 codes and drives the wordline driver (Figure 9 in [92]).

For the �rst stage, there are log2(
C

B�A�Ndbl�Nspd
) address bits, and we

can estimate that a quarter of these will require the inverter to undergo a 0! 1

transition (i.e. half of the address bits will be 0's and half of these were 1's

62

before). However, we need both the true and complement forms of the address

bits. So the energy consumption of the �rst stage can be represented as

EDD1
= Cstage1 � V 2

DD � 0:25� log2(
C

B�A�Ndbl�Nspd
)� 2

The next stage is composed of d1
3
log2(

C

B�A�Ndbl�Nspd
) � 2e blocks in

each subarray. Each N3to8 block is composed of 8 NAND gates. We can estimate

that half of these will undergo energy consuming switching. Since there are

Ndbl �Ndwl decoders, the energy consumption is

EDD2
= Cstage2 � V 2

DD �Ndbl �Ndwl � 4� d
1
3
log2(

C
B�A�Ndbl�Nspd

)e

Finally, the last stage is composed of the NOR gate that will drive a

single wordline. Only one of the NOR gates in the decoder will be selected, which

implies

EDD3
= Cstage3 � V 2

DD

VII.B.4 Integration of Timing and Power Models

In the original version of CACTI, a cache con�guration was chosen that

optimized the access time of the cache. To optimize both power consumption and

access time, we �rst generate the maximum values for each measurement over all

con�gurations of a particular set of input parameters. Then, we iterate through

the di�erent con�gurations again, optimizing the following relationship:

access time

maximum access time
+ power consumption

2�maximum power consumption

We chose to divide the power ratio by a factor of two to emphasize optimization

of the access time. This of course could be removed to optimize evenly across

both measurements.

63

1

10

100

D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA

Cache Configuration

A
cc

es
s

T
im

e
(n

s)

SPICE

CACTI

16K 1024K32K 64K 128K 256K 512K

Figure VII.8: SPICE vs. CACTI { Access Time

Comparison of access times for a variety of cache con�gurations in both CACTI

and SPICE. The y-axis is on a logarithmic scale, and shows the cache access

time in nanoseconds. The x-axis ranges over a variety of cache con�gurations -

all with 32 byte block sizes. Caches sizes of 16K, 32K, 64K, 128K, 256K, 512K,

and 1024K are all shown, each broken down into six associativity con�gurations

(direct mapped, 2-way, 4-way, 8-way, 16-way, and fully associative). So the �rst

six points on the graph represent the six di�erent 16K caches, then the next set

of six corresponds to the 32K caches, and so forth.

VII.B.5 Prior Work

Kamble and Ghose proposed analytical models to estimate energy dissi-

pation in [43]. They looked at using a simulation tool called CAPE which allowed

them to track the transitions encountered in di�erent components of the cache.

They also investigated a number of architectural power reduction techniques.

VII.C Sample Results

First, we show a comparison of the results obtained with the new CACTI

model to results obtained using SPICE. Then, we present CACTI results for a

number of cache con�gurations and port con�gurations. The results presented in

this section are for the 0:80�m technology size and are for caches with 32 byte

block sizes, 32 bit addresses, and 64 bit outputs. Unless otherwise speci�ed, the

64

1

10

100

1000

10000

D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA

Cache Configuration

P
o

w
er

 (
n

J)

SPICE

CACTI

16K 1024K32K 64K 128K 256K 512K

Figure VII.9: SPICE vs. CACTI { energy consumption

Comparison of energy consumption for a variety of cache con�gurations in both

CACTI and SPICE. The y-axis is on a logarithmic scale, and shows the cache

energy consumption in nanoJoules. The x-axis ranges over a variety of cache

con�gurations - all with 32 byte block sizes. Caches sizes of 16K, 32K, 64K,

128K, 256K, 512K, and 1024K are all shown, each broken down into six asso-

ciativity con�gurations (direct mapped, 2-way, 4-way, 8-way, 16-way, and fully

associative).

caches in this section have a single read/write port.

VII.C.1 SPICE Veri�cation

As a sanity check, we compare results obtained in CACTI to a cache

model implemented in SPICE. Figure VII.8 compares cache access times in

nanoseconds on a logarithmic scale across a variety of cache con�gurations for

both models. Figure VII.9 compares cache energy consumption in nanoJoules on

a logarithmic scale across the same cache con�gurations. The models show good

correlation, even at larger cache sizes and associativities. These �gures show how

access time and energy consumption grow as cache size increases. The direct

mapped cache con�gurations generally consume the least amount of energy and

can be accessed in the fastest time for each di�erent cache size. By comparison,

the fully associative cache takes the longest time to access, but for small cache

sizes has lower energy consumption than the 16-way set associative case.

65

1

10

100

4 8 16 32 64 128 256 512 1024
Cache Size (in KB)

A
cc

es
s

T
im

e
(n

s)
DM 2-way 4-way

8-way 16-way FA

Figure VII.10: Access times for a variety of cache con�gurations.

The y-axis shows the access time in nanoseconds on a logarithmic scale. The

x-axis shows a range of cache sizes in KB. Six lines are plotted, each representing

a di�erent kind of associativity.

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024
Cache Size (in KB)

P
o

w
er

 (
n

J)

DM 2-way 4-way

8-way 16-way FA

Figure VII.11: Energy consumption for a variety of cache con�gurations.

The y-axis shows the energy consumed in nanoJoules on a logarithmic scale. The

x-axis shows a range of cache sizes in KB. Six lines are plotted, each representing

a di�erent kind of associativity.

66

data sense amp
and driver
30.07%

tag decode
5.97%

tag bitlines and
wordlines

5.75%

tag sense amps
2.07%

data bitlines
40%

data wordlines
0.29%

data decode
11.49%

data output driver
4.05%

mux driver
0.70%

comparator
0.22%

Figure VII.12: Breakdown of energy consumption for a 64K 2-way associative

cache.

The data bitlines and sense amps are responsible for 40% and 30% of the energy

consumption of the cache, respectively.

wordline
0.04%

bitline
1.98%

sense amp
13.31%

data output driver
0.72%

decode
83.95%

Figure VII.13: Breakdown of energy consumption for a 64K fully associative

cache.

The decode portion of the cache (including tag comparisons) is responsible for

84% of the total cache energy consumption.

67

1
10

100

D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA

Cache Configuration

A
cc

es
s

T
im

e
(n

s)

1 RW 1 RW + 1R 2 RW 2 RW + 1 R

16K 1024K32K 64K 128K 256K 512K8K

Figure VII.14: Comparison of access times for a variety of cache con�gurations.

The y-axis is on a logarithmic scale, and shows the cache access time in nanosec-

onds. The x-axis ranges over a variety of cache con�gurations. Caches sizes of

16K, 32K, 64K, 128K, 256K, 512K, and 1024K are all shown, each broken down

into six associativity con�gurations (direct mapped, 2-way, 4-way, 8-way, 16-way,

and fully associative). Four lines are plotted: a single ported cache, a single

ported cache with an extra read port, a dual ported cache, and a dual ported

cache with an extra read port.

1

10

100

1000

10000

D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA D
M 2 4 8 16 FA

Cache Configuration

P
o

w
er

 (
n

J)

1 RW 1 RW + 1R 2 RW 2 RW + 1 R

16K 1024K32K 64K 128K 256K 512K8K

Figure VII.15: Comparison of energy consumption for a variety of cache con�g-

urations.

The y-axis is on a logarithmic scale, and shows the cache power consumption

in nanoJoules. The x-axis ranges over a variety of cache con�gurations. Caches

sizes of 16K, 32K, 64K, 128K, 256K, 512K, and 1024K are all shown, each broken

down into six associativity con�gurations (direct mapped, 2-way, 4-way, 8-way,

16-way, and fully associative). Four lines are plotted: a single ported cache, a

single ported cache with an extra read port, a dual ported cache, and a dual

ported cache with an extra read port.

68

VII.C.2 Timing Results

Figure VII.10 shows access times for the cache con�gurations we se-

lected. It is interesting to note the similarity in access times between the 2-way

and the 4-way associative caches. Increasing the associativity of the cache does

increase the number of sense amps that must be used and increases the num-

ber of bitlines connected to a single wordline, but it also reduces the number of

rows in the decoder. For many cases, the 2-way set associative case proved to

perform better with a higher value of Ndbl or Nspd, which e�ectively reduces

the number of rows in the decoder in much the same way as increasing the as-

sociativity. However, these also carry the same detrimental e�ects as increasing

the associativity. Unfortunately though, increasing the number of subarrays has

an additional consequence - increasing the degree of multiplexing at the bitline

column multiplexors. Since we limit the degree of multiplexing that can occur at

these multiplexors, the more subarrays there are, the less the column multiplex-

ors can �lter output bits from the cache line (Section VII.A.2). This can have

a detrimental e�ect on the performance of the tag path, as it will increase the

delay of the comparator and output multiplexors.

This is seen in the 512K cache. Here, the 4-way case performs as well

as the 2-way case (12.4ns compared to 12.6ns), despite the increase in associa-

tivity. Both have 8 bitline divisions (Ndbl), but the 2-way case has an Nspd of

2 (e�ectively mapping two sets to a single wordline). This means that they have

the same number of rows in their decoders, and e�ectively the same amount of

decoder and wordline delay. However, since we limit the degree of column mul-

tiplexing to 16, the 2-way case is unable to �lter out the same number of output

bits as the 4-way case. But, since the 4-way case has a higher associativity, both

cases end up with the same number of sense ampli�ers and output drivers. So

the data path delay for both is identical. The tag path di�ers slightly though.

69

The 2-way case has better decoder and tag array performance, at the cost of

comparator performance (due to the increase in Ntspd). Additionally, the extra

output bit multiplexing that it must perform increases the delay of the output

multiplexors. This causes the 2-way case to have a slightly higher tag path delay

than the 4-way case (but only by about 0.2 ns).

VII.C.3 Power Results

Figure VII.11 shows power consumption for the cache con�gurations we

selected. A majority of power dissipated by the set associative con�gurations

is in the bitlines and sense ampli�ers. Therefore, as the number of sense amps

required grows (in response to the number of subarrays, the associativity, the

value of Nspd, etc) the power consumption also grows. However, for the fully

associative con�guration, most of the power is consumed in the decode stage

(where the tag check is performed). However, the fully associative case does not

require a signi�cant number of bitlines to discharge - only enough for a single

cache line. This is due to the fact that each wordline only maps to a single cache

entry. Therefore, at smaller cache sizes, the fully associative cache uses less power

than a highly associative cache (like the 16-way case) as it has substantially less

bitline activity. Moreover, a highly set associative will also require more sense

amps than the fully associative case. At larger cache sizes, the delay of the fully

associative decoder grows considerably and it consumes the most power of any

cache associativity con�guration we investigated.

Figure VII.12 shows a breakdown of power consumption for a 64K 2-way

associative cache. The data path is the predominant power consumer in this case

- 70% is consumed by the data bitlines (40%) and sense amps (30%). There are

128 sense amps in this cache con�guration, and 512 pairs of bitlines. There are

only 128 rows in the 4 data decoders, and as can be seen in the �gure, the data

70

decoder is only responsible for 11% of the total power consumption.

Figure VII.13 contrasts this, as 84% of the total power consumption is

found in the decoder. In a fully associative cache, the decoder also performs the

tag check and has a wordline for every entry in the cache. There are 2048 rows

in this case - 64 in 32 decoders. Each of these rows has a address comparison

line that must be precharged after every unsuccessful tag check. In this model,

there are 256 sense amps - but these are still only responsible for 13% of the total

power consumption, despite the fact that they are a signi�cant source of power

consumption (consuming around twice as much power as the sense amps in the

2-way set associative case, as would be expected). However, there are only 32

pairs of bitlines in this case, and they are only responsible for 2% of the total

power consumed.

VII.C.4 Multiported Results

Figure VII.14 shows the access times for four di�erent port con�gura-

tions. Figure VII.15 shows the power consumption for these con�gurations. We

examined a variety of cache con�gurations using a single ported cache, a single

ported cache with an extra read port, a dual ported cache, and a dual ported

cache with an extra read port. As can be seen, additional ports lengthen cache

access times, especially for large sized caches. An extra read only port provides

a slightly smaller increase in access time over an extra read/write port. More-

over, adding extra ports has a tremendous impact on cache power consumption.

Because the extra port e�ectively implies replicating most cache structures and

because of the extra physical area involved, the additional power required by a

second port is often greater than the total power of a single ported version of the

cache.

71

VII.D Modi�cations for this Thesis

First, we modi�ed CACTI to handle more than just the time for a

successful cache access. We modeled cache misses, cache probes, and cache writes.

In addition, we added the ability to add extra ports just to the tag array of the

cache.

In this thesis it was necessary to expand the CACTI 2.0 model further to

handle other cache-like structures of the front-end. Gshare predictors, BTB-like

structures, and queues were all modeled using this tool to estimate timing and

energy data. For 2-bit predictors like the Gshare, we assumed that a number of 2-

bit entries would share a common wordline, rather than having an extremely thin

and extremely tall structure on chip. Then we ignored the tag path in CACTI

to obtain timing and energy data. For the BTB-like structures, minor changes

were necessary { just a change in the number of bits that the cache-like structure

would output. We handled queues as direct mapped caches without tag arrays.

Additionally, we modi�ed CACTI 2.0 to handle di�erent types of in-

struction cache con�gurations. As will be shown in Chapter X, we looked at

using a pseudo-associative cache and a multi-component serial cache in place of

the original set-associative instruction cache. These modi�cations will be ex-

plored more in Chapter X.

Chapter VIII

Decoupled Front-End

Architecture

As discussed in Chapter III, the branch predictor and instruction cache

in a contemporary processor architecture are coupled together { if the instruction

cache stalls, the branch predictor must also stall. This is shown in Figure VIII.1.

In this Chapter, we improve the scalability and performance of the front-end

by decoupling the branch predictor from the instruction cache. A Fetch Target

Queue (FTQ) is inserted between the branch predictor and instruction cache, as

seen in Figure VIII.2. The FTQ stores predicted fetch addresses from the branch

predictor, later to be consumed by the instruction cache. The FTQ serves two

primary functions: latency tolerance and fetch stream look-ahead.

VIII.A Fetch Target Queue

To provide a decoupled front-end, a Fetch Target Queue (FTQ) [73] is

used to bridge the gap between the branch predictor and the instruction cache.

The FTQ stores predictions from the branch prediction architecture until these

predictions are consumed by the instruction cache or are squashed. On a branch

72

73

...

Instruction
Cache Execution

Core
Issue

Buffer

Branch

Predictor In
st

ru
ct

io
n

Fe
tc

h
Figure VIII.1: Contemporary high level processor design.

The instruction fetch unit prepares and decodes instructions and supplies them

to the issue bu�er. The execution core consumes instructions from the issue

bu�er and then orchestrates their execution and retirement. The instruction

fetch unit is a fundamental bottleneck in the pipeline: the execution core can

only execute instructions as fast as the instruction fetch unit can prepare them.

The instruction fetch unit in this architecture contains a coupled branch predictor

and instruction cache.

Branch
Predictor

Instruction
Fetch

Execution
Core

... ...

FTQ Issue
Buffer

Figure VIII.2: The decoupled front-end high level design.

The fetch target queue (FTQ) bu�ers fetch addresses produced by the branch pre-

dictor. They are queued in the FTQ until they are consumed by the instruction

fetch unit, which in turn produces instructions as in an ordinary pipeline. The

FTQ allows the branch predictor to continue predicting in the face of an instruc-

tion cache miss. It also provides the opportunity for a number of optimizations,

including multi-level branch predictor designs and fetch directed cache prefetch-

ing.

74

misprediction, the FTQ is ushed.

The addition of the FTQ does not necessarily imply an extra pipeline

stage however. The instruction cache can recover from a branch misprediction in

the same way that a normal decoupled cache would recover from a misprediction {

it would provide the block that contains the redirected fetch address. This implies

an extra degree of complexity to orchestrate such a recovery. The alternative is

to simply extend the pipeline by an additional cycle, and to maintain a strict

producer/consumer relationship between the branch prediction architecture and

instruction cache. In this thesis we assume that the instruction cache and branch

predictor can both be fed the corrected fetch address on a misprediction { thereby

eliminating the additional branch misprediction penalty. Figure VIII.3 illustrates

this further.

In the rest of this Chapter we examine some of the issues related to

the operation of the FTQ, including the occupancy of the FTQ (number of fetch

addresses stored in the FTQ) and the speculative recovery mechanisms that we

use in coordination with the FTQ.

VIII.A.1 FTQ Occupancy

The occupancy of the FTQ signi�cantly contributes to the amount of

bene�t obtained from the decoupled front-end architecture. We de�ne the occu-

pancy of the FTQ to be the total number of branch predictions contained in the

FTQ. If there are a large number of cache blocks represented by the predictions

in the FTQ, the instruction cache will have plenty of predictions to consume, and

we will have more exibility in the branch predictor implementation (whether it

be a multi-level design or a multi-cycle access design). Moreover, the higher the

FTQ occupancy, the further ahead cache prefetching mechanisms and PC-based

predictors can look into the future fetch stream of the processor.

75

Branch
Predictor

Instruction
Fetch

Execution
Core

... ...

FTQ Issue
Buffer

branch misprediction detected
redirect PC

Branch
Predictor

Execution
Core

... ...

FTQ Issue
Buffer

cache blocks x, x+32, x+64 cache block x

I-C
ac

he

D
ec

od
e

Instruction
Fetch

(a)

(b)
Figure VIII.3: High level view of branch misprediction recovery

In this Figure, we show how the decoupled front-end is restarted on a branch mis-

prediction. The upper pipeline (a) shows the execution core detecting a branch

misprediction and sending the recovery PC to the branch prediction architecture

and to the instruction cache (in the instruction fetch unit). Then, as shown in the

lower pipeline (b), both the branch prediction architecture and instruction fetch

unit can be restarted. The branch predictor provides a fetch block spanning three

cache blocks (in this example). The instruction cache provides the �rst of these

cache blocks (the block which contains the redirect PC) to the decode hardware.

In the next cycle, the decode hardware can make use of the branch prediction

to potentially mask out bits in the cache block provided the cycle before (cache

block x). The instruction cache can grab the next prediction (cache block x+32)

and provide that block to the decode hardware. The instruction cache basically

ignores the �rst prediction of the branch prediction architecture.

76

High levels of occupancy can be obtained through the prediction of large

fetch blocks, by predicting multiple branches in a single cycle, during instruction

cache misses, and as a result of a full instruction window. Larger fetch blocks

mean that each prediction will carry more instructions, fundamentally increasing

FTQ occupancy. Instruction cache misses delay consumption of FTQ entries, but

the decoupled branch predictor will continue to produce predictions and �ll the

FTQ. An instruction window that is full due to data dependencies or even limited

resources can slow the instruction fetch unit as well, thereby allowing the FTQ to

�ll. While these two latter situations are by no means desirable, an architecture

can still take advantage of these to provide more FTQ occupancy.

In our study, we look at an FTQ that stores fetch blocks. A fetch block

is a sequence of instructions starting at a branch target, and ending with a branch

that has been taken in the past. Branches which are strongly biased not-taken

may be embedded within fetch blocks. This type of block prediction was also

examined by Michaud et. al. [58]. An FTQ could conceivably hold any form of

branch prediction { though it is most useful when looking at larger prediction

blocks, such as fetch blocks, as these will increase the occupancy of the FTQ.

Chapter IX will examine the di�erence between fetch blocks and basic blocks

more closely when we compare our branch prediction architecture to prior work.

VIII.A.2 Speculative Recovery Structures

In this section we explore two di�erent recovery mechanisms that are

needed to maintain predictor accuracy in our decoupled front-end architecture.

These structures are illustrated in Figure VIII.4.

For good predictor performance, especially for machines with deep spec-

ulation and large instruction windows, it is bene�cial to recover branch history

when the processor detects a mispredicted branch. This is even more important

77

Decode

Predict

Fetch

Write Back

D-RAS

N-RAS

mispredict
recovery

misfetch
recovery

Speculative
History

Nonspeculative
History

misfetch
recovery

mispredict
recovery

branch
commits

Commit

S-RAS

Issue

FTQQueue

Figure VIII.4: Speculative support structures.

This �gure presents a simpli�ed processor pipeline along the center (including the

FTQ). Black, grey, and white boxes represent stages in the branch prediction,

instruction fetch, and execution core portions of the pipeline. The nonspeculative

and speculative history structures are shown along the left side of the pipeline.

Speculative history is stored in the speculative history queue (SHQ) and non-

speculative history is stored in the various predictors of the branch prediction

architecture. The SHQ is used to recover the nonspeculative history in the event

of a branch misfetch or misprediction. Both speculative and nonspeculative his-

tory are probed in parallel by the branch prediction stage of the pipeline. Along

the right side of the pipeline, three di�erent return address stacks are shown: the

S-RAS, D-RAS, and N-RAS. The S-RAS is updated during the branch prediction

stage, the D-RAS is updated during the decode stage, and the N-RAS is updated

during the commit stage.

78

Global
History

NT

…110010

T

…100100

…110010

T

…100100

…110010

NT

…100100

…110010

…001001

Misprediction causes SHQ flush

Predicted branch commits – Global History updated and SHQ entry removed

…100100

…001000
…010001
…100010

T

SHQ

i i+1 i+2 i+2+j i+2+j+k

j
cycles
later

k
cycles
later

Br Predict

Cycle

Figure VIII.5: Speculative History Queue (SHQ) example

This example illustrates the use of the SHQ for global history branch predictors.

This �gure shows the state of the non-speculative global history register (GHR)

and the SHQ over several cycles of program execution. Cycles are delineated by

vertical dotted lines and are labeled at the top of the �gure. The current branch

prediction is noted next, followed by the current state of the non-speculative

global history register, followed by the current state of the SHQ. In this example,

the SHQ contains the speculative state of the global history register. The trace

begins at cycle i, where the SHQ is currently empty. Here, the current branch

prediction is not taken (NT) and the global history register contains the current

branch history up until the current prediction. In cycle i+1, the next prediction

is taken (T) and the global history has remained the same as no new branches

have committed. However, a new history entry has been added to the SHQ to

reect the speculatively modi�ed global history (from the prediction in cycle i).

Similarly, the SHQ in cycle i+2 contains a new entry that reects the addition

of branch prediction information from cycle i+1. In this example, the branch

at cycle i is correctly predicted and the branch at cycle i+1 is mispredicted.

Therefore, at cycle i+2+j, all SHQ entries corresponding to predictions made after

cycle i are ushed due to the misprediction at cycle i+1. As the mispredicted

branch had never committed, the global history counter itself does not need

recovery. Finally, in cycle i+2+j+k, once the correctly prediction branch in cycle

i has committed, the global history register is updated with the information

stored in the SHQ, and the entry corresponding to that branch is removed from

the tail of the SHQ.

79

in our scalable front-end architecture design, because the branch predictor can get

many predictions ahead of the instruction fetch unit. To facilitate the recovery

of branch history, we make use of a small Speculative History Queue (SHQ) [70]

to hold the speculative history of branches. When branches are predicted, their

updated global or local history is inserted into the SHQ. When predictions are

made, the SHQ is searched in parallel with the branch predictor | if a newer

history is detected in the SHQ, it takes precedence over the current global history

or the local history in the branch predictor. When the branch at the end of a

fetch block retires, its branch history is written into the global history register

or the branch predictor for local history and its corresponding SHQ entry is re-

moved. When a misprediction is detected, the entry in the SHQ at which the

mispredicted branch occurred and all entries allocated after the misprediction are

released. The SHQ is kept small (32 entry) to keep it o� the critical path of the

branch predictor. If the SHQ �lls up, then the global history register and/or local

history registers in the branch predictor are speculatively updated with the oldest

entry in the SHQ. This allows new SHQ entries to be inserted, at the price of

potentially updating the history incorrectly. Skadron et al., independently devel-

oped a similar approach for recovering branch history, and they provide detailed

analysis of their design in [80]. Figure VIII.5 gives an example of the operation

of the SHQ for global history.

Since the branch predictor can make predictions far beyond the current

PC, it can pollute the return address stack beyond the means of normal recovery

techniques if it predicts multiple calls and returns. It is necessary to use sophis-

ticated recovery mechanisms to return the stack to the correct state. Ordinarily,

the architecture keeps track of the top of the return address stack and restores

this to recover from a misprediction [79]. But our predictor may encounter sev-

eral returns or calls down a mispeculated path that will a�ect more than just the

80

top of stack. We use three return address stacks to solve this problem. One is

speculative (S-RAS) and is updated by the branch predictor during prediction.

The next (D-RAS) is also speculative and is updated in the decode stage. The

third is non-speculative (N-RAS) and is updated during the commit stage. The

S-RAS can potentially be corrupted by branch misfetches and branch mispredic-

tions. The D-RAS can potentially be corrupted by branch mispredictions - as

misfetches will be detected in the decode stage. The N-RAS will not be corrupted

by control hazards, as it is updated in commit. When a misfetch is detected, the

S-RAS will likely be polluted and can be recovered from the D-RAS. When a

misprediction is detected, the S-RAS and D-RAS will likely be polluted and can

be recovered from the N-RAS. After either situation, prediction can restart as

normal, using the S-RAS. This is illustrated in the simpli�ed pipeline in Fig-

ure VIII.4. Chapter IX demonstrates the prediction accuracy of our decoupled

branch predictor with the help of these recovery structures.

VIII.B Results

In this section we explore the bene�t of adding the FTQ to the proces-

sor pipeline. Here we will only consider the bene�t of the FTQ itself, and the

Chapters following this will illustrate the potential for further optimizations such

as instruction cache prefetching and multilevel branch predictors.

The base architecture for this study is as described in Chapter VI.

For this Chapter, a 16K 2-way set associative instruction cache with a single

read/write port is used. For this section a 4096 entry single level fetch target

bu�er is used for the branch prediction architecture. The fetch target bu�er will

be described in detail in Chapter IX. This predictor is large enough to provide

accurate fetch block prediction.

81

0

0.5

1

1.5

2

2.5

3

3.5

4

deltablue gcc go groff ijpeg m88ksim perl vortex average

IP
C

No FTQ 32 entry FTQ

Figure VIII.6: FTQ performance comparison.

This �gure presents a comparison between an architecture with a traditional cou-

pled front-end and one that has been decoupled by the FTQ. For this comparison,

we make use of a 32 entry FTQ. The y-axis shows instructions per cycle (IPC)

and the x-axis shows a selection of 7 benchmarks. A large, single level branch

prediction architecture is used here.

VIII.B.1 Performance

Figure VIII.6 shows the bene�t in IPC obtainable from just adding an

FTQ to the processor pipeline. There are a number of situations where extra

queued branch predictions can provide performance bene�ts. One such situation

was shown in Figure III.2 (Chapter III). Programs with frequent branches expe-

rience the most bene�t from this technique (such as m88ksim which has an 8%

improvement from the addition of the FTQ). On average, we see a 5% improve-

ment in performance, just through the addition of the FTQ.

VIII.B.2 FTQ Occupancy

The greater the occupancy of the FTQ, the greater the potential bene�t

that can be provided by the FTQ using a variety of optimizations. Figure VIII.7

shows a breakdown of the occupancy of the FTQ for a large single level branch

predictor. This �gure demonstrates the percent of cycles that the FTQ held a

82

0%

20%

40%

60%

80%

100%

deltablue gcc go groff ijpeg m88ksim perl vortex average

0 1 2--3 4--7 8--15 16--31 32

Figure VIII.7: FTQ occupancy histogram.

This graph shows the percent of cycles that the 32 entry FTQ used in this study

had a given number of predictions stored within it after instruction fetch. The

disjoint categories of FTQ occupancy are shown in the legend at the top of the

graph. For example, the white bar component represents the percent of time that

the FTQ was empty. The next component represents the percent of time that

the FTQ contained exactly one prediction. The next component represents the

percent of time that the FTQ contained exactly two or three predictions. The

predictor used in this Figure is a large, single level branch prediction architecture

(an 8192-entry FTB). In Chapter IX we will examine the impact of the branch

prediction architecture on the occupancy of the FTQ.

83

given number of entries with predictions. For example, the FTQ only bu�ered a

single prediction 20% of the time on average.

VIII.B.3 Sources of Occupancy

Figure VIII.8(a) provides a look at the breakdown of stalls for the in-

struction fetch unit. This can provide insight into some of the sources of FTQ

occupancy. The data shown in the Figure is collected by keeping a count of what

eventually stops the instruction fetch from producing instructions each cycle. For

example, the black component of the bar represents the number of times the in-

struction fetch was unable to continue due to insu�cient ports on the instruction

cache and the light grey component at the top of the bar represents the amount

of time the instruction cache was forced to stall due to an instruction cache miss.

Even if there are no instruction cache stalls, no port stalls, plenty of free IFQ

entries, plenty of bandwidth from the branch predictor, and no branch mispre-

dictions, there would still be a physical limit on how many instructions could be

fetched in a given cycle. So collectively, the total number of cycles stalled equals

the total number of cycles that the benchmark took to execute. This is directly

related to the IPC of the particular run. As can be seen, a full instruction fetch

queue is a relatively rare occurrence and is therefore not a critical source of FTQ

occupancy, for the benchmarks and architecture we examine. Instruction fetch

stalls vary according to each benchmark. Benchmarks with poor branch predic-

tion, like go, experience a signi�cant amount of stalls from branch mispredic-

tions. Benchmarks with frequent branches, like m88ksim, experience a signi�cant

amount of stalls from the FTQ { but almost none from a full instruction fetch

queue. While all benchmarks experience signi�cant stalls from instruction cache

misses, vortex experiences a majority of its stalls from instruction cache misses

(and therefore can bene�t enormously from accurate prefetching).

84

0
20
40
60
80

100
120
140
160
180

gcc go m88ksim vortex

C
yc

le
s

st
al

le
d (

in
M

ill
io

ns
)

ftq ifq width cache port branch misprediction icache miss

(a)

0
20
40
60
80

100
120
140
160
180

gcc go m88ksim vortex

C
yc

le
s

st
al

le
d(

in
M

ill
io

ns
)

ftq ifq width cache port branch misprediction icache miss

(b)
Figure VIII.8: Sources of FTQ occupancy (single ported caches).

These graphs show the total number of execution cycles for a given program,

broken down by the stalls in the instruction fetch unit. The instruction fetch unit

consumes predictions from the FTQ and deposits instructions in the instruction

fetch queue. Starting from the bottom of each bar, the categories include: stalls

due to an empty ftq (i.e. insu�cient branch predictor bandwidth), stalls due to a

full instruction fetch queue (i.e. a slow execution core), stalls due to insu�cient

fetch width (physical limitation on how many instructions can be fetched in a

given cycle), stalls due to insu�cient ports on the instruction cache, stalls due

to branch predictor mispredictions (this is actually wasted bandwidth as the

processor pipeline drains), and stalls due to instruction cache misses. The y-axis

gives the cycles stalled in millions. The x-axis lists the benchmarks evaluated.

(a) provides data for a 16K 2-way set associative cache. (b) provides data for a

32K 4-way set associative cache. Both (a) and (b) use a single ported instruction

cache.

85

0
20
40
60
80

100
120
140
160
180

gcc go m88ksim vortex

C
yc

le
s

st
al

le
d(

in
M

ill
io

ns
)

ftq ifq width cache port branch misprediction icache miss

(a)

0
20
40
60
80

100
120
140
160
180

gcc go m88ksim vortex

C
yc

le
s

st
al

le
d(

in
M

ill
io

ns
)

ftq ifq width cache port branch misprediction icache miss

(b)
Figure VIII.9: Sources of FTQ occupancy (dual ported caches).

These graphs show the total number of execution cycles for a given program,

broken down by the stalls in the instruction fetch unit. This is identical to

Figure VIII.8, except that we use a dual ported instruction cache. (a) provides

data for a 16K 2-way set associative cache. (b) provides data for a 32K 4-way

set associative cache.

86

Branch mispredictions and frequent unbiased or taken branches have

a negative impact on FTQ occupancy. Limited fetch width, instruction cache

mispredictions, limited instruction cache ports, and full reorder bu�ers (or in-

struction fetch queues) have a positive impact on FTQ occupancy. These latter

stalls comprise a signi�cant amount of overall instruction fetch stalls and allow

high levels of FTQ occupancy.

An improvement in one or more of the potential stall areas will not

necessarily reduce the cycles stalled by the processor. If instruction cache misses

are reduced for example, there may still be an insu�cient number of cache ports or

insu�cient fetch width. Figure VIII.8(b) demonstrates the e�ect of using a larger

instruction cache on the processor stalls. Here, a 32K 4-way set associative cache

is used. The benchmark gcc experiences a 53% decrease in instruction cache miss

stalls, but only a 19% decrease in the total cycles needed to execute the same

data set since other factors caused the instruction fetch unit to stall. As would

be expected, m88ksim experiences the smallest amount of improvement from a

larger instruction cache since it had relatively few instruction cache misses to

begin with.

Figures VIII.9(a) and (b) present the e�ect of adding an additional

read/write port to the instruction cache for a 16KB 2-way set-associative cache

(a) and a 32KB 4-way set-associative cache (b). In (a), the stalls for each bench-

mark actually increase with the addition of the extra port. The stalls due to

insu�cient cache ports almost completely disappear, but there are signi�cant in-

creases in stalls due to instruction cache misses, insu�cient FTQ occupancy, and

insu�cient IFQ space. The latter two are due to the fact that the increased band-

width in the instruction fetch unit are not matched by increased bandwidth from

both the branch prediction architecture and the execution core. However, the

extra instruction cache miss stalls are due to the increased fetch unit bandwidth.

87

On a branch misprediction, twice as many instruction blocks from incorrect paths

can now potentially pollute the instruction cache. The negative impact of cache

pollution in this case outweighs the bene�t of the greater instruction fetch band-

width, especially without a corresponding increase in branch prediction band-

width and execution bandwidth. Figure VIII.9(b) shows the impact of adding an

extra port to a larger cache. Here, go and m88ksim actually experience a very

slight reduction in overall stalls. Even though these benchmarks have relatively

poor branch prediction behavior, they have very few instruction cache miss stalls

and therefore are not as a�ected by cache pollution with the addition of an extra

read/write port. However, they are both heavily impacted by stalls due to insuf-

�cient FTQ bandwidth, which does prevent a more signi�cant decrease in overall

stall cycles. The benchmarks vortex and gcc are still impacted by pollution

e�ects when adding an extra port. In the case of these benchmarks, it might

make more sense to spend the extra area that would be required to dual port the

cache on increasing the cache size.

VIII.B.4 FTQ Size

Another factor that must be considered is the size of the FTQ. A two

entry FTQ is su�cient to provide the bene�t shown in Figure VIII.6, but as will

be shown in Chapter X, more entries enable the branch predictor to run further

ahead of the current PC, and allow an instruction prefetching scheme to provide

considerable bene�t.

Chapter IX

Branch Predictor Optimizations

The use of a decoupled design provides us with some exibility in branch

predictor design. Because the FTQ bu�ers predictions made by the branch pre-

dictor, it is possible to hide the latency of a multi-level branch predictor. Any

branch predictor could take advantage of the multi-level approach, especially

since future process technologies may favor smaller, faster structures [2, 60]. To

fully take advantage of the FTQ, we want a branch predictor that is also capable

of maintaining a high degree of FTQ occupancy. This can be achieved either

through large predictions (as in a trace cache) or through making multiple pre-

dictions per cycle (as in a 2-block ahead predictor). We choose to investigate

the former, using a multi-level branch predictor hierarchy called the Fetch Target

Bu�er (FTB) [70].

IX.A Fetch Target Bu�er

Figure IX.2 shows the FTB design, which is an extension of the BBTB

design by Yeh and Patt [94, 95] with three main changes to their design. The �rst

change is that we store fetch blocks rather than basic blocks. As mentioned in

Chapter VIII, fetch blocks may encapsulate one or more strongly biased not-taken

88

89

A

B

D

E

C

F

BBTB: FTB:
A

B

E

B

E

B

E

F

A B E

B E

B E

Sample Fetch Stream

F

Sample Flow of Control Sample FTB

A(1)

Tag Distance Target

E(n) B(1)

B(1) E(n) B(1)

F(1) G(n) H(1)

A(1)

B(1)

F(1)

Figure IX.1: The di�erence between the BBTB and FTB.

On the left we see a sample ow of control through a program. The circles

represent basic blocks and the lines are control transitions between blocks. Blocks

C and D are the taken paths of the branches at the end of blocks A and B

respectively. The darkened lines show the path that is followed { basic blocks

C and D are never executed. The center diagram shows the corresponding fetch

streams from the BBTB and FTB predictors. The BBTB predicts a single basic

block at a time. The FTB predicts three di�erent fetch blocks: one starting with

basic block A and ending with basic block E. Another starts with basic block B

and ends with basic block E. The last is solely composed of fetch block F. The

rightmost diagram shows the contents of a simpli�ed FTB. Shown are entries for

the tag, the target, and the fetch distance. Here, the basic blocks are annotated

with either a (1) or an (n). The (1) corresponds to the �rst instruction of the

basic block and the (n) corresponds to the last instruction of a basic block. For

example, the FTB entry indexed by B(1) is the only entry predicted and used

while executing the entire loop, which represents BE. The entry is tagged by the

address of the �rst instruction in basic block B. The fetch distance extends to

the �nal instruction in basic block E, where the branch would be located. The

target stores the address of the �rst instruction in basic block B.

90

branches, and so may contain multiple basic blocks. Therefore, an FTB entry is

a form of a sequential trace, storing trace predictions with embedded fall-through

branches. Figure IX.1 further illustrates the di�erence between fetch blocks and

basic blocks. The �rst column of the Figure shows a sample ow of control

through a simple program fragment. The circles A{F represent basic blocks in

the program. The fragment begins at block A and exits at block F. Blocks A,

B, and E end in conditional branches. The branches at the end of blocks A and

B have never been taken over the execution of the program so far, and blocks C

and D have never been executed. The third column of the Figure gives the state

of an FTB for the program fragment. Here, there are three main fetch blocks:

the fetch block containing basic blocks A, B, and E; the fetch block containing

basic blocks B and E; and the fetch block containing basic blocks F, G, and H.

(G and H are not shown and follow basic block F). The second column in the

Figure provides sample fetch streams for both a BBTB and an FTB. The FTB

is able to predict blocks B and E together as a single fetch block prediction. The

BBTB must make two predictions to provide the same bandwidth.

The second change is that we do not store fetch blocks in our fetch

target bu�er that are fall-through fetch blocks, whereas the BBTB design stores

an entry for all basic blocks, wasting some BBTB entries. When the FTB misses,

a default fetch block size is used to generate the next target fetch address.

The third change we made to the BBTB design is that we do not store

the full fall-through address in our FTB. The fall-through address is instead

calculated using the fetch distance �eld in the FTB and the carry bit. The fetch

distance really points to the instruction after the potential branch ending the

FTB entry (fetch block). We store only the pre-computed lower bits of the fall-

through address in the fetch distance along with a carry bit used to calculate

the rest of the fall-through address in parallel with the FTB lookup [13]. This

91

helps reduce the amount of storage for each FTB entry, since the typical distance

between the current fetch address and the fetch block's fall-through address is

not large.

In addition to these changes, we explore a multilevel branch prediction

hierarchy. As discussed in Chapter III, as cycle times continue to shrink, smaller

speculative structures and predictors become more and more attractive. Much

as the memory subsystem became divided into a hierarchy of predictors ranging

from small and fast �rst level predictors to larger and slower second and third

level structures, we explore dividing the branch prediction architecture into a

scalable hierarchy. The �rst level FTB is small enough to provide a fast cycle

time and produce a prediction each cycle. The second level is large enough to

provide the capacity for accurate predictions, and is pipelined in accordance with

the cycle time of the �rst level FTB (this assumes that the FTB sets the cycle

time of the processor). The FTB we explore in this thesis has 2 levels, but could

be composed of any number of levels, much like a cache hierarchy. For the FTBs

we consider, the L2 FTB need only be pipelined into two stages.

IX.A.1 FTB Structure

Our Fetch Target Bu�er (FTB) design is shown in Figure IX.2. The

FTB is accessed with the start address of a fetch target block. Each entry in

the FTB contains a tag, taken address, fetch distance, fall-through carry bit,

branch type, oversize bit, and conditional branch prediction information. The

FTB entry represents the start of a fetch block. The fetch distance represents the

precomputed lower bits of the address for the instruction following the branch

that ends the fetch block. The goal is for fetch blocks to end only with branches

that have been taken during execution. If the FTB entry is predicted as taken,

the taken address is used as the next cycle's prediction address. Otherwise, the

92

mis-predicted branch target

L1 I-Cache
(pipelined) Decode

S-R AS

L1 FTB

M
U

X next PC

branch type

fetch block target

mis-fetched branch target

call return target

L2 FTB

FTQ

Br Pred
and Hist

SHQ

Issue
Buffer

Execution
 Core

tag targetcarry fetch
distance

type over-
size meta bimod

4-12
bits

32
bits1 bit 7 bits

2-3
bits 1 bit 2 bits 2 bits

FTB Entry Format

Figure IX.2: The decoupled front-end architecture with fetch target bu�er.

This �gure elaborates upon the high-level pipeline from Chapter I. The branch

prediction unit, which feeds into the FTQ, is composed of a two-level fetch target

bu�er (FTB), a gshare predictor with global history (Br Pred and Hist), a specu-

lative history queue (SHQ), and a speculative return address stack (S-RAS). The

fetch target bu�er predicts fetch addresses using prediction data from the gshare

predictor and global history. The various �elds of the FTB are shown in the dia-

gram, and will be explained in detail in this section. Since the FTQ enables the

FTB to predict far ahead of the current fetch stream, we use the SHQ and S-RAS

to track and recover speculative state (from Chapter VIII. Fetch addresses are

stored in the FTQ, where they are then consumed by the instruction cache and

decode hardware. Instructions are then supplied to the issue bu�er, where they

are executed and retired by the execution core.

93

fall-through address (fetch distance and carry bit) is used as the next cycle's

prediction address.

The FTB design allows never taken branches to be encapsulated within

a fetch block. But, if a formerly never taken branch is taken, the FTB simply

decreases the fetch distance of the fetch block that encompassed the formerly

never taken branch. The new fetch distance stops at the newly taken branch.

As described earlier, the fall-through address is not stored in its entirety

in the FTB entry. It is computed from the address of the branch that ends the

fetch block, the fetch block end address. Only N low order bits of the fetch block

end address are stored along with a carry bit. If the carry bit is not set, the fetch

block end address is calculated by concatenating the upper address size � N

bits of the current fetch address with the N fetch distance bits stored in the FTB

entry. If the carry bit is set, the fetch block end address is calculated by adding

one to the upper address size � N bits of the current fetch address, and then

concatenating this with the N fetch distance bits stored in the FTB entry. The

calculation of adding the carry bit to the upper bits of the PC is done in parallel

with the FTB lookup. The fall-through address is then calculated by adding 4

to the fetch block end address. If the branch is predicted as not-taken, the carry

bit chooses between the two possible values for the upper bits of the fall-through

address, and then performs the concatenation.

The size of the N bit fetch distance �eld determines the size of the

sequential fetch blocks that can be represented in the fetch target bu�er. If

the fetch distance is farther than 2N instructions away from the start address

of the fetch block, the fetch block is broken into chunks of size 2N , and only

the last chunk is inserted into the FTB. The other chunks will miss in the FTB

and be predicted not-taken, incrementing the current fetch PC by 2N , which is

the max fetch distance. Eventually, the PC corresponding to the �nal chunk

94

will be encountered, which will hit in the FTB and provide a branch prediction.

Smaller sizes of N mean that fetch blocks will be smaller - thereby increasing the

number of predictions that must be made and potentially decreasing the FTQ

occupancy. Larger sizes of N will mean less predictions and potentially higher

FTQ occupancy, but will also mean that FTB misses will result in large miss

fetch blocks which can potentially pollute the instruction cache.

An oversize bit is used to represent whether or not a fetch block spans

a cache block [94]. This is used by the instruction cache to determine how many

predictions to consume from the FTQ in a given cycle. We simulated our results

with a single instruction cache port in this Chapter, but will examine a dual

ported cache in Chapter X. The oversize bit is used to distinguish whether a

prediction is contained within one cache block or if its fetch size spans two or

more cache blocks. If the oversize bit is set, the predicted fetch block will span

two or more cache blocks, and a dual ported cache could use its two ports to

fetch the �rst two sequential cache blocks. If the bit is not set, the prediction

only requires a single cache block, so the second port could be used to start

fetching the target address of the next FTQ entry.

IX.A.2 Branch Direction Predictor

The branch direction predictor shown in the FTB in Figure IX.2 is a

hybrid predictor composed of a meta-predictor that can select between a global

history predictor and a bimodal predictor. Other combinations are certainly pos-

sible, as well as non-hybrid predictors. The global history is XORed with the

fetch block address and used as an index into a global pattern history table.

The meta-prediction is used to select between the various predictions available,

depending on the speci�cs of the design. The meta-predictor is typically im-

plemented as a counter to select between two predictions or as a per-predictor

95

con�dence mechanism to select amongst three or more predictors [71]. The �nal

prediction result is used to select either the target address of the branch at the

end of the fetch block or the fetch block fall-through address.

The meta predictor and bimodal predictor values are not updated spec-

ulatively, since they are state machines and not history registers. The front-end

can only assume it made the correct prediction and thus reinforce bimodal pre-

dictions. It has been shown in [42] that better performance results when such

predictor updates are delayed until the result of the branch outcome is known,

(i.e. at execution or retirement).

In the decode stage, the predicted direction of unconditional branches,

e.g., jumps, calls and returns, and the targets of direct branches, e.g., PC rela-

tive and absolute, are validated. In the writeback stage, the targets of indirect

branches and the direction of conditional branches are validated. Fetch block

targets and sizes are propagated down the pipeline with instructions. During

validation, if a branch target does not match the accompanying fetch block, a

branch misprediction recovery sequence is initiated. The FTB entry is updated

with the correct fetch block information, mispeculated entries in the speculative

history queue are released, and the pipeline is ushed behind the mispeculated

branch. The prediction history of branches is also updated at this point. To fa-

cilitate the embedding of strongly biased not-taken branches within fetch blocks,

not taken branches do not update history or create FTB entries unless they are

already contained in the FTB and at the tail of a fetch block. In addition, new

FTB entries are only allocated when branches are taken.

In our simulations we do not make use of a two level per-branch predic-

tor. However, if such a predictor were to be used, it need not lengthen the access

time of the FTB. On an L1 FTB hit, the prediction from the bimodal predictor

could be speculatively used to select the prediction target for the following cycle.

96

This is the case even if the meta-predictor indicates that the two level per-branch

predictor result should be used. This speculative access permits the two level per-

branch predictor history table access to be overlapped with the L1 FTB access in

the following cycle. By overlapping pattern history table and FTB accesses, we

can cycle the L1 FTB at the rate of the L1 FTB table alone, rather than the rate

determined by the latency of the FTB table plus the pattern history table. If the

meta-predictor indicates that the two level per-branch predictor should be used

and the prediction result returned in the following cycle matches the bimodal

prediction, the prediction result will be correct and the per-branch pattern his-

tory table access will have been successfully overlapped with the following FTB

access cycle. Many branches are strongly biased and thus will be predicted by

the single-cycle bimodal predictor. Of the remaining branches, many of the bi-

modal and per-branch predictions will match, again permitting compete overlap.

Only in the case where the meta-predictor indicates that per-branch predictor

should be used and bimodal prediction does not match the per-branch predictor,

does the overlap not occur. In this event, the results of the speculative L1 FTB

access are thrown away and the FTB is restarted with the correct address. This

misprediction results in the loss of a single FTB cycle. This is similar to what is

done in the Alpha 21264 [44].

IX.A.3 Functionality of the 2-Level FTB

The FTQ enables the use of a multi-level branch predictor, since the

latency of the predictions from the L2 and higher predictors can be masked by

the high occupancy of the FTQ. We will now describe the functionality of a 2-level

FTB design.

The L1 FTB is accessed each cycle using the predicted fetch block target

of the previous cycle. At the same time the speculative return address stack (S-

97

RAS) and the global history prediction table are accessed. If there is an L1 FTB

hit, then the fetch block address, the oversize bit, the last address of the fetch

block, and the target address of the fetch block are inserted into the next free

FTQ entry.

If the L1 FTB misses, the L2 FTB needs to be probed for the referenced

FTB entry. To speed this operation, the L2 FTB access begins in parallel with

the L1 FTB access. If at the end of the L1 FTB access cycle a hit is detected,

the L2 FTB access is ignored. If an L1 miss is detected, the L2 FTB information

will return in T � 1 cycles, where T is the access latency of the L2 FTB (in L1

FTB access cycles). On an L1 FTB miss, the predictor has the target fetch block

address, but doesn't know the size of the fetch block. To make use of the target

address, the predictor injects fall-through fetch blocks starting at the miss fetch

block address into the FTQ with a predetermined �xed length. Once the L2 FTB

entry is returned, it is compared to the speculatively generated fetch blocks: if

it is larger, another fetch block is generated and injected into the FTQ. If it is

smaller, the L1 FTB initiates a pipeline squash at the end of the fetch block. If

the fetch target has not made it out of the FTQ, then no penalty occurs. If the

fetch target was being looked up in the instruction cache, those instructions are

just ignored when the lookup �nishes. The �nal step is to remove the LRU entry

from the corresponding L1 FTB set, and insert the entry that was found in the

L2 FTB. The entry removed from the L1 FTB, is then inserted into the L2 FTB

also using LRU replacement.

If the L2 FTB indicates the requested FTB entry is not in the L2 FTB,

the L1 FTB enters a state where it continually injects sequential fetch blocks

into the machine until a misfetch or misprediction is detected in the decode or

writeback stage of the processor. Once a misfetch or misprediction is detected,

the L1 FTB will be updated with the correct information regarding this new fetch

98

block, and then the L1 FTB will once again begin normal operation.

IX.B Results

The results shown use the same base architecture described in Chap-

ter VI. In this Chapter, a single ported 16K 2-way set associative instruction

cache is used. We make use of a 32 entry FTQ (except where otherwise noted)

and use 7 bits for the fetch distance. The SHQ contains 32 entries. FTB cycle

times are as indicated in Chapter VI except for Figures IX.9 and IX.10 (with the

exception of these two Figures, we assume ideal interconnect scaling). For IPS

results, we assume that the cycle time of the processor is set by the access time to

the L1 FTB, and appropriately pipeline the remaining structures of the pipeline

(L2 FTB, instruction cache, data cache, etc).

IX.B.1 Predictor Results with Ideal Interconnect Scaling

We �rst will motivate the potential bene�t from pipelining the instruc-

tion cache for future processors. Figure IX.3 shows the Billion Instructions per

Second (BIPS) results for two FTB con�gurations with pipelined (2 cycle) in-

struction caches, and an FTB con�guration with a single cycle instruction cache.

The FTB designs with pipelined instruction caches use a cycle time equal to the

FTB access time, and the non-pipelined I-cache uses a cycle time equal to the

instruction cache access time as shown in Table VI.2. The FTB with the single

cycle instruction cache avoids lengthening the branch misprediction penalty by a

cycle (pipelining the instruction cache in these experiments extends the pipeline

by one stage). However, as can be seen, the increase in cycle time has more of an

impact on BIPS. In fact, the bene�t from this technique could even be greater

with a larger instruction cache, as the access time to a larger cache could also �t

within two cycles. The larger cache would provide a higher IPC for all con�gu-

99

0

1

2

3

4

5

6

7

8

deltablue gcc go groff ijpeg m88ksim perl vortex average

B
IP

S

128-entry FTB, single cycle icache

128-entry FTB, pipelined icache

128-entry FTB with 8192-entry L2
FTB, pipelined icache

Figure IX.3: BIPS comparison across three FTB/icache con�gurations.

Billion Instructions per Second (BIPS) results were calculated using IPC values

from SimpleScalar simulations and CACTI timing data. A 16KB 2-way set-

associative instruction cache is used here. The �rst bar for each benchmark

represents an FTB with 128 entries that does not have a pipelined instruction

cache. In this case, the cycle time is set to the cycle time of the instruction

cache - 0.67ns. The second bar for each benchmark represents a single level

FTB con�guration with 128 entries. This con�guration has a 2 cycle pipelined

instruction cache, with a cycle time of - 0.59ns. The third bar for each benchmark

represents a single level FTB con�guration with 128 entries and a second level

with 8192 entries. This con�guration also has a 2 cycle pipelined instruction

cache, with a cycle time of - 0.59ns. Table VI.2 summarizes the timing data for

this Chapter.

100

0

5

10

15

20

25

30

35

40

45

deltablue gcc groff go ijpeg m88ksim perl vortex average

%
 P

re
di

ct
io

ns
 w

ith
 N

ev
er

 T
ak

en
 B

ra
nc

he
s Single Never Taken Branch Two or More Never Taken Branches

Figure IX.4: Percent of predictions from the FTB that span multiple basic blocks.

The x-axis shows the benchmarks we examined, and the y-axis shows the percent

of predictions that contain one or more never taken branches. The black bar

shows the percent of predictions that contain a single never taken branch and the

grey bar shows the percent of predictions that contain two or more never taken

branches.

rations, but would decrease the BIPS of the non-pipelined con�guration due to

an increase in cycle time.

Next, we examine the ability of the FTB to encapsulate never taken

branches. Figure IX.4 shows that on average, 14% of predictions include two

basic blocks (i.e. include a single never taken branch) and an additional 3.2% of

predictions include more than two basic blocks (i.e. include two or more never

taken branches). Predictions in vortex span multiple basic blocks nearly 40%

of the time. Michaud et al. [58] also examined predictors that are capable of

bypassing a single not taken branch and found an average fetch rate of 1.3 basic

blocks per cycle for an ordinary BTB.

Figure IX.5 shows results in instructions per cycle (IPC) for the bench-

marks we examined and an average. For most benchmarks, the increase in pre-

dictor size results in increased performance. Benchmarks like perl and m88ksim

are more a�ected by FTB size due to a large number of branches. For most,

101

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

deltablue gcc go groff ijpeg m88ksim perl vortex average

IP
C

64 256 512 1024 4096 64-8K 128-8K 256-8K 512-8K

Figure IX.5: IPC comparison across a variety of FTB con�gurations.

The �rst �ve bars represent single level FTB con�gurations: 64, 256, 512, 1024,

and 4096 entry �rst level FTBs. The next four bars represent dual level FTB

con�gurations: 64, 128, 256, and 512 entry �rst level FTBs, each with an 8192

entry second level FTB.

the di�erence between a 1024 and a 4096 entry FTB is minimal. The results

for ijpeg show that this benchmark does not contain a signi�cant amount of

branch state. It has few taken branches encountered (only 4.7% of instructions

are branches at all) and therefore requires very little space in the FTB. This,

in addition to its low instruction cache miss rate, helps to explain the relatively

high IPC obtained with this benchmark. The two level results demonstrate that

the second level FTB is improving the prediction accuracy of the �rst level FTB.

Figure IX.6 shows results in Billion Instructions per Second (BIPS) for

single level (64 entry to 4096 entry) and two level FTB designs (64 to 512 entry

�rst level table with an 8192 entry 2nd level table). For most benchmarks, the

512 entry FTB is the best single level performer, with a cycle time of 0.64ns.

The exception is the performance of ijpeg as it does not contain a signi�cant

amount of branch state. The second level results are very closely clustered on

average. The best performer on average was the con�guration with a 128 entry

�rst level FTB and 8192 entry second level FTB. But this varied from benchmark

102

0

1

2

3

4

5

6

7

8

deltablue gcc go groff ijpeg m88ksim perl vortex average

B
IP

S

64 256 512 1024 4096 64-8K 128-8K 256-8K 512-8K

Figure IX.6: BIPS comparison across a variety of FTB con�gurations.

BIPS results were calculated using IPC values from SimpleScalar simulations

and CACTI timing data. The bars for each benchmark represent di�erent FTB

con�gurations. The �rst �ve bars represent single level FTB con�gurations: 64,

256, 512, 1024, and 4096 entry �rst level FTBs. The next four bars represent

dual level FTB con�gurations: 64, 128, 256, and 512 entry �rst level FTBs, each

with an 8192 entry second level FTB.

to benchmark. The benchmark m88ksim has a relatively low FTQ occupancy (due

to a small average fetch distance), and therefore is not able to tolerate the latency

to the second level FTB as well as other benchmarks. These results show that the

two level FTB performs slightly better on average than a single level design in

the absence of the interconnect scaling bottleneck (i.e. assuming ideal technology

scaling in the CACTI timing model).

These results show that IPC does not provide the full picture of proces-

sor performance. The BIPS results in Figure IX.6 show that if the FTB access

time determines the cycle time of the processor, then a 512 entry FTB provides

the best average performance of the single level FTB designs and the 128 entry

�rst level and 8192 entry second level FTB provides the best average performance

of the 2-level FTB designs. If one were only to look at IPC, it would appear that

the bigger the table is, the better the performance looks, even though the access

103

time for a given cycle would not be realistic.

To measure the accuracy of the FTB, it is necessary to consider both

the fetch distance and the branch prediction at the end of the fetch block. The

fall-through fetch distance must not encompass a taken branch, and the branch

prediction must be correct. Therefore, we de�ne an accurate FTB prediction

to be one which satis�es both of these criteria. Figure IX.7 shows the percent

of accurate predictions for the benchmarks we examined and an average. Note

that this prediction accuracy is in terms of fetch blocks which can span multiple

biased not-taken branches to provide a wide fetch block. Therefore, the accuracy

will be lower than just looking at conditional branch prediction ratios. This data

correlates with the IPC results we measured. Benchmarks like gcc and vortex

show signi�cant di�erences in accuracy across varying FTB sizes. Vortex achieves

highly accurate prediction - the two level FTB con�gurations are all over 90%

accurate. On average, we see that the two level FTB con�guration provides a

boost to accuracy. The 256 entry �rst level has a 13% accuracy improvement

with a second level FTB.

Table IX.1 shows prediction accuracy data on the best single and dual

level FTB con�gurations (from the BIPS data). On average, the results show

that 11.2% of predictions from the 2nd level FTB are correctly predicted in the

two-level con�guration. The benchmark ijpeg again proves interesting as 31%

of predictions in the single level FTB con�guration are correctly predicted and

come from misses in the FTB (which would use the default FTB fetch distance

and a fall-through prediction). This is due to the nature of the benchmark which

contains very few taken branches. Table IX.1 shows that the average FTB pre-

diction size for the single level FTB is around 8 instructions, and 5 predictions

occur in a row before reaching a misprediction. This means that on average, a

single level FTB can supply around 43 instructions between mispredictions. The

104

0

10

20

30

40

50

60

70

80

90

100

deltablue gcc go groff ijpeg m88ksim perl vortex average

%
 c

or
re

ct
 p

re
di

ct
io

ns

64 256 512 1024 4096 64-8K 128-8K 256-8K 512-8K

Figure IX.7: Accuracy comparison across a variety of FTB con�gurations.

We measured the accuracy of the FTB by tracking the number of predictions

which had both a valid fetch distance and a correct branch prediction. A fetch

distance is considered valid if the resulting fetch address stream does not contain

any taken branches. The correct branch prediction refers to the prediction of the

branch at the end of the fetch block. The �rst �ve bars represent single level

FTB con�gurations: 64, 256, 512, 1024, and 4096 entry �rst level FTBs. The

next four bars represent dual level FTB con�gurations: 64, 128, 256, and 512

entry �rst level FTBs, each with an 8192 entry second level FTB. This Figure

displays the same measure as the 2nd and 6th columns in Table IX.1, but for a

wider range of FTB con�gurations.

105

Table IX.1: FTB prediction accuracy
512 128-8K

% % ave preds % % % % ave preds

FTB from pred in a FTB from from from pred in a

program acc miss size row acc L1 L2 miss size row

deltablue 80.7 0.1 6.1 5.1 84.5 77.2 4.2 3.1 5.8 6.3

gcc 70.9 0.4 7.1 2.9 79.2 59.5 13.2 6.5 6.1 4.5

gro� 81.4 0.4 7.3 4.8 84.2 60.2 18.0 6.0 6.4 6.0

go 67.1 1.5 7.8 2.7 72.4 56.1 8.2 8.1 6.8 3.5

ijpeg 88.5 31.0 15.4 8.6 88.6 39.4 0.0 49.2 11.4 8.5

m88ksim 88.0 0.2 4.9 8.0 83.9 60.8 19.0 4.2 4.8 6.0

perl 82.9 0.2 6.6 5.5 83.6 65.9 13.9 3.8 6.3 6.0

vortex 82.5 2.4 10.6 4.8 91.9 60.1 13.1 18.7 8.4 12.1

average 80.3 4.5 8.2 5.3 83.5 59.9 11.2 12.5 7.0 6.6

This table examines two FTB con�gurations: a single level FTB with 512 entries,

and a 128 entry FTB with a second level with 8192 entries. For both con�gu-

rations, we list the percent of FTB predictions with valid fetch distances and

correct branch predictions, shown in columns 2 and 6. Columns 3 and 9 show

the percent of correct predictions that resulted from an FTB miss. In this case,

the default fetch distance is predicted. In addition, for the two level con�gu-

ration, we show the percent of correct predictions that were from the �rst level

FTB (column 7) and the percent of correct predictions that were from the second

level FTB (column 8). For both con�gurations, we show the average number of

instructions in each fetch block that are predicted in a single cycle (columns 4

and 10). Also, we show the number of predictions in a row that were produced

on average before a misprediction (columns 5 and 11). The product of these two

numbers provides the average number of instructions between mispredictions.

2-level FTB is able to supply slightly more instructions between mispredictions

- around 46 instructions on average. The exception is m88ksim, again due to the

frequency of taken branches in this benchmark. Without su�cient FTQ occu-

pancy, m88ksim is unable to tolerate second level FTB accesses as well as other

benchmarks, and a single level con�guration is able to perform as well as the

two-level con�gurations.

Figure IX.8 shows the performance of a 2-level FTB with and without

an FTQ, and demonstrates how the FTQ enables the 2-level FTB. Using a 32

entry FTQ provides a 16% improvement on average in IPC over a design without

an FTQ. Results shown are for a 128 entry �rst level FTB with an 8192 entry

106

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

deltablue gcc groff go ijpeg m88ksim perl vortex average

IP
C

No FTQ 32 entry FTQ

Figure IX.8: IPC comparison with and without FTQ.

This �gure shows IPC results for a two-level FTB (128-entry �rst level, 8192-

entry second level) without an FTQ and with a 32-entry FTQ. The x-axis shows

the benchmarks we examined and an average. This is similar to Figure VIII.6,

but shows results for a two-level FTB.

second level FTB. Without an FTQ, there is limited opportunity for the second

level FTB to correct a miss in the �rst level FTB. The occupancy in the FTQ

helps tolerate the latency of the second level FTB access.

IX.B.2 Predictor Results Assuming the Interconnect Scaling Bottle-

neck

As described in Chapter III, interconnect is expected to scale poorly

due to the impact of resistative parasitics and parasitic capacitance. In that

Chapter, we concluded that memory structures would be seriously impacted by

poor interconnect scaling, and that large memories would scale worse than small

memories. In this section, we use a modi�ed version of CACTI 2.0, based on [4].

Table IX.2 summarizes the FTB timing data we used for four process technology

sizes: 0.80�m ,0.35�m , 0.18�m , and 0.10�m .

Figure IX.9 also shows results in Billion Instructions per Second (BIPS),

but uses the technology scaling calculations from [8] (Table IX.2) showing the

107

Table IX.2: Timing data for Figure IX.9
FTB num Access Time (ns)

entries 0.80�m 0.35�m 0.18�m 0.10�m

64 4.48 1.75 0.98 0.76

128 4.65 1.83 1.05 0.85

256 4.87 1.98 1.17 0.99

512 5.02 2.10 1.32 1.17

1k 5.40 2.42 1.60 1.50

4k 7.35 3.71 2.60 2.70

This data is only used for the BIPS results in Figure IX.9 and Figure IX.10. It

was taken from a modi�ed version of the CACTI 2.0 timing tool using scaling

data from [4]. Four process technology sizes are considered.

potential e�ects of the interconnect scaling bottleneck. In this Figure, we examine

data for the 0.10�m process technology size. These results show an even more

substantial di�erence in BIPS between single and two level FTB designs. When

taking into consideration the interconnect scaling bottleneck, we found that the

best performing two level FTB design provided a 14% improvement in BIPS over

the best performing single level design.

Figure IX.10 shows average results in BIPS for the benchmarks we ex-

amined across four di�erent process technology sizes. At the 0.80�m technology

size, all con�gurations are fairly close in terms of BIPS. But, the performance of

the 4096-entry FTB and 1024-entry do not scale with the other con�gurations. In

fact, the 4096-entry FTB actually achieves a lower BIPS at the 0.10�m technology

size than it had at the 0.18�m technology size. This is due to poor interconnect

scaling. The best performing con�gurations are the two-level predictors, which

are able to combine good IPC with small cycle times.

For the remainder of this thesis, we will assume ideal interconnect scaling

with the timing parameters from Chapter VI.

108

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

deltablue gcc go groff ijpeg m88ksim perl vortex average

B
IP

S

64 256 512 1024 4096 64-8K 128-8K 256-8K 512-8K

Figure IX.9: BIPS comparison assuming non-ideal interconnect scaling.

Fetch Target Bu�er performance for 0.10�m feature size using technology scaling

calculations from [8] modeling the potential e�ect of the interconnect scaling

bottleneck.

0

0.5

1

1.5

2

2.5

0.80um 0.35um 0.18um 0.10um

B
IP

S

64 256 512

1024 4096 64-8K

128-8K 256-8K

Figure IX.10: BIPS comparison assuming non-ideal interconnect scaling.

Fetch Target Bu�er performance across four process technology sizes using tech-

nology scaling calculations from Table IX.2. The y-axis shows BIPS results. The

x-axis ranges across the four process technology sizes. The dotted lines represent

two-level FTB con�gurations. The solid lines represent single-level FTB con�g-

urations. Con�gurations with the same cycle times are shown with the same

shaped bullets (i.e. the 64-entry FTB and the 64-entry FTB with second level

FTB).

109

IX.B.3 Fetch Distance

Figure IX.11 provides results for the di�erent fetch distance sizes needed

for the programs examined. The histogram presents 8 disjoint categories that

describe the size of fetch address predictions from the FTB. The categories refer

to the number of bits required to exactly capture the fetch distance of a given

prediction. This data was generated using a 7-bit maximum fetch distance. This

was su�cient to capture most predictions, with the exception of ijpeg which

still may have had predictions that could be captured with more than 7 bits.

As can be seen, 18% of all predictions on average could be captured with only

three bits. 26% required exactly �ve bits. Having 6 bits captures 88% of all

fetch distances on average. It is also interesting to note that some programs tend

toward larger fetch distances than others, such as the large distances seen with

vortex. Larger fetch distances will provide more FTQ occupancy and, coupled

with high prediction accuracy, will provide more opportunities for FTQ-based

optimizations.

IX.B.4 FTQ Occupancy

Figure IX.12 shows two occupancy histograms: (a) corresponds to a

large, single level branch predictor (taken from Chapter VIII) and (b) corresponds

to a 32 entry L1 FTB with a 512 entry L2 FTB. FTQ occupancy is important

in order to provide latency tolerance for multilevel prediction structures and

to provide a lookahead into the future fetch stream. As seen in the Figure,

the single level con�guration has a higher average occupancy than the two level

con�guration, since the two level con�guration must tolerate a second level access

from time to time. While the FTQ of the single level con�guration is full nearly

24% of the time, the FTQ of the two level con�guration is full around 21% of the

time. Even with the added latency of the L2 FTB, the two level con�guration is

110

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

deltablue gcc go groff ijpeg m88ksim perl vortex average

3 4 5 6 7

Figure IX.11: Fetch distance histogram.

The Y-axis shows the disjoint percent of predictions that had a fetch distance

represented by 2 to 7 bits. The fetch distance is the size of the fetch block

prediction generated by the FTB. This histogram represents the distribution of

fetch distances from FTB predictions. Only predictions that resulted from FTB

hits are included (i.e. no FTB miss default fetch distances). To gather this data,

a 512 entry single level FTB was examined, using a 7-bit maximum fetch distance

(a prediction could hold 128 instructions). The legend shows the various disjoint

fetch distance categories. For example, the middle portion of the bar (3rd from

the bottom) shows the percent of predictions that need �ve bits to capture the

fetch distance, but that could not be �t into four bits as a single prediction.

111

0%

20%

40%

60%

80%

100%

deltablue gcc go groff ijpeg m88ksim perl vortex average

0 1 2--3 4--7 8--15 16--31 32

(a)

0%

20%

40%

60%

80%

100%

deltablue gcc go groff ijpeg m88ksim perl vortex average

0 1 2--3 4--7 8--15 16--31 32

(b)
Figure IX.12: FTQ occupancy histogram.

This graph shows the percent of time the 32 entry FTQ used in this study had a

given number of predictions stored within it after instruction fetch. The disjoint

categories of FTQ occupancy are shown in the legend at the top of the graph. For

example, the white section represents the percent of time that the FTQ contained

between 4 and 7 predictions. The black section represents the percent of time

that the FTQ contained exactly one prediction. Graph (a) corresponds to a single

level branch predictor, and graph (b) corresponds to a two level branch predictor.

112

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

deltablue gcc go groff ijpeg m88ksim perl vortex average

0-15 16-31 > 32

Figure IX.13: Speculative History Queue (SHQ) size.

The Y-axis shows the percent of time that the SHQ contained 0{15, 16{31, or 32

(or more) entries. The SHQ used in this �gure has 64 entries. The lightest bar

fragment shows the percent of time that the SHQ contained between 0 and 15

entries.

still able to achieve high levels of FTQ occupancy.

IX.B.5 Speculative History Queue Size

Figure IX.13 demonstrates the size of the SHQ for a multilevel branch

prediction architecture. For this Figure, we used a 64 entry SHQ to determine

what percent of time the SHQ held a given number of predictions. 89% of the

time there were less than 32 entries in the SHQ, on average for all benchmarks.

There were less than 16 entries in the SHQ around 40% of the time. Benchmarks

like vortex which have very high FTQ occupancy (meaning that they are able

to get many predictions ahead of the current fetch PC) require a larger number

of SHQ entries than a benchmark like m88ksim which has a much lower FTQ

occupancy.

113

IX.B.6 Further Enhancements

The FTB need not be fully tagged, and the target �eld need not be a

complete address. Only enough address bits are required to create a unique L2

FTB index and tag. The L2 FTB need only be tagged if the L2 FTB is set-

associative, and then only with enough fetch block address bits to reduce aliasing

within sets. For a large L2 FTB, typically log2(A) bits should su�ce, where A is

the associativity of the L2 FTB.

IX.C Summary

In this Chapter we have shown how the FTQ enables the use of a two-

level branch prediction hierarchy. Predictions enqueued in the FTQ keep the

instruction fetch unit busy in the event that the �rst level FTB misses. This

scalable design provides high prediction accuracy, while keeping access times low.

Despite the second level, the FTQ still contains a signi�cant amount of occupancy,

which will allow the multi-level prediction architecture to work well with other

forms of FTQ-based optimizations. This type of design could be further extended

to make use of multiple branch predictors: smaller, faster predictors provide the

majority of prediction bandwidth and larger, but slower predictors provide a

means of veri�cation for the smaller predictors.

Chapter X

Instruction Cache Performance

Optimizations

The decoupled front-end design provides an opportunity for the branch

prediction architecture to run ahead of the current instruction fetch PC. The

stream of fetch addresses contained in the FTQ can be used to direct instruction

cache prefetching. Contemporary instruction cache prefetching techniques follow

a sequential prefetching path or use a separate predictor to guide prefetch. With

the FTQ, we can use the branch prediction architecture, which has bene�ted

from thorough research over the years, to guide our instruction cache prefetch {

rather than relying on less intelligent sequential predictors, and less accurate and

potentially expensive separate predictors. In this Chapter, we introduce Fetch

Directed Prefetching (FDP) and compare it to some of the prior work. We also

investigate di�erent prefetch �ltering mechanisms that provide improvement to

both the prior work and FDP.

114

115

X.A Prior Instruction Cache Prefetching Work

In this section we describe related work to instruction cache prefetching

not covered in Chapter IV. We will compare the performance of two of these

(next line prefetching and stream bu�ers) to FDP in Chapter X.C.7.

X.A.1 Tagged Next Line Prefetching

Smith [81] proposed tagging each cache block with a bit indicating when

the next block should be prefetched. When a block is prefetched its tag bit is

set to zero. When the block is accessed during a fetch and the bit is zero, a

prefetch of the next sequential block is initiated and the bit is set to one. Smith

and Hsu [83] studied the e�ects of tagged next line prefetching and the bene�ts

seen based upon how much of the cache line is used before initiating the prefetch

request.

X.A.2 Target and Wrong Path Prefetching

Smith and Hsu [83] also examined the bene�ts of combining next-line

prefetching with target prefetching. For target prefetching, they used a table of

branch target addresses, which was indexed in parallel with the instruction cache

lookup. If there was a hit, then the target address was prefetched. For a given

branch, they examined prefetching both the fall through and the target address.

Pierce and Mudge [66] examined what they called Wrong Path Prefetch-

ing, where they examine prefetching both paths of a branch. There are two major

di�erences in their approach and the approach suggested by Smith and Hsu [83].

They only prefetch the taken target if the branch was not-taken, and they only

do this after the taken address is calculated in the decode stage. The address

is not derived from the branch target bu�er. This has the advantage of being

able to prefetch branch targets not in the BTB. Their results showed that target

116

prefetching provided only a small improvement over next-line prefetching.

X.A.3 Stream Bu�ers

Jouppi proposed stream bu�ers to improve the performance of directed

mapped caches [40]. If a cache miss occurs, sequential cache blocks, starting with

the one that missed, are prefetched into a stream bu�er, until the bu�er is �lled.

A stream bu�er is implemented as FIFO queue. The stream bu�er is searched in

parallel with the instruction cache when performing a lookup. He also examined

using multiple stream bu�ers at the same time.

Palacharla and Kessler [61] improved on this design by adding a �ltering

predictor to the stream bu�er. The �lter only starts prefetching a stream if there

are two sequential cache block misses in a row. This was shown to perform well

for data prefetching. In addition, they examined using non-unit strides with the

prefetch bu�er.

Farkas et. al. [27], examined the performance of using a fully associative

lookup on stream bu�ers. This was shown to be bene�cial when using multiple

stream bu�ers, so that each of the streams did not overlap, saving bus bandwidth.

X.A.4 Other Hardware Based Instruction Prefetching

Joseph and Grunwald [39] examined using a Markov predictor for data

and instruction prefetching. We did not examine using the Markov predictor for

instruction prefetching, because of the size of predictor and the fact that the small

predictors examined in this thesis performed well for instruction cache misses.

Joseph and Grunwald [39] examined storing bits in their Markov predic-

tor table to indicate whether the prefetch address was actually used after being

prefetched. If not, it was not used for a given number of times, then the prefetch

would not be performed. A similar �lter was examined by Luk and Mowry [53]

117

where a pollution counter is kept with each cache block in the L2 cache. This

counter keeps track of the number of times a cache block was prefetched from

the L2, but not used. When the counter was above a �lter threshold the prefetch

request would be cancelled. They found this to be a very bene�cial for a prefetch-

ing architecture that stored prefetched blocks directly into the instruction cache.

We did not examine this pollution �lter because we store our prefetched blocks

into a prefetch bu�er before moving those that hit into the instruction cache.

X.A.5 Software Based Instruction Prefetching

Many software techniques have been developed for improving instruc-

tion cache performance. Techniques such as basic block re-ordering [65], function

grouping [65], reordering based on control structure [56], and reordering of system

code [86] have all been shown to signi�cantly improve instruction cache perfor-

mance.

These code placement techniques can be used to reduce instruction cache

misses, but they also allow next-line and stream bu�er prefetching architectures

to achieve better performance. Xia and Torrellas [93] examined this e�ect, along

with the addition of guarding bits to the ISA to guide instruction cache prefetch-

ing. One goal of basic block reordering is to place basic blocks sequentially for

the most likely path through a procedure. The guarding bit would be used in

conjunction with basic block placement to indicate the end of a sequence (chain)

of placed basic blocks. Then when performing next-line prefetching, the next-line

prefetcher would stop when it hits a guarding bit. Luk and Mowry [53] examined

adding prefetch instructions to prefetch target basic blocks of branches that are

not detectable by next-line prefetching. This would be particularly useful for

doing interprocedural prefetching for procedures that are likely to be called.

Examining the e�ects of code placement and software guided prefetching

118

were beyond the scope of what we were able to investigate in this thesis. Using

these techniques in combination with fetch directed prefetching and our �ltering

techniques is a topic for future research.

X.A.6 Lockup-free Caches

Lockup-free caches were originally proposed to increase the performance

for a uni�ed instruction and data cache [47], and have been shown to improve the

performance of data caches by allowing multiple outstanding loads [26]. Lockup

free caches are inexpensive to build, since they only require a few Miss Status

Holding Registers (MSHRs) to hold the information for an outstanding miss.

When the missed block has been completely fetched from memory it is then

inserted into the cache. In this thesis we make use of a lockup-free instruction

cache to implement a form of prefetch �ltering during an instruction cache miss.

X.B Cache Probe Filtering

There are two sources of wasted prefetches: redundant prefetches and

useless prefetches. A redundant prefetch is one that attempts to bring in a cache

block that is already contained in the instruction cache. A useless prefetch is a

prefetch request that will never be used by the program being executed. Both of

these will waste the bus bandwidth from the L2 cache and can severely impact

performance by interfering with useful prefetches and demand misses. Useless

prefetching can be avoided through more intelligent prefetching strategies and

predictors. We now investigate a technique to avoid redundant prefetching.

When the instruction cache has an idle port, the port can be used to

check whether or not a potential prefetch address is already present in the cache.

We call this technique Cache Probe Filtering (CPF). If the address is found in

the cache, the prefetch request can be canceled, thereby saving bandwidth. If

119

the address is not found in the cache, then in the next cycle the block can be

prefetched if the L2 bus is free. Cache probe �ltering only needs to access the

instruction cache's tag array. Therefore, it may be bene�cial to add an extra

cache tag port for CPF, since this would only a�ect the timing of the tag array

access, and not the data array. As we will show, the impact of an extra port on

the tag array is relatively minimal.

An instruction cache port can become idle when (1) there is an instruc-

tion cache miss, (2) the current instruction window is full, (3) the decode width

is exhausted and there are still available cache ports, or (4) there is insu�cient

fetch bandwidth. To use the idle cache ports to perform cache probe �ltering

during a cache miss (1), the cache needs to be lockup-free. The cache need not

be lockup-free to bene�t from (2), (3), or (4) however.

In our simulations we examine performance with and without cache

probe �ltering. We model cache port usage in our simulations, and only allow

cache probe �ltering to occur when there is an idle cache port. First, we im-

prove stream bu�ers with cache probe �ltering. Then, we will examine a novel

prefetching architecture that makes use of cache probe �ltering.

X.B.1 Stream Bu�er Modi�cations

We investigated using cache probe �ltering with stream bu�ers. Each

stream bu�er follows a sequential path of cache blocks. When an idle cache port

is available we can use it to verify whether or not a cache block in the path that

the stream bu�er is following is already in the instruction cache. If it is already in

the cache block, we do not prefetch the block. If it is not in the cache, we prefetch

the block. This �lter can be used in one of two ways. If a cache block is found

in the instruction cache, the prefetch can be skipped, and the stream bu�er can

continue as usual and attempt to prefetch the next cache block. This is labeled as

120

Table X.1: Port Data for a 16KB 2-way set-associative instruction cache
num extra Access Energy

read/write tag Time Dissipated

ports ports (ns) (nJ)

1 0 .65 2.4

1 1 .67 2.4

2 0 .77 2.9

2 1 .78 2.9

Port comparison for a 16KB 2-way set-associative instruction cache. Results are

derived from CACTI timing data for a successful access to the cache.

MSBxC in the remainder of this thesis (where x is the number of stream bu�ers).

Alternatively, once a cache block is found in the instruction cache, the prefetch

can be skipped, and the stream bu�er can be prevented from producing further

prefetches until it is reallocated. We refer to this latter technique as the stop

�lter, labeled as MSBxCP.

X.B.2 Results

We now compare the relative performance of di�erent stream bu�er con-

�gurations, with and without cache probe �ltering. We used the base architecture

from Chapter VI with a 16K 2-way set associative instruction cache with a single

read/write port. The cache is lockup-free and also has an extra port on the tag

array only. The timing and energy dissipation impact of an extra tag port is

negligible, and is summarized in Table X.1. A 128 entry �rst level FTB is used

with a 2048 entry second level FTB.

We implemented stream bu�ers as described earlier in section X.A.3. In

addition, we used the uniqueness �lter proposed by Farkas et. al [27]. Therefore,

a given cache block will only appear in one stream at a time, and all valid entries

in all stream bu�ers are checked for a hit in parallel with the instruction cache

lookup. We found that a four entry stream bu�er provided the best performance

121

0%

10%

20%

30%

40%

50%

60%

70%

crafty eon gcc go m88ksim perl vortex average

%
 S

pe
ed

up
 IP

C
MSB1 MSB2 MSB4 MSB8

MSB1C MSB2C MSB4C MSB8C

MSB1CP MSB2CP MSB4CP MSB8CP

(a)

0
10
20
30
40
50
60
70
80
90

100

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

MSB1 MSB2 MSB4 MSB8

MSB1C MSB2C MSB4C MSB8C

MSB1CP MSB2CP MSB4CP MSB8CP

(b)
Figure X.1: Stream bu�ers (high bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization (b)

using stream bu�ers over a baseline architecture with no instruction prefetching

(and a 16K 2-way set associative cache). Here, the L2 cache has a single port

and a 32 byte/cycle bus. We show results for 7 benchmarks (along the x-axis).

The �rst four bars represent stream bu�er con�gurations with no cache probe

�ltering (but with the uniqueness �lter of [27]. Four con�gurations are shown:

a single stream bu�er and multiple stream bu�ers with 2, 4, or 8 bu�ers. The

next four bars represent the four stream bu�er con�gurations using cache probe

�ltering. The �nal four bars represent the four stream bu�er con�gurations with

both cache probe �ltering and stop �ltering.

122

0%

10%

20%

30%

40%

50%

60%

70%

crafty eon gcc go m88ksim perl vortex average

%
 S

pe
ed

up
 IP

C

MSB1 MSB2 MSB4 MSB8 MSB1C MSB2C

MSB4C MSB8C MSB1CP MSB2CP MSB4CP MSB8CP

(a)

0
10
20
30
40
50
60
70
80
90

100

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

MSB1 MSB2 MSB4 MSB8

MSB1C MSB2C MSB4C MSB8C

MSB1CP MSB2CP MSB4CP MSB8CP

(b)
Figure X.2: Stream bu�ers (low bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization

(b) using stream bu�ers over a baseline architecture with no instruction prefetch-

ing (and a 16K 2-way set associative cache). Here, the L2 cache has a single

port and an 8 byte/cycle bus. These Figures show the same con�gurations as

Figures X.1(a) and (b), but with a lower bandwidth L2 bus.

123

for our pipeline architecture. We provide IPC results using a single four entry

stream bu�er (MSB1), an architecture with 2 four entry stream bu�ers (MSB2),

4 four entry stream bu�ers (MSB4), and 8 four entry stream bu�ers (MSB8) in

Figure X.1(a) and Figure X.2(a). We also provide IPC results for the same four

architectures using cache probe �ltering - MSB1C, MSB2C, MSB4C, MSB8C.

And we examine the use of cache probe �ltering and stop �ltering - MSB1CP,

MSB2CP, MSB4CP, MSB8CP. Figures X.1(a) and (b) provide percent speedup

in IPC and percent L2 bus utilization respectively for a high bandwidth L2 bus

(32 byte/cycle bus). Figures X.2(a) and (b) provide percent speedup in IPC and

percent L2 bus utilization respectively for a low bandwidth L2 bus (8 byte/cycle

bus).

Stream bu�ers performed well (ranging from 28% IPC speedup for 1

stream bu�er to 32% IPC speedup on average for 8 stream bu�ers), but perfor-

mance degraded when used at a lower L2 bus bandwidth. Single stream bu�ers

performed better at the lower bus bandwidth (18% on average), while the 8

stream bu�ers provided 13% performance improvement on average. The bench-

mark crafty experiences the most dramatic decrease in performance between 1

and 8 stream bu�er con�gurations at the lower bus bandwidth. At the higher

bus bandwidth, the stream bu�ers used around 17% of the L2 bus on average,

but used between 54% and 61% of the bus bandwidth on average at the lower bus

bandwidth. This helps to explain the performance di�erence as useful prefetch

requests and demand misses conicted with useless prefetches and redundant

prefetches. As we will see, there is su�cient prefetch bandwidth to achieve even

higher levels of performance { it is just a matter of intelligently selecting which

blocks to prefetch.

When using cache probe �ltering, about the same performance is achieved

for high bus bandwidth (between 29%-33% IPC speedup on average), but larger

124

speedups are seen for the low bus bandwidth (between 18%-20% IPC speedup

on average). CPF reduces the bus bandwidth utilized { from around 17% on

average to around 13%-14% on average for the high bandwidth bus results. For

the low bandwidth bus, CPF has even more of an impact and reduces utilization

to around 49%.

Stop �ltering can reduce bus utilization even further: around 10%-11%

on average for a high bandwidth bus architecture and around 37%-38% on average

for a low bandwidth bus architecture. However, performance degrades using this

approach due to a loss of useful prefetches. Still, the 8 stream bu�er con�guration

improves from 13% on average to 19% on average using this technique at a low

bus bandwidth.

On average, the best performance is seen using 8 stream bu�ers with

cache probe �ltering on an architecture with a high bandwidth L2 bus. For an

architecture with a lower bus bandwidth, the best performance is seen using a

single stream bu�er with cache probe �ltering.

X.C Fetch Directed Prefetching

Fetch Directed Prefetching (FDP) [72] follows the predicted stream,

enqueuing prefetches from the FTQ. This is made possible if the branch prediction

architecture can run ahead of the instruction fetch, which is what the FTQ based

branch predictor provides (shown in Chapter IX). One advantage of this design,

is that FDP can continue to prefetch down the predicted stream even when the

instruction cache is stalled. We now describe our Fetch Directed Prefetching

architecture, describe the heuristics that were used to better select which fetch

blocks to prefetch, and evaluate their performance.

125

Instruction
Fetch

Branch
Predictor

Prefetch
buffer

Prefetch Enqueue
(filtration mechanisms)

Prefetch
PIQ

FTQ

current FTQ
prefetch candidate

from L2

Figure X.3: Fetch Directed Prefetching Architecture.

X.C.1 Fetch Directed Prefetching Architecture

Figure X.3 shows the FDP architecture. As described in section VIII, we

use a decoupled branch predictor and instruction cache, where the FTQ contains

the fetch blocks to be consumed by the instruction cache. The FDP architecture

uses a Prefetch Instruction Queue (PIQ), which is a queue of cache block addresses

waiting to be prefetched. A prefetch from the PIQ will start when the L2 bus is

free, after �rst giving priority to data cache and instruction cache demand misses.

One of the bene�ts of the FTB branch predictor design is that it can

provide large fetch blocks (Chapter IX). A fetch block from one prediction can

potentially span 5 cache blocks. Each fetch block entry contains a valid bit, a

candidate prefetch bit, and an enqueued prefetched bit, for each possible cache

block address. The candidate bit indicates that the cache block is a candidate

for being prefetched. The bit is set using �ltration heuristics described below.

The enqueued bit indicates that the cache block has already been enqueued to

be prefetched in the PIQ. Candidate prefetches from FTQ entries are considered

in FIFO order from the FTQ, and are inserted into the PIQ when there is an

126

available entry. The current FTQ entry, under consideration for inserting prefetch

requests into the PIQ, is tracked via a hardware-implemented pointer.

A fetch directed fully-associative prefetch bu�er is added to the FDP

architecture to hold the prefetched cache blocks. This is very similar to a stream

bu�er [40], except that it gets its prefetch addresses from the FTQ. Each time a

cache block is inserted into the PIQ for prefetching, an entry is allocated for that

cache block in the prefetch bu�er. If the prefetch bu�er is full, then no further

cache blocks can be prefetched. When performing the instruction cache fetch,

the prefetch bu�er is searched in parallel with the instruction cache lookup for

the cache block. If there is a hit in the the prefetch bu�er, the cache block is

removed from the bu�er and inserted into the instruction cache. The prefetch

bu�er contains a replacement bit, which is cleared on a branch misprediction and

set when the entry is allocated. The entry is not cleared on a branch misprediction

though, and if there is a prefetch bu�er hit on an entry with a cleared replacement

bit, the replacement bit is set and the entry is preserved. This helps reduce

prefetch bandwidth on mispredicted short forward branches.

We examined several approaches for deciding which FTQ entries to

prefetch and insert into the PIQ, which we describe in the following sections.

X.C.2 Filter Based on Number of FTQ Entries

The earlier the prefetch can be initiated before the fetch block reaches

the instruction cache, the greater the potential to hide the miss latency. At the

same time, the farther the FTQ entry is ahead of the cache, the more likely that

it will be on a mispredicted path, and the more likely a prefetch from the FTQ

entry might result in a wasted prefetch.

We examined �ltering the number of FTQ entries to be considered for

prefetching based on the position of the fetch block entry in the FTQ. Our prior

127

results showed that when using an FTQ, its occupancy can be quite high (Chap-

ter VIII). We found that starting at the 2nd entry from the front of the FTQ

and going up to 10 entries in the FTQ provided the best performance. The FTQ

we implemented can hold up to 32 entries, but stopping prefetching at 10 entries

provided good performance, since prefetching farther down the FTQ resulted in

decreased probability that the prefetch would be useful, and potentially wasted

memory bandwidth.

X.C.3 Cache Probe Filtering

Cache probe �ltering (CPF) [72] uses idle cache ports to check if a

potential prefetch request is in the cache. We examined two approaches to CPF.

The �rst approach, called enqueue cache probe �ltering (Enqueue CPF),

will only enqueue a prefetch into the PIQ from the FTQ if it can �rst probe the

instruction cache using an idle cache port to verify that the cache block does

not exist in the �rst level instruction cache. This is a very conservative form of

prefetching. This is the same type of �ltering that was used with stream bu�ers

in Chapter X.B.

The second approach, called remove cache probe �ltering (Remove CPF),

enqueues all cache blocks into the PIQ by default, but if there is an idle �rst level

cache port, it will check the cache tags to see if the address is already in the

cache. If the prefetch is in the cache, the prefetch entry will be removed from

the list of potential prefetch addresses. If there are no idle cache ports, then the

request will be prefetched without �rst checking the cache.

X.C.4 Fetch Block Evicted Prefetching

The next approach examines keeping track of cache blocks that are

evicted from the instruction cache in the branch prediction architecture, and

128

FTB
Index

Instruction
Cache

3

27

15

E
vict bit0

FTB

1

0

0

Cache
miss

Cache
block
evicted

Bit set for
next

prediction

E
vict bit1

0

0

1

E
vict bit4

0

0

0

E
vict

index

0

1

2

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

E
vict bit2

0

0

0

•
•
•

E
vict bit3

0

0

0

•
•
•

Figure X.4: Eviction Prefetching

This Figure illustrates how the FTB can be augmented with additional evict bits

to track potential cache misses. The instruction cache contains an FTB index and

an evict index. The FTB index is used to determine what fetch block corresponds

to the given cache block (i.e. which FTB entry the cache block would reside in).

As each fetch block can contain up to 5 cache blocks, the evict index is necessary

to complete the cache block mapping. Each FTB entry is augmented with 5 evict

bits to represent each of the 5 cache blocks. The evict index in the instruction

cache selects which of the 5 evict bits the given cache block corresponds to. When

an FTB prediction is made, the evict bits determine whether or not the cache

block they represent will be prefetched. In this Figure, we show how an FTB

evict bit is set. A cache miss will cause a certain cache block to be replaced in the

cache. This is shown on the left side of the Figure: the blackened cache line will

be removed from the cache and replaced with the block that missed. The line to

be removed contains an index into the FTB, which can then be used to set the

corresponding evict bit in the FTB. Later, when the FTB provides this entry for

a prediction, the second cache block in the fetch block will be prefetched.

129

then using this to guide our fetch directed prefetcher. It can be bene�cial for the

branch predictor to keep track of state for branches that have been evicted from

the instruction cache. A multi-level FTB is one possible method of providing a

larger branch target bu�er.

We store Evict bits in each FTB entry and they are set when a cache

block of the corresponding fetch block is evicted from the instruction cache. Since

a fetch block can potentially span 5 cache blocks, there are 5 evict bits stored in

each FTB entry. There also needs to be some way of linking cache blocks in the

instruction cache to FTB entires. The implementation we examined stores N bits

with each cache block in the instruction cache to identify the FTB entry that last

caused the cache block to be brought into the cache. For the implementation we

simulated, 12 bits are used to map the block to the FTB entry { 10 bits to index

into the set, and 2 bits for the way (4-way associative FTB). Since bits stored

in the cache are a direct index into the FTB, there is no guarantee that the

entry that loaded the cache block is still in the FTB, but for an FTB which can

hold more state and have a larger associativity than the instruction cache, the

mapping will likely be correct. Figure X.4 illustrates an example of this mapping.

When a cache block is evicted from the cache, the N bit index is used

to access the FTB. The evict bit in the FTB entry corresponding to that index is

set, indicating that the cache block will be prefetched the next time it is used as

a branch prediction. An eviction can cause at most one prefetch, since the evict

bit is cleared for an FTB entry when it is inserted into the FTQ.

X.C.5 Cache Miss Filtering

It is desirable to concentrate on prefetching only those fetch blocks that

will most likely miss in the instruction cache in order to reduce bus utilization. If

a given cache set has a lot of conict misses, then it can be bene�cial to prefetch

130

all blocks that map to that high conict cache set. To capture this behavior we

examine using a con�dence counter associated with each instruction cache set to

indicate which cache sets miss most frequently. Fetch blocks that access these

cache sets will have a greater chance of missing in the instruction cache and will

therefore be worth prefetching.

We examined adding a cache miss bu�er that contains a 2-bit saturating

counter for each instruction cache set. We index the cache miss bu�er in parallel

with the FTB. If the fetch block being predicted maps to a cache set that has

missed frequently in the past, that fetch block is marked to be prefetched.

We examined several di�erent �nite state machines for the miss counters,

and found the following to work well with fetch directed prefetching. When a

cache miss occurs, its corresponding set counter in the miss bu�er is incremented.

A cache hit does not change the cache set miss counters. Instead, the con�dence

counters are cleared every million cycles to prevent extraneous prefetching.

X.C.6 FDP Results

Figures X.5 and X.6 show results for fetch directed prefetching with-

out any �ltering (NOFILT), for FTQ position �ltering (POSITION), eviction

�ltering (EVICT), cache miss �ltering (MISS), remove cache probe �ltering with

and without position �ltering (REMCPF and REMCPF+P), and enqueue cache

probe �ltering (ENQCPF). Figure X.5 shows percent IPC speedup (a) and per-

cent L2 bus utilization (b) for a 32 byte/cycle L2 bus. Figure X.6 shows percent

IPC speedup (a) and percent L2 bus utilization (b) for a 8 byte/cycle L2 bus.

Fetch directed prefetching, even without any �ltering techniques, pro-

vides substantial bene�ts (30% on average for a bandwidth of 32 bytes/cycle).

As can be seen in the Figure, this technique uses a great deal of bus bandwidth

(49% bus utilization). For an 8 byte/cycle bandwidth, utilization reaches 77% on

131

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

crafty eon gcc go m88ksim perl vortex average

%
 S

pe
ed

up
 IP

C

NOFILT POSITION
EVICT MISS
REMCPF REMCPF+P
ENQCPF

(a)

0
10
20
30
40
50
60
70
80
90

100

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

NOFILT POSITION
EVICT MISS
REMCPF REMCPF+P
ENQCPF

(b)
Figure X.5: Fetch directed prefetching (high bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization

(b) using fetch directed prefetching (FDP) over a baseline architecture with no

instruction prefetching (and a 16K 2-way set associative cache). Here, the L2

cache has a single port and a 32 byte/cycle bus. We show results for 7 benchmarks

(along the x-axis). The �rst bar represents the performance of FDP without any

form of �ltration (NOFILT). The second bar examines �ltering FDP based on the

position of the entry in the FTQ (POSITION). We examine just using the next

10 FTQ entries to be consumed. The third bar examines FDP with evict �ltering

(EVICT). The fourth bar examines FDP with cache miss �ltering (MISS). The

�fth (REMCPF) and sixth (REMCPF+P) bars are cache probe �ltering using

the remove �lter. The sixth bar also uses position �ltering to remove further

prefetches. The seventh bar uses cache probe �ltering with the enqueue �lter

(ENQCPF).

132

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

crafty eon gcc go m88ksim perl vortex average

%
 S

pe
ed

up
 IP

C

NOFILT POSITION
EVICT MISS
REMCPF REMCPF+P
ENQCPF

(a)

0
10
20
30
40
50
60
70
80
90

100

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

NOFILT POSITION
EVICT MISS
REMCPF REMCPF+P
ENQCPF

(b)
Figure X.6: Fetch directed prefetch (low bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization

(b) using fetch directed prefetching (FDP) over a baseline architecture with no

instruction prefetching (and a 16K 2-way set associative cache). Here, the L2

cache has a single port and an 8 byte/cycle bus. We show results for 7 benchmarks

(along the x-axis). The architectures examined are the same as in Figure X.5.

133

average, and the IPC speedup obtained drops to 17% on average. For vortex,

the bandwidth utilized exceeds 90%.

Position �ltering reduces the bandwidth used by FDP (to 41% and 73%

for the high and low bandwidth L2 buses respectively). The 2-bit cache miss

�lter does reduce bandwidth, but does not perform as well as the position �lter.

Eviction-based prefetching alone provides an average 10% speedup for

the high bandwidth case, while only using 6% of the bus bandwidth. For the low

bandwidth case, it provides an average 9% speedup in IPC and uses only 22% of

the bus bandwidth. This type of prefetching is highly accurate, but is extremely

conservative.

Cache probe �ltering provided the best performance out of all �ltering

techniques examined. Remove CPF provided 33% and 23% speedups in IPC on

average for the high and low bus bandwidth architectures (respectively). It re-

duced the bandwidth utilized to 33% and 63% for these respective architectures.

If position �ltering is used along with remove CPF, the bandwidth is reduced

even further, with minimal performance impact. Enqueue CPF provided the best

performance for all con�gurations and used less bandwidth than any other tech-

nique with the exception of evict �ltering. For a 32 byte/cycle bus, it provided an

additional 33% average improvement in IPC over FDP without �ltering while re-

ducing the bandwidth requirements by 73%. The benchmark vortex experiences

considerable speedup with enqueue CPF due to accurate branch prediction, high

FTQ occupancy, and a large instruction cache footprint.

X.C.7 Comparison to prior work

Figures X.7 and X.8 show the best performing con�gurations from our

FDP architectures and our enhanced stream bu�ers. We also include tagged

next-line prefetching (NLP) as described in [81] { except that we prefetch the

134

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

crafty eon gcc go m88ksim perl vortex average

%
 S

pe
ed

up
 IP

C

NLP MSB1C MSB8C
MSB1CP MSB8CP NOFILT
POSITION REMCPF ENQCPF

(a)

0
10
20
30
40
50
60
70
80
90

100

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

Base NLP MSB1C MSB8C MSB1CP
MSB8CP NOFILT POSITION REMCPF ENQCPF

(b)
Figure X.7: Prefetching comparisons (high bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization

(b) using a variety of prefetching techniques over a baseline architecture with no

instruction prefetching (and a 16K 2-way set associative cache). Here, the L2

cache has a single port and a 32 byte/cycle bus. We show results for 7 bench-

marks (along the x-axis). The �rst bar represents tagged next-line prefetching

(NLP). The next four bars represent di�erent stream bu�er con�gurations: 1

and 8 stream bu�ers with cache probe �ltering (MSB1C and MSB8C) - and - 1

and 8 stream bu�ers with cache probe �ltering and stop �ltering (MSB1CP and

MSB8CP). The sixth bar examines the performance of FDP without any form

of �ltration (NOFILT). The seventh bar examines �ltering FDP based on the

position of the entry in the FTQ (POSITION). The eighth bar is cache probe

�ltering using the remove �lter (REMCPF). The ninth bar uses cache probe �l-

tering with the enqueue �lter (ENQCPF). In (b), an additional bar is added to

show the bandwidth requirements of the baseline architecture.

135

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

crafty eon gcc go m88ksim perl vortex average

%
 S

pe
ed

up
 IP

C

NLP MSB1C MSB8C MSB1CP MSB8CP

NOFILT POSITION REMCPF ENQCPF

(a)

0
10
20
30
40
50
60
70
80
90

100

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

Base NLP MSB1C MSB8C MSB1CP
MSB8CP NOFILT POSITION REMCPF ENQCPF

(b)
Figure X.8: Prefetching comparisons (low bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization

(b) using a variety of prefetching architectures over a baseline architecture with

no instruction prefetching (and a 16K 2-way set associative cache). Here, the L2

cache has a single port and an 8 byte/cycle bus. We show results for 7 benchmarks

(along the x-axis). The architectures examined are the same as in Figure X.7.

136

cache blocks into a fully associative, 32 entry prefetch bu�er. This bu�er is

queried in parallel with the instruction cache during a lookup to �nd a potential

hit. Adding target prefetching to NLP (results not shown) provided minimal

improvement, as discovered by [66]. We also examined combining tagged next-

line prefetching with stream bu�ers (results not shown), but this provided only a

slight improvement. This is because the stream bu�ers follow the sequential path

after a cache miss, which overlaps the prefetch blocks that next-line prefetching

captures.

Figure X.7 shows percent speedup in IPC (a) and percent bus utilization

(b) for a 32 byte/cycle bus to the L2 cache using a number of prefetching archi-

tectures: tagged next-line prefetching (NLP), a single stream bu�er with cache

probe �ltering (MSB1C), 8 stream bu�ers with cache probe �ltering (MSB8C),

a single stream bu�er with cache probe �ltering and stop �ltering (MSB1CP),

8 stream bu�ers with cache probe �ltering and stop �ltering (MSB8CP), FDP

with no �ltering (NOFILT), FDP with position �ltering (POSITION), remove

cache probe �ltering (REMCPF), and enqueue cache probe �ltering (ENQCPF).

Figure X.7(b) also includes a bar for the base architecture bandwidth utilization.

Figure X.7(b) includes bandwidth utilized by both instruction cache demand

misses and data cache demand misses as well as by instruction cache prefetching.

Figure X.8 shows the same results as Figure X.7, but for an 8 byte/cycle bus to

the L2 cache.

NLP provides good speedups for high and low bandwidth (18% and

15%), while using very little bandwidth beyond what the base architecture uses.

Enqueue CPF attains the highest speedup for all bus con�gurations and bench-

marks. The benchmark go shows little bene�t from using enqueue CPF over a

simple stream bu�er, but this is due to both the relatively poor branch prediction

accuracy that is seen with go and the relatively low instruction cache miss rate

137

in go. The most notable improvements are seen once again in vortex (and in

crafty).

X.C.8 Impact of FTQ size

The size of the FTQ can inuence how far ahead a fetch directed

prefetching mechanism is able to look in the future fetch stream. Instead of

using position �ltering, it is also possible to vary the size of the FTQ itself to

reduce the amount of prefetch bandwidth being used. However, this will also im-

pact other fetch directed predictors which may be using the FTQ. To determine

the ideal sized FTQ for fetch directed prefetching, we examined the performance

of di�erent FTQ sizes for a number of di�erent architectures.

Figures X.9 and X.10 show the impact of FTQ size on the best per-

forming prefetching scheme: enqueue CPF. For both bus con�gurations, most of

the bene�t of enqueue CPF can be captured using a 32 entry FTQ. Only vortex

experiences a signi�cant speedup using a 64 entry FTQ over the 32 entry con-

�guration. Some benchmarks actually experience a very small degradation in

performance with a larger FTQ, like eon and m88ksim. As would be expected,

the bandwidth utilized also increases with the size of the FTQ.

X.C.9 Impact of cache size

In this Chapter, we made use of a 16K 2-way set-associative instruction

cache. In Figure X.11, we examine the impact of cache size on the performance

of our FDP architectures with CPF. We vary the size of the instruction cache

across the x-axis and present the IPC obtained by a base architecture with no

prefetching, an FDP architecture with remove CPF, and an FDP architecture

with enqueue CPF.

A 16KB 2-way set-associative cache that uses enqueue CPF achieves

138

0

0.5

1

1.5

2

2.5

3

3.5

crafty eon gcc go m88ksim perl vortex average

IP
C

2 4 8 16 32 64

(a)

0

5

10

15

20

25

30

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

2 4 8 16 32 64

(b)
Figure X.9: Impact of FTQ size on enqueue CPF (high bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization (b)

using enqueue CPF over a baseline architecture with no instruction prefetching

(and a 16K 2-way set associative cache). Here, the L2 cache has a single port

and a 32 byte/cycle bus. We show results for 7 benchmarks (along the x-axis).

The bars show varying FTQ sizes, from 2 to 64 entry FTQs.

139

0

0.5

1

1.5

2

2.5

3

crafty eon gcc go m88ksim perl vortex average

IP
C

2 4 8 16 32 64

(a)

0

10

20

30

40

50

60

70

crafty eon gcc go m88ksim perl vortex average

%
 L

2
B

an
dw

id
th

2 4 8 16 32 64

(b)
Figure X.10: Impact of FTQ size on enqueue CPF (low bandwidth L2 bus).

These Figures show percent speedup in IPC (a) and percent L2 bus utilization (b)

using enqueue CPF over a baseline architecture with no instruction prefetching

(and a 16K 2-way set associative cache). Here, the L2 cache has a single port

and an 8 byte/cycle bus. We show results for 7 benchmarks (along the x-axis).

The bars show varying FTQ sizes, from 2 to 64 entry FTQs.

140

0

0.5

1

1.5

2

2.5

8K-2w ay 8K-4way 8K-8way 16K-2way 16K-4way 16K-8way 32K-2way 32K-4way

IP
C

Base

REMCPF

ENQCPF

Figure X.11: Impact of cache size on CPF results.

Results here are shown for a low bandwidth (8 byte/cycle) bus to the L2 cache.

Three lines are shown: a base architecture with no instruction prefetching, re-

move cache probe �ltering, and enqueue cache probe �ltering. Di�erent cache

con�gurations (both size and associativity) are displayed across the x-axis, rang-

ing from an 8KB 2-way set-associative cache to a 32KB 4-way set associative

cache. The y-axis shows the IPC obtained on average over 7 benchmarks.

comparable IPC to an architecture with a 32KB 4-way set-associative cache and

no instruction cache prefetch. Even with a large 32KB cache, the CPF techniques

still provide bene�t over the base architecture.

X.C.10 Impact of cache ports

Another important architectural consideration is the number of ports

on the instruction cache. In this Chapter, we examined an instruction cache

with a single read/write port, but with an additional read port on the tag array.

As shown in Table X.1, this additional port has a minimal impact on timing

and energy dissipation, and in Figure X.12 we show the impact of this extra

port on the performance of the CPF techniques in this Chapter. Figure X.12

shows the percent speedup in IPC obtained when adding an extra port to the

tag array of an architecture with a single read/write port. As shown, there

is minimal impact on the stream bu�er con�gurations, but the performance of

141

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

crafty eon gcc go m88ksim perl vortex average

%
 IP

C
 S

p
ee

d
u

p

MSBC1 MSBC2 REMCPF ENQCPF

Figure X.12: Impact of extra tag port on single ported instruction cache.

This Figure presents the speedup in IPC seen through the addition of an extra

read port to the instruction cache tag array. The speedup is measured over an

instruction cache with only a single read/write port. Results here are shown for

a low bandwidth (8 byte/cycle) bus to the L2 cache. Four bars are shown: a

single stream bu�er with CPF, two stream bu�ers with CPF, remove CPF, and

enqueue CPF. 7 benchmarks are displayed across the x-axis. The y-axis shows

the percent speedup in IPC for each architecture relative to a cache without the

extra tag port.

142

1

1.2

1.4

1.6

1.8

2

2.2

1 Port 1Port + 1 Tag Port 2 Ports 2 Ports + 1 Tag Port

IP
C

BASE MSB1C REMCPF ENQCPF

Figure X.13: Average IPC across di�erent port con�gurations.

This Figure shows how a base architecture with no prefetching (BASE), an ar-

chitecture with a single stream bu�er using CPF (MSB1C), an architecture with

FDP �ltered by remove CPF (REMCPF), and an architecture with FDP �ltered

by enqueue CPF (ENQCPF) perform using di�erent port con�gurations on the

instruction cache. The port con�gurations are shown across the x-axis and IPC is

shown on the y-axis. IPC values are averaged over the 7 benchmarks we examine

in this Chapter. We make use of a 16K 2-way set-associative instruction cache

to obtain these results.

enqueue CPF is greatly enhanced for vortex, eon, and to some extent crafty.

The additional port simply provides an opportunity for the �ltering mechanism

to enqueue prefetch requests even more rapidly. Adding even more tag ports

provides minimal additional bene�t for these benchmarks and architectures.

Figure X.13 examines four di�erent port con�gurations on a 16K 2-way

set-associative instruction cache. The IPC results in this Figure demonstrate

that adding an extra read/write port to our architecture actually degrades per-

formance for the base architecture (with no prefetching). Figure VIII.8 revealed

that few stalls occur due to insu�cient cache ports for the architectures we exam-

ine. And Figure VIII.9 revealed that increasing the number of cache read/write

ports actually increases the cycles stalled due to instruction cache misses. The

decrease in instruction cache performance comes from branch mispredictions, ei-

143

ther due to predictor error or due to a second level FTB access which arrives too

late (i.e. the fallthrough prediction from the �rst level FTB has already been

consumed by the instruction fetch unit). This data, along with Figure VIII.9 in-

dicates that the extra chip area that would be spent to dual port the instruction

cache might be better spent on increasing the size of the instruction cache { for

the particular architecture we've examined. Moreover, without a commensurate

increase in the performance of the execution core (speci�cally, the issue width of

the execution core), potentially doubling the bandwidth of the instruction fetch

unit will have minimal positive impact on the performance of the processor as a

whole. While the performance of the execution core may be limited by the front-

end of the processor (as shown in Chapter I), the performance of the processor

itself is fundamentally limited by the performance of the execution core.

As �rst shown in Figure X.12, the single ported cache obtains bene�t

from an additional tag array port. However, the dual ported cache receives almost

no bene�t from an additional tag array port as shown in Figure X.13.

For the results in this Chapter, we have used a two-level FTB con�gu-

ration (using a 128 entry �rst level FTB). However, to ensure that there is not

a better con�guration which will provide more performance for a dual ported in-

struction cache, we also examine results for a variety of FTB con�gurations using

a 16K 2-way set-associative dual ported instruction cache. Figure X.14 presents

BIPS results for a number of di�erent single and multi level FTB con�gurations.

As in Chapter IX, the best performing single level predictor has 512 entries, and

the best performing two level predictor has a 128 entry �rst level. The two level

predictors still outperform the single level predictors, even with a dual ported

instruction cache.

144

0

0.5

1

1.5

2

2.5

3

3.5

crafty eon gcc go m88ksim perl vortex average

B
IP

S

256 512 1024 4096 64-8K 128-8K 256-8K 512-8K

Figure X.14: Dual ported cache results with varied FTB con�gurations

This Figure provides BIPS results for a variety of FTB con�gurations using a

dual ported instruction cache. Four single level con�gurations (256, 512, 1024,

4096 entry �rst levels) and four two level con�gurations (64, 128, 256, 512 entry

�rst levels with 8192 entry second levels) are shown. This Figure uses 0.10�m

technology data from CACTI and assumes no e�ects from the interconnect scaling

bottleneck. The 7 benchmarks we examined in this Chapter are shown along the

x-axis.

X.C.11 Impact of reorder bu�er size

Finally, we explore the impact of reorder bu�er size on some of the

prefetching results. We used a 128 entry reorder bu�er in this Chapter. Fig-

ure X.15 shows results for three reorder bu�er con�gurations: 32, 128, and 512

entry reorder bu�ers. As can be seen in Figure VIII.8, there are very few stalls

due to a full instruction fetch queue, and therefore very few stalls due to a full

reorder bu�er. So, for the 512 entry reorder bu�er case, we also double the num-

ber of instructions that can issue in a single cycle (i.e. use a 16-way machine).

Figure X.15 demonstrates how we can still provide considerable improvement us-

ing CPF with either a higher bandwidth execution core (larger ROB and fetch

width) or a lower bandwidth execution core (smaller ROB).

145

0

0.5

1

1.5

2

2.5

3

3.5

crafty eon gcc go m88ksim perl vortex average

IP
C

BASE MSBC1 ENQCPF
BASE MSBC1 ENQCPF
BASE MSBC1 ENQCPF

32 entry ROB
128 entry ROB
512 entry ROB++

Figure X.15: Impact of reorder bu�er size

This Figure presents three reorder bu�er (ROB) con�gurations: a 32-entry ROB,

a 128-entry ROB, and a 512-entry ROB. The 32-entry and 128-entry ROBs are

used in 8-way out-of-order architectures. The 512-entry ROB is used in a 16-

way out-of-order architecture. The y-axis gives the IPC of the three prefetching

architectures we examine for each ROB con�guration: a base architecture with

no prefetching (BASE), a single stream bu�er with CPF (MSBC1), and an FDP

architecture with enqueue CPF (ENQCPF). The 7 benchmarks we examine in

this Chapter are shown along the x-axis.

146

X.D Summary

In this Chapter, we have examined a number of instruction cache prefetch-

ing techniques. Prefetches need to be both accurate and timely, and should not

interfere with demand misses. We have shown how various �ltering techniques

can be used to reduce demand miss interference, and can improve the timeli-

ness of prefetching by making the most e�ective use of the available bandwidth.

We can make the following observations about some of the more e�ective cache

prefetching techniques for an 8 byte/cycle L2 bus:

� Tagged Next-line Prefetching { this technique uses very little L2 bus band-

width, and can provide an average 16% speedup in IPC over a base archi-

tecture. It is a simple technique, and is easily implemented. However, it has

no notion of prefetch usefulness. It can only follow a sequential prefetching

path, but has no notion of whether or not that path will be taken by the

processor. Moreover, it has limited prefetch timeliness, as it initiates the

prefetch of a given block upon the use of the block immediately before.

� Stream Bu�ers { this technique is able to take advantage of the latency of

a cache miss to hide a number of sequential path prefetches. Therefore,

it exhibits excellent prefetch timeliness. However, it can have a relatively

high amount of prefetch bandwidth. We show how cache probe �ltering can

reduce this however, and can substantially improve performance. Neverthe-

less, stream bu�ers still can only follow a number of sequential prefetching

paths, and like NLP, the technique has no notion of prefetch usefulness.

The best stream bu�er con�guration (using CPF) provided a 20% speedup

in IPC on average.

� Fetch Directed Prefetching { this technique follows the predicted stream of

fetch addresses stored in the FTQ. It can perform timely prefetches by either

147

using the latency of a cache miss (much like stream bu�ers) or through su�-

cient occupancy in the FTQ. However, because it could potentially enqueue

every cache block executed by the processor, it uses a substantial amount

of L2 bandwidth. When using cache probe �ltering, this bandwidth can be

greatly reduced, and the performance can be greatly increased. Our best

performing FDP technique provided 30% speedup in IPC on average. This

technique is strongly linked to the accuracy of the branch predictor.

Chapter XI

Instruction Cache Energy and

Complexity Optimizations

In Chapter X we explored using predictions stored in the FTQ to direct

instruction cache prefetching. We used cache probe �ltering (CPF) in Chap-

ter X.C.3 to eliminate redundant prefetches and make more e�cient use of the

bus bandwidth to the L2 cache. In this Chapter, we focus on techniques to re-

duce both the complexity and energy dissipation of our prefetching architecture.

We examine three di�erent cache designs, explore way prediction, and propose

a novel decoupled instruction cache design which allows complexity-e�ective and

energy-e�cient fetch directed instruction prefetching.

Throughout this Chapter, we make use of a 128-entry FTB with a 2048-

entry second level FTB. This predictor couples a small �rst level table with a

larger, but relatively energy e�cient second level predictor.

XI.A Cache Design Tradeo�s

Instruction cache performance is vital to the processor pipeline. Asso-

ciativity is a useful technique to improve cache performance by reducing conict

148

149

Col mux
& sense amps

Comparators

Mux Drivers

Output Drivers

D
ec

o
d

erWord line

Bit lines

T
ag

 A
rr

ay

D
at

a
A

rr
ay

Data Output

Col mux
& sense amps

Way 1Way 0 Way 1Way 0 Block
Address

Figure XI.1: Cache con�guration taken from CACTI [91]

The tag and data arrays are accessed in parallel. In a set associative cache, all

ways of a cache set are driven on the data path, but a single way is selected for

data output once the tag path completes. The ways of a particular cache set

share a common wordline.

misses in the cache. However, direct mapped caches expend less energy on a

given access than associative caches. Moreover, they typically have faster access

times as the data output drivers do not need to wait for the tag comparators.

Next line set prediction [15] has been proposed as a means of providing the tim-

ing and energy bene�ts of a direct mapped cache con�guration, combined with

the improved hit rate of an associative cache con�guration. One type of cache

con�guration that is used with next line set prediction is the predictive sequential

associative (PSA) cache [16]. We expand upon the PSA cache and introduce the

multi-component serial cache, which provides the same energy bene�ts as the

PSA cache, but has a slightly faster access time.

XI.A.1 Set-Associative Instruction Cache

A set-associative cache is split into two components, a tag component

and a data component. These are indexed in parallel to reduce the access time

of the cache. Throughout this paper we will refer to this traditional cache design

150

as the parallel cache. All ways of a particular cache set are driven from the data

component, and the desired way is selected based upon the comparator output

of the tag component. Figure XI.1 shows a 2-way set associative cache with

the bitlines representing way 0 of a cache set colored in black and the bitlines

representing way 1 of a cache set colored in grey. In the cache we simulate, there

are two bitlines (bit and bit) for each bit of the cache block. These lines are

precharged high, and on each access to a particular tag or data array, either bit

or bit will be brought low for each bit on the driven wordline. For the data array,

if the number of bits output by the cache is 256 (assuming an entire 32-byte

block of the instruction cache is output) and the cache is 2-way set associative,

then 512 bitlines will need to be charged before every access (one line from each

bitline pair, as either bit or bit will be high already). Moreover, there will be

512 sense amps hooked up to bit and bit, which consume a signi�cant amount

of power. For a 16KB 2-way set associative cache with 1 read/write port, over

94% of energy dissipated by the cache on a successful cache access is in the sense

amps and the bitlines of the data component (using the CACTI 2.0 tool [74]).

There are fewer bits in the tag array than the data array, and therefore the data

array dominates the energy dissipation of the cache. Figure XI.1 also includes

column multiplexors before the sense amps that are used when multiple tag or

data arrays are used by CACTI. The sense amps feed the output drivers, which

selectively output a particular way of the cache depending on values from the tag

comparison (made in parallel with the data lookup). Only 256 bitline pairs and

sense amps will actually determine the output of the cache, so around 50% of the

energy dissipated in the bitlines and sense amps is wasted. Even on a cache miss,

the bitlines and sense amps still consume power, as the data and tag components

occur in parallel { the data component does not see the miss until the output

driver stage. In this case, 100% of energy consumed in the data component of

151

Col mux
& sense amps

Comparator

Valid Driver

Output Driver

D
ec

o
d

erWord line

Bit lines

T
ag

A
rr

ay

D
at

a
A

rr
ay

Data Output

Col mux
& sense amps

 Block
Address

Figure XI.2: The direct mapped cache model.

the instruction cache is wasted. The e�ect of this is worse in caches with even

higher associativities { a 4-way set associative cache has 1024 bitlines that must

be precharged before every access, and makes use of 1024 sense amps { wasting

around 75% of the total energy that is consumed in the sense amps and bitlines.

As we model an instruction cache that outputs an entire cache line on

a successful access, we scaled the multiplexor driver on the tag path of [74] to

be able to handle the large number of output drivers associated with this kind

of cache. We were also able to eliminate some of the extra multiplexing done at

this stage as the entire cache block is output.

XI.A.2 Predictive Sequential Associative Cache

Calder et al. [16] proposed the predictive sequential associative (PSA)

cache to provide the performance of a set-associative cache with the access time of

a direct mapped cache. The PSA cache is essentially a direct mapped cache, but

stores cache blocks that map to the same cache way in sequential cache entries.

For example, a 2-way PSA cache has half the number of sets as an equivalent

direct mapped cache { each set is composed of two consecutive cache entries.

In [16], a predictor determines which cache entry contains the desired block. The

152

tag and data arrays are accessed in parallel, and on a misprediction, the correct

block can be provided from the data array in the next cycle. Figure XI.2 shows

the CACTI model for a direct mapped cache that is used in our timing analysis.

The PSA cache e�ectively uses a form of way prediction to determine

what cache line to drive out of the direct mapped cache. This is similar to the way

prediction technique used in the NLS architecture [15], but in this case, the way

predictor is associated with the cache itself, rather than the branch prediction

architecture. This idea was also explored by Inoue et al [38].

The PSA cache was designed to provide 2-way associativity using a

direct mapped structure, but could be expanded to provide higher degrees of

associativity. This would require either multiple tag arrays or multiple tag ports {

or a set-associative tag component paired with a direct mapped data component.

We explore the latter design in the next section.

XI.A.3 Multi-component Serial Cache

Another energy e�cient cache design is the serial cache. A serial in-

struction cache lookup can be broken into two components { the tag comparison

and the data lookup. The data component is responsible for the majority of the

power consumed in the access. By accessing the less power intensive tag com-

ponent �rst, it is possible to eliminate unnecessary power consumption in the

bitlines and sense amps of the data component during a cache access. The tag

component will indicate what way of the data component needs to be accessed,

thereby avoiding unnecessarily driving the bitlines of other ways of the cache and

decreasing the number of necessary sense amps. If the data is not present in

the cache, the data component access will be avoided, and no unnecessary power

dissipation will occur in the bitlines or sense amps of the data component.

The type of serial cache that we examine is the multi-component serial

153

Output Drivers

D
ec

o
d

er

D
at

a
A

rr
ay

Data Output

Col mux
& sense amps

Way 1Way 0
Way 0

D
ec

o
d

er

D
at

a
A

rr
ay

Way 1

T
ag

 A
rr

ay
16K-2way Tag Component

8K direct mapped
Data Component

 Block
Address

Col mux
& sense amps

Output Drivers

8K direct mapped
Data Component

Col mux
& sense amps

Comparators

Mux

D
ec

o
d

er

Mux

 Block
Address

 Block
Address

Figure XI.3: A 16KB 2-way set-associative multi-component (MC) serial cache.

This has the same tag component as the instruction cache, but with multiple

data components. Each data component is a direct mapped cache. For a cache

of size C that is A-way set associative, there are A direct mapped caches of size
C

A
forming the data component.

cache (MC), as shown in Figure XI.3. This cache has the same tag component

arrangement as a regular set-associative instruction cache, but rather than a sin-

gle set-associative data component, there are a number of direct mapped data

components. Figure XI.3 shows the arrangement of a 16KB 2-way set associative

multi-component serial cache. The tag component chooses one of the two direct

mapped data components to drive. The data components collectively comprise

the data portion of the MC cache, and so in our 16KB 2-way associative con�g-

uration, each data component is only 8KB in size. A 16KB 4-way set associative

MC cache would have four 4KB direct mapped data components. Each direct

mapped data component has its own decoder, sense amps, and other auxiliary

structures. At most one data component is enabled at each access, depending

on tag information. To further optimize this design, we have moved the mul-

tiplexor drivers from the tag component in Figure XI.1 to the data component

in Figure XI.3. These drivers choose which wordlines to enable in the direct

mapped data components. The multiplexor drivers can be driven in parallel with

the data decoders { the multiplexor drivers determine which data component is

154

enabled and depend on the tag path, while the data decoders only depend on

the incoming block address. In addition to the selection logic to determine which

data component to activate, there is additional muxing done at the data output

of all data components to the output bus of the MC cache. This must be done

as several data components will potentially be sharing a common cache output

bus.

The PSA cache is very similar to our MC cache. Either design can use

some form of prediction to allow parallel access of tag and data components { or

can simply use serial access (tag then data) to determine where the data exists.

The MC cache is better able to scale to higher associativities however, as it can

make use of smaller and faster multiple data components. Also, the tag array on

the MC cache is better able to support higher associativities. If the PSA cache is

to provide higher associativities it will likely need a set-associative tag component

to perform all the tag checks in the initial access.

XI.A.4 Performance and Energy Comparisons

Table XI.1 and Table XI.2 provide results for the di�erent cache con-

�gurations we examine. Table XI.1 compares data obtained from our modi�ed

version of CACTI 2.0 [74] { the access times (tag and data) and energy consump-

tion for a successful access to the parallel, PSA, and MC caches. Results are

shown for 8KB and 16KB caches with 2-way and 4-way set associativity using

a single ported data component and a dual ported tag component. We examine

cache con�gurations with dual ported tag components to provide more opportu-

nities for prefetching and speculative fetching. The additional tag port does not

signi�cantly impact power or timing of either the MC or parallel cache and can

signi�cantly contribute to the the performance of the techniques we examine in

the remainder of the paper. In the 16KB 2-way set associative case, the parallel

155

cache (Figure XI.1) has an access time of 0.69 ns, which includes both tag and

data component accesses (occurring in parallel). The MC cache (Figure XI.3)

is composed of two stages, a tag component taking 0.48 ns followed by a data

component taking 0.49 ns. The parallel cache access time is computed by taking

the maximum time between the tag and data component, and then adding the

delay of the output driver, as in [91]. The tag component of the MC cache does

not include the delay of the output driver, and does not include the delay of the

multiplexor driver, as both of these structures are no longer on the tag path of

the cache (as seen in Figure XI.3). Therefore, the delay of the tag component of

the MC cache is less than that of the overall access time to the parallel cache.

The data component of the MC cache does include the output driver, but be-

cause the MC cache has two direct mapped data components rather than a single

set-associative component, the delay of each direct mapped data component is

less than that of the overall access time to the parallel cache. However, the over-

all access time to the parallel cache is less than the sum of the tag and data

component access times of the MC cache.

For the rest of this thesis, we only consider the use of the MC cache in

the place of the PSA cache, as it provides a slightly faster access time (0.48 ns

versus 0.43 ns in the case of a 16K 2-way associative cache) and uses slightly less

energy than the PSA cache(1.0 nJ versus 0.9 nJ for the 16K 2-way associative

cache).

Table XI.2 compares data obtained from SimpleScalar [12] simulations

with the CACTI 2.0 timing and energy data from Table XI.1. We examine

two di�erent cycle times in this table. The �rst set of four columns represents

simulation results assuming a cycle time equal to the access time of the parallel

cache. In this case, the parallel cache would be accessed in a single cycle, while

the MC cache would require two cycles to access. The second set of four columns

156

Table XI.1: CACTI 2.0 Data

Parallel PSA MC

Energy Energy Energy

Access per Tag Data per Tag Data per

Cache Time Access Time Time Access Time Time Access

Con�g (ns) (nJ) (ns) (ns) (nJ) (ns) (ns) (nJ)

8KB 2-way 0.65 2.3 0.43 0.43 0.8 0.38 0.41 0.8

8KB 4-way 0.67 4.6 0.38 0.38 0.8

16KB 2-way 0.69 2.5 0.48 0.49 1.0 0.42 0.43 0.9

16KB 4-way 0.71 5.0 0.42 0.41 0.9

CACTI 2.0 timing and energy data for di�erent parallel, PSA, and MC cache

con�gurations. The �rst column gives the cache con�guration (the number of

kilobytes and the degree of associativity). The caches examined have a single

port on the data component and a dual ported tag component. The next two

columns represent the access time and energy dissipation of an access that hits

for a parallel cache of the given con�guration. The next three columns provide

access time to the tag component, access time to the data component, and energy

dissipation for the predictive sequential associative (PSA) cache. Note that data

is only shown for 2-way PSA con�gurations as this cache is only designed for 2-

way associativity as explained in [16]. The next three columns provide access time

to the tag component, access time to the data component, and energy dissipation

for the multi-component (MC) cache. Data here is shown for the 0.10�m process

technology size.

157

represents a cycle time equal to the access time of the data component of the

MC cache. Here, both caches require two cycles for a complete access. Each case

assumes that other architectural structures in the processor can be pipelined to

accommodate the given cycle time. For example, the data cache in the parallel

cycle time results takes two cycles for a complete access, while the data cache in

the MC cycle time results takes three cycles for a complete access. For each set

of cycle time results, both billions of instructions second (BIPS) and total front-

end energy dissipation (in Joules) are shown. Results shown are the averages

obtained over the seven benchmarks we examined. Chapters VI and V describe

in detail the metrics used and the methodology for our experimentation.

For the 16K 2-way set associative case, the MC cache is able to reduce

total front-end energy dissipation by 33.2%, with only a 4% decrease in BIPS in

the parallel cycle time con�guration. The MC cache con�guration has a lower

BIPS since the instruction cache in this case has an additional pipeline stage. If

we match the cycle time of the processor to the data component of the MC cache

(the MC cycle time con�guration), then both caches take two cycles to access and

have identical BIPS. In this case, the MC cache is able to reduce total front-end

energy dissipation by 27.4%. The large per access power reduction for a cache

hit all comes from the data component, since the tag component for the parallel

cache consumes very little power (approximately .1 nJ).

XI.B Single Cycle Instruction Cache Architectures

As discussed in Chapter III, one of the major means of improving proces-

sor performance has been to reduce the cycle time of the processor. The instruc-

tion cache is a critical component of the front-end architecture, and is integral to

maintaining high performance in the front-end. In order to reduce the processor

cycle time beyond that of the access time of the instruction cache, it is necessary to

158

Table XI.2: Cycle Time Data

Parallel Cycle Time MC Cycle Time

Parallel MC Parallel MC

Cache Energy Energy Energy Energy

Con�g BIPS (J) BIPS (J) BIPS (J) BIPS (J)

16KB 2-way 2.297 0.286 2.210 0.191 3.112 0.263 3.112 0.191

16KB 4-way 2.398 0.447 2.361 0.182 3.325 0.411 3.325 0.182

Simulation results for di�erent parallel and MC cache con�gurations. The �rst

column gives the cache con�guration (the number of kilobytes and the degree of

associativity). The caches examined have a single port on the data component

and a dual ported tag component. Results are shown for two di�erent processor

cycle times. The �rst is set to the access time of the parallel cache and is shown

in columns 2-5. The second is set to the access time of the data component of

the MC cache and is shown in columns 6-9. Columns 2,4,6, and 8 show average

billion instruction per second results and columns 3,5,7, and 9 show total fetch

engine energy dissipated on average for the benchmarks we examined. Data here

is shown for the 0.10�m process technology size.

either reduce the size of the instruction cache or to pipeline the instruction cache

access over several cycles. The former will greatly impact the performance of the

processor (see Figure X.11), while the latter will lengthen the branch mispredic-

tion penalty. The Next Cache Line and Set Prediction (NLS) [15] architecture

can reduce the impact of the longer branch misprediction penalty when used with

the MC or PSA cache. We examine the NLS architecture, and its limitations,

and propose how we can use similar principles with an FTB architecture.

XI.B.1 Next Cache Line and Set Architecture

The NLS architecture [15] features a small, tagless predictor which is

used to determine the instruction cache line to be provided in the next cycle and

the instruction cache way (they refer to this as the set) to be used in the current

cycle. This predictor takes the place of a BTB in a contemporary architecture.

Each cycle, the current cache line is used to index into the NLS predictor. The

cache line that the predictor returns is the predicted target of the current cache

159

Table XI.3: FTB Partial Tag Timing Data

Number

of Access

Predictor Time

Entries (ns)

64 0.44

128 0.45

256 0.47

512 0.48

1024 0.50

CACTI 2.0 timing data for partially tagged FTB con�gurations. Only 8 bits are

allocated for each tag entry in the FTB.

block. The cache way that the predictor returns is a prediction of what way the

current cache block is in.

XI.B.2 FTB Architecture

The NLS architecture has three main bene�ts: a small, tagless predictor

which will scale well to future technology sizes; an energy e�cient cache design

that avoids driving all ways of a particular cache line; and a way prediction

mechanism that can reduce the instruction cache access to a single cycle (thereby

reducing the branch misprediction penalty). The FTB, two-block ahead predic-

tor [77], and trace cache [75] are all able to make predictions beyond a single

cache block. We would like to combine the high bandwidth achievable with these

approaches with the bene�ts of the NLS architecture. In this Chapter, we focus

again on the FTB.

In Chapter IX, we demonstrated how the multilevel branch predictor

hierarchy allows us to provide scalable and highly accurate branch prediction.

We can even reduce the access time to the FTB even further by making use of

partial tags. Table XI.3 provides timing data for a variety of FTB structures

160

Multi-
block
Way

Predictor

Compare

mispredict?

way prediction

Tag Check / Data Lookup

Branch
Predictor

FTQ

Branch Predict

Instruction
Cache

To
Decode

Miss to L2 cache

Tag
Component

Data
Component

Figure XI.4: MC cache base pipeline with way prediction.

The base pipeline for the MC cache front-end augmented with way prediction.

The pipeline consists of two stages: branch prediction and a combined tag check

and data lookup stage. The branch predictor (in this case the FTB) feeds the

FTQ with fetch predictions. A mutiple way predictor (accessed in parallel with

the FTB) augments the fetch predictions with per cache block way predictions.

These fetch predictions are then consumed by the instruction cache tag com-

ponent during the tag check stage. The way prediction is consumed by a data

component and the way compare hardware. The data component selected by the

way predictor will drive the cache block corresponding to the fetch prediction.

The way compare hardware will determine whether or not the way indicated by

the tag component matches the way prediction (i.e. whether or not the correct

data component was enabled). If a misprediction has occured, the correct data

component will be accessed in the following cycle. If the way prediction was

correct, the instruction cache access will have only taken a single cycle. On a tag

miss, the block is brought in from the L2 cache.

which only store 8 bits of the fetch block tag. The use of a partially tagged FTB

reduces IPC by less than 1% for all benchmarks examined, but has a signi�cant

impact on the access time of the FTB.

As shown in Tables XI.1 and XI.2, the MC cache is able to provide the

same energy and timing bene�ts as the PSA cache. For this Chapter, we will use

the MC cache design with our FTB architecture and with the NLS architecture.

161

XI.B.3 Way Prediction

While we have addressed the scalability and energy e�ciency of the

NLS architecture, we still do not have any form of way prediction that would

allow us to collapse the tag check and data lookup stages of the instruction cache

access into a single stage { while still using the MC cache. Calder et al. [16] have

suggested using a separate way predictor with a data cache to perform such an

access in parallel. The predictor we use is a simple last value predictor. However,

as each FTB prediction can potentially span up to 5 cache blocks, we would like

to provide up to 5 way predictions per cycle. We examine the use of a multiple

way predictor to provide this. Our tagless predictor has 8192 entries, and each

entry contains 5 2-bit predictors. The way predictor and FTB are accessed in

parallel, and the way prediction is stored in the FTQ until it can be consumed

by the instruction cache. One alternative to this is to place the way prediction

directly in the FTB, trading the additional area required by the way predictor

for the access time impact that would result from widening the FTB.

Figure XI.4 demonstrates the addition of such a predictor to our FTB

architecture. The tag component grabs the current cache block to be fetched

from the FTQ. The data component grabs the way prediction associated with

this cache block, which will determine what direct mapped data component to

access (i.e. what way contains the cache block). The tag component searches all

cache ways of the line corresponding to the current cache block. On a correct

way prediction, the predicted data component can output its data to the decode

stage, and the instruction cache access takes a single cycle. When a way mispre-

diction occurs, a single cycle stall is incurred while the correct data component

is accessed (determined via the tag component access from the prior cycle). This

con�guration has the same branch misprediction penalty as the NLS architecture.

162

XI.B.4 Results

In this section, we compare performance and energy data of the di�er-

ent cache architectures we have examined so far. The simulation methodology

is as described in Chapter VI. We either use a 16KB 2-way set-associative par-

allel cache with a single read/write port and extra tag port or a 16KB 2-way

MC serial cache with single ported data components and dual ported tag com-

ponents. The L2 bus can provide 8 bytes/cycle. Figures XI.5(a) and (b) show

BIPS and energy dissipation results respectively for four architectures. The �rst

bar (Parallel) uses a single cycle parallel instruction cache with the cycle time of

the parallel cache. This con�guration uses a 2-level FTB with a 128-entry �rst

level. The remaining bars use MC caches. The next bar (NLS) represents a NLS

architecture capable of predicting a single block per cycle. The MC instruction

cache for this con�guration has a single cycle access on a successful NLS way

prediction. The NLS predictor can only provide a single cache block per cycle.

The third bar (WayPred) represents the MC way prediction con�guration from

Figure XI.4. This architecture has a single cycle MC instruction cache access on a

successful way prediction. Finally, the last bar represents the MC way prediction

con�guration with a perfect way predictor (Perf). Here, every MC instruction

cache access takes a single cycle. These last two bars make use of a 2-level FTB

with a 128-entry �rst level.

The NLS architecture is able to outperform the parallel cache due to

the lower cycle time that is achievable through pipelining the instruction cache.

However, the larger fetch bandwidth of the FTB allows the WayPred con�gu-

ration to outperform the NLS con�guration (an improvement of around 15% on

average). The perfect way predictor provides the best performance for all con-

�gurations as it never mispredicts the way of a cache access. Nevertheless, the

WayPred architecture is very close to the performance of the perfect predictor.

163

0

1

2

3

4

5

6

7

crafty eon gcc go m88ksim perl vortex average

B
IP

S

Parallel NLS WayPred Perf

(a)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

crafty eon gcc go m88ksim perl vortex average

E
ne

rg
y(

J)

Parallel NLS WayPred Perf

(b)
Figure XI.5: BIPS and Energy results for NLS and Way Prediction

This Figure presents BIPS and Energy results for four architectures: a parallel

cache with a single cycle instruction cache (Parallel), an NLS architecture that

can provide a single cache block each cycle using an MC cache (NLS), an MC

cache with a 2-level FTB and a way predictor (WayPred), and an MC cache

with a 2-level FTB and a perfect way predictor (Perf). The x-axis shows the 7

benchmarks we examined.

164

The NLS and Parallel con�gurations both consume more energy than

the WayPred or Perf architectures. The Parallel con�guration su�ers from a less

energy e�cient cache design, and the NLS architecture is forced to make more

branch predictions to achieve the same fetch bandwidth as the FTB techniques.

XI.C Way Prediction with Prefetching

In Chapter X we introduced fetch directed prefetching (FDP) to improve

instruction cache performance. In this Section, we enhance our energy e�cient

architecture with FDP.

The simulation methodology is as described in Chapter VI. We use a

16KB 2-way MC serial cache with single ported data components and dual ported

tag components. The L2 bus can provide 8 bytes/cycle. Figures XI.6(a) and (b)

provide performance and energy data for di�erent way prediction architectures

with prefetching techniques from Chapter X. WayPred is the base con�guration,

without any form of instruction cache prefetching. WP-NLP uses tagged next-line

prefetching and WP-MSB1C uses a single stream bu�er with CPF �ltering. WP-

ENQCPF uses FDP with enqueue CPF �ltering. Perf is the base con�guration

with perfect way prediction. Perf-ENQCPF is the perfect way predictor with

FDP and enqueue CPF �ltering.

These results agree with Chapter X and demonstrate that enqueue CPF

outperforms other prefetching approaches. The way predictor achieves 86% accu-

racy on average, and provides performance that is very close to perfect predictor

accuracy.

165

0

1

2

3

4

5

6

crafty eon gcc go m88ksim perl vortex average

B
IP

S
WayPred Perf WP-NLP
WP-MSB1C WP-ENQCPF Perf-ENQCPF

(a)

0

0.1

0.2

0.3

0.4

0.5

crafty eon gcc go m88ksim perl vortex average

E
ne

rg
y

(J
)

WayPred Perf WP-NLP
WP-MSB1C WP-ENQCPF Perf-ENQCPF

(b)
Figure XI.6: BIPS and Energy results for Way Prediction with FDP

This �gure presents BIPS and Energy results for six architectures: an MC cache

with a way predictor (WayPred), an MC cache with a perfect way predictor

(Perf), an MC cache with a way predictor using NLP (WP-NLP), an MC cache

with a way predictor using a single stream bu�er with FDP (WP-MSB1C), an

MC cache with a way predictor using FDP with enqueue CPF (WP-ENQCPF),

and an MC cache with a perfect way predictor using FDP with enqueue CPF

(Perf-ENQCPF). The x-axis shows the 7 benchmarks we examined. These results

assume an 8 byte/cycle bus to the L2 cache. All architectures use 2 level FTBs.

On successful way predictions, these architectures all have single cycle instruction

cache pipelines.

166

FTB
Instruction
Fetch Unit

Prefetch Enqueue

PIQ

FTQ

Prefetch
From L2

Address Generator

Figure XI.7: FDP complexity concerns.

This Figure is similar to Figure X.3 but expands upon the connection between

the FTQ and other structures. Each FTQ entry contains a fetch address and

a fetch distance { but can potentially span up to 5 cache blocks. FDP requires

some form of address generation to derive up to 5 cache blocks from a single

FTQ entry. Here, we assume that the FTQ entry contains 4 additional bits

{ collectively indicating how many cache blocks the fetch prediction stored in

the FTQ entry spans. These bits are then used in the generation of up to �ve

cache block addresses in the address generator. To perform FDP on an arbitrary

FTQ entry, there must be a connection from each entry to the address generator

via the multiplexor shown above the FTQ. Each grey line leaving the FTQ and

connecting to the multiplexor actually represents 31 wires (as a single cache block

address to be probed or enqueued is represented by 27 bits { plus the 4 additional

cache block indicator bits). So, for a 32 entry FTQ, there would need to be 992

additional wires added to the FTQ to implement FDP from any arbitrary FTQ

entry.

167

XI.D Speculative Fetch Architecture

We have seen how FDP can enhance the performance of the front-end,

and how it can be integrated into an energy e�cient front-end. However, there are

some complexity concerns in this design. Figure XI.7 provides a closer look at the

architectural implementation. Here, the branch predictor feeds fetch blocks into

the FTQ where they are consumed by the instruction fetch unit (which contains

the instruction cache). The fetch block prediction stored in a given FTQ entry

may span up to �ve instruction cache blocks. In order to extract these addresses,

the FTQ needs to make use of an address generator. We can utilized extra bits in

the FTQ entry to indicate how many cache blocks the entry spans, and can use

these in conjunction with the address generator to provide instruction cache block

prefetch addresses. With FDP, any entry in the FTQ can potentially initiate a

prefetch to the instruction cache. This would require a connection from each

FTQ entry to the address generator via a multiplexor. As shown in Figure XI.7,

this requires a considerable amount of wire surrounding a small structure. This

could have substantial design and performance implications.

Rather than allowing a prediction to proceed from any entry in the FTQ,

we could connect a single FTQ entry to both the prefetch enqueue hardware and

the instruction cache tag ports. However, this would prove too restrictive, as

an entry at the head of the FTQ (near the instruction fetch unit) might not be

able to look far enough ahead to provide a timely prefetch. And, an entry at the

tail of the FTQ (near the branch predictor) might not be occupied a su�cient

fraction of the time to provide maximum bene�t.

Additionally, FDP can result in two cache tag checks for a single instance

of a cache block: one to verify whether or not the cache block should be prefetched

(done in the FTQ) and one as part of the normal cache access (done in the

instruction fetch unit).

168

Tag
Component

Tag Ch eck

Instruction
Cache

Branch
Predictor

FTQ

Branch Predict Data Lookup

To
Decode

Data
Component

Miss to L2 cache

Figure XI.8: MC cache base pipeline.

The base pipeline for the MC cache front-end. The pipeline consists of three

stages: branch prediction, tag check, and data lookup. The branch predictor

(in this case the FTB) feeds the FTQ with fetch predictions. They are then

consumed by the instruction cache tag component during the tag check stage.

On a tag hit, the appropriate data component is activated in the data lookup

stage. On a tag miss, the block is brought in from the L2 cache.

In order to make this design more power e�cient and more complexity

e�ective, we propose an architecture that:

1. performs a tag comparison at most once for a cache block instance

2. integrates prefetching into the normal operation of the instruction cache

3. makes use of an instruction cache with serial lookup to conserve power

4. performs cache block veri�cation and prefetch requests from a single location

(rather than from any arbitrary FTQ entry)

5. requires no form of way prediction (and therefore no mechanism for way

misprediction recovery), but has a pipelined instruction cache.

Figure XI.8 presents the base con�guration of a decoupled branch pre-

dictor with an MC cache. This architecture features a front-end that has been

split into 3 separate pipeline stages: (1) Branch Prediction, (2) Tag Comparison,

169

Tag
Component

Tag Check

Instruction
Cache

Branch
Predictor

FTQ

Branch Predict Data Lookup

To
Decode

Data
Component

Speculative Fetch from L2

CBQ

CCT

Figure XI.9: The speculative fetch architecture.

The pipeline for the speculative fetch architecture. The pipeline consists of three

stages: branch prediction, tag check, and data lookup. The branch predictor

(in this case the FTB) feeds the FTQ with fetch predictions. They are then

consumed by the instruction cache tag component during the tag check stage.

The tag component inserts an entry into the CBQ that contains information

about the location of the desired cache block. On a tag hit, the appropriate data

component is activated in the data lookup stage. On a tag miss, the block is

brought in from the L2 cache. The CBQ decouples the tag component from the

data component and allows these structures to operate relatively independently.

The tag array is dual ported and can run ahead of the data component. The

CCT maintains consistency between the data and tag components { and enables

an intelligent replacement algorithm.

and (3) Data Lookup. The branch predictor (in our case, the FTB) supplies the

FTQ with fetch block predictions, which are in turn consumed by the tag compo-

nent of the MC instruction cache during the tag check stage. The tag component

then selects an appropriate data component to enable in the data lookup stage.

On a tag component miss, the cache block is brought in from the L2 cache.

To achieve the �ve goals mentioned above, we decouple the tag com-

ponent from the data component of the instruction cache. Figure XI.9 shows

the architecture we examined, the speculative fetch architecture. There are three

pipeline stages: branch prediction, tag check, and data lookup, as in Figure XI.8.

A non-blocking, MC instruction cache is used, and split into tag and data com-

170

ponents separated by a queue of cache block requests called the cache block queue

(CBQ). The tag component of the instruction cache gets fetch block addresses

from the FTQ and veri�es whether or not the cache blocks within the fetch block

are already in the instruction cache. If a cache block is not in the instruction

cache, the tag array can speculatively fetch the block from the L2 cache. The tag

component inserts an entry into the CBQ that corresponds to a single cache block

request. The entry contains information about the cache block and instructions

requested in the block, as well as what way of the cache contains the requested

block (or whether it will be brought in from the L2 cache). The data component

then consumes this entry and if the block was found to be in the cache (i.e. a

known cache hit), it uses the additional state in the CBQ entry to drive the

appropriate associative way.

Note that there is no way prediction in this architecture. The tag com-

ponent is accessed �rst, and then the corresponding data component is accessed

- if there is a tag hit. This avoids the need for any way misprediction recovery

hardware.

The FTB can provide up to �ve cache blocks in a single fetch block,

but it is expensive (both in terms of power and access time) to add additional

ports to the instruction cache to handle multiple cache blocks. Simply adding

extra ports to the tag component of the instruction cache is cheaper than mul-

tiporting the data component. This allows the tag component to run ahead of

the data component to examine the future cache block request stream of the

processor. The tag component can also run ahead of the data component if the

data component has stalled due to a full instruction window or it is waiting on

data because of a cache miss. We can use the entries stored in the CBQ to guide

cache replacement and to speculatively fetch instruction cache blocks that miss

in the tag component from lower levels of the memory hierarchy.

171

However, there is a serious consistency issue which much be addressed.

If the tag component is allowed to run ahead of the data component, it is possible

that a cache entry can be evicted after the tag component has already veri�ed

that it is in a particular way of the instruction cache. Because we only perform

the tag check once, the data component would grab the wrong instruction cache

block. To avoid this, we propose the use of a cache consistency mechanism called

the cache consistency table (CCT) that will be explained in Chapter XI.D.3.

Because branch mispredictions do occur, it is not always desirable to

bring cache blocks directly into the instruction cache, as they may be on a mis-

predicted path and could potentially replace a useful block. Still, as Pierce and

Mudge [66] have found, wrong path prefetching can be extremely useful. To re-

solve this, we make use of a separate fully associative structure to hold cache

blocks, the Speculative Fetch Bu�er (SFB), which holds cache blocks (analogous

to the prefetch bu�er from Chapter X). The SFB works in parallel with the

instruction cache for both tag checks and data lookups. The tag components of

the instruction cache and SFB consume an entry from the FTQ and check each

cache block in the fetch block to determine whether it is a hit in the instruction

cache or SFB | or if it missed in both and must be retrieved from the lower

levels of the memory hierarchy. A new entry is inserted in the CBQ for each

cache block that is veri�ed from the FTQ. This entry has bits indicating which

structure (instruction cache or SFB) contained the cache block that it represents.

Then, when the entry is consumed from the CBQ, the bits contained in the entry

will indicate which data component should be accessed, and if that component is

part of the instruction cache or SFB. Figure XI.10 shows this �nal modi�cation

to the speculative fetch architecture.

If a cache block is not found in the instruction cache or SFB, then

it is speculatively fetched from the lower levels of the memory hierarchy and

172

Branch
Predictor

FTQ

Branch Predict

Tag
Component

Tag
Component

Speculative
Fetch
Buffer

Instruction
Cache

Tag Check

CBQ

CCT

CCT

Data Lookup

To
Decode

Data
Component

Data
Component

Speculative Fetch from L2

Figure XI.10: The speculative fetch architecture with SFB.

The FTB provides fetch blocks to the FTQ where they are then consumed by the

tag components of the speculative fetch bu�er and instruction cache. If neither

structure has the cache block, the block is speculatively fetched from the lower

levels of the memory hierarchy. A new CBQ entry is allocated for each cache

block processed by the tag component. It will contain the address of the cache

block, the location of the block (or if it missed), and additional way information

bits to determine what way of the instruction cache hit (if any). This entry is

consumed by the data components of the speculative fetch bu�er and instruction

cache and used to provide data to the decode stage. At most one data component

will actually be accessed. The CCT maintains consistency between the tag and

data components and guides cache replacement. Speculative fetches are placed

in the speculative fetch bu�er until they are used. Then they are placed in the

instruction cache depending upon the CCT replacement policy.

173

brought into the SFB. We will now examine the structures of the speculative

fetch architecture in more detail.

XI.D.1 Cache Block Queue

The CBQ holds a cache block address, block location bits, way bits, and

SFB index bits. The block location bits represent whether the cache block that

the entry represents is in the instruction cache, in the SFB, or is to be brought

into the SFB from another level of the memory hierarchy. The way bits are fed

into the data component of the instruction cache on an instruction cache hit.

These bits indicate which direct mapped component should be activated (i.e.

which data way the tag component found the data in { the output from the

comparators of the tag array). When the cache block hits in the SFB, the SFB

index is used to keep track of the location of the cache block in the SFB. If the

cache block is speculatively fetched from lower levels of the memory hierarchy,

the SFB index holds the location where the speculatively fetched cache block will

be stored.

The size of the CBQ can be used to control the amount of speculative

fetching (prefetching) that occurs. The larger the queue, the more the tag com-

parator can be allowed to run ahead of the data output components, and the more

cache blocks (not found in the instruction cache by the tag component) that can

potentially be brought into the speculative fetch bu�er. The further ahead the

tag component runs of the data components, the earlier the speculative fetch can

occur and the more memory latency that can be hidden. However, there is also

a greater chance of speculating down a mispredicted control path. Therefore the

size of the CBQ trades the bene�t obtainable from speculative fetching with the

amount of power potentially wasted on mispredicted control paths (similar to the

tradeo�s inherent in FTQ size). The CBQ is ushed on a branch misprediction.

174

XI.D.2 Speculative Fetch Bu�er and Cache Misses

The SFB is a small 32 entry bu�er, which holds cache blocks that have

been speculatively fetched from lower levels of memory. As with the instruction

cache, the tag component on this bu�er is probed when a fetch block is consumed

from the FTQ in the tag check stage. The SFB data component is only accessed

on a known tag hit, like the MC cache, to save power.

If a cache block is not found in either the instruction cache or SFB

tag components, a SFB tag entry is allocated using the consistency mechanism

described below. If a tag entry in the SFB is allocated, a speculative fetch is

initiated to the lower levels of the memory hierarchy. If an SFB tag entry cannot

be allocated, then the tag lookup pipeline stage stalls until an entry in the SFB

can allocated.

If a cache reference is not found in the instruction cache tag component,

the CBQ entry that is to be created will be marked as a cache miss, and it will

specify the entry in the SFB where the cache block is to be found. When the CBQ

entry is consumed by the data lookup, the SFB cache block is used and potentially

brought into the instruction cache depending upon the cache consistency table,

which is described in more detail below.

This approach does not allocate blocks into the instruction cache until

they are used by the data component. This reduces cache pollution caused by

branch mispredictions. We found this to perform better than allocating the cache

block during the tag component pipeline stage when the initial miss occurs.

XI.D.3 Consistency Mechanism

Because the tag component can verify cache blocks far in advance of the

data component and we perform replacement in the data lookup pipeline stage,

we need some consistency mechanism to guarantee that cache blocks veri�ed by

175

the tag component are not evicted during cache replacements before they can be

accessed in the data lookup stage. We maintain an extra table, called the cache

consistency table (CCT), to guarantee this. The CCT is a tagless bu�er, with one

entry for every cache block in the instruction cache, but with much smaller blocks

{ each CCT block only holds an N-bit counter. For example, assuming the use

of a 3-bit counter, a 16KB 2-way associative instruction cache would only need

a 320 byte table (a structure roughly 1% of the size of the instruction cache).

The counter stored in each CCT entry represents the number of out-

standing veri�ed cache block requests sitting in the CBQ for the corresponding

entry in the instruction cache. When the tag component veri�es a cache block in

the tag check stage, the N-bit counter in the CCT corresponding to that cache

block is incremented. When a data component accesses an instruction cache

block, the N-bit counter in the CCT corresponding to that cache block is decre-

mented. On a misprediction or misfetch, the CCT is ushed (set to zero), just as

the CBQ is also ushed. The mapping from instruction cache to CCT is implicit

and does not require tags { since both structures have the same number of entries

and associativity, they have identical decoders.

This consistency mechanism also extends to the speculative fetch bu�er.

The SFB has its own dedicated CCT as shown in Figure XI.10. If the desired

cache block is not found in the instruction cache, but is in the speculative fetch

bu�er, a N-bit counter associated with this structure is incremented each time

that block is placed in the CBQ. This is necessary to preserve cache consistency

so that a cache block in the SFB that a CBQ entry points to is not replaced.

The CBQ provides a means to look ahead at the behavior of the instruc-

tion cache. As mentioned before, this enables the front-end to save power by only

accessing structures that are already known to have the desired cache block and

to guide the speculative fetch of cache blocks that do not hit in any �rst level

176

structure. In addition, the CBQ can also help guide instruction cache or SFB

replacement, with the help of the CCT. When a cache block is brought into the

instruction cache from the SFB, a block is chosen for replacement from the set

that has a zero CCT entry. This ensures that a cache block that a later CBQ

entry wants to use does not get removed from the cache. This policy overrides

the standard LRU replacement policy of the instruction cache. If all cache blocks

in a particular cache set are marked in the CCT (meaning no replacement for

the new cache block exists), then the block is not put into the instruction cache,

and instead just stays in the speculative fetch bu�er until used again or replaced.

Similarly, the replacement policy ensures that entries in the SFB with non-zero

N-bit counters are not replaced by new speculative fetches until they are used by

consuming a CBQ entry. In this manner, the speculative fetch bu�er acts as a

exible depository of instruction cache blocks for contended cache sets { directed

by the CBQ and CCT.

If the N-bit counter associated with a cache block in any structure is

saturated, and another instance of the saturated cache block is encountered, the

tag component stalls until the counter is decremented (the data output compo-

nent consumes an instance of the cache block) or until a branch misprediction

occurs. In this paper, we use 5-bit CCT counters when using a 32 entry CBQ,

and 3-bit CCT counters when using a 12 entry CBQ.

XI.D.4 Results

Figures XI.11(a) and (b) present BIPS and Energy results for �ve archi-

tectures. The �rst two bars represent the MC cache with way prediction { with

and without FDP using enqueue CPF (WayPred and WP-ENQCPF). (MC) rep-

resents the MC cache without either way prediction or prefetching. The �nal two

bars represent the speculative fetch architecture with a 12-entry CBQ (SF-12)

177

0

1

2

3

4

5

6

crafty eon gcc go m88ksim perl vortex average

B
IP

S

WayPred WP-ENQCPF MC SF-12 SF-32

(a)

0

0.1

0.2

0.3

0.4

0.5

crafty eon gcc go m88ksim perl vortex average

E
ne

rg
y

(J
)

WayPred WP-ENQCPF MC SF-12 SF-32

(b)
Figure XI.11: BIPS and Energy results for speculative fetch.

This �gure presents BIPS and Energy results for �ve architectures: an MC cache

with a way predictor (WayPred), an MC cache with a way predictor using FDP

with enqueue CPF (WP-ENQCPF), an MC cache without a way predictor and

without prefetching (MC), the speculative fetch architecture with a 12-entry CBQ

(SF-12), and the speculative fetch architecture with a 32-entry CBQ (SF-32).

The x-axis shows the 7 benchmarks we examined. These results assume an 8

byte/cycle bus to the L2 cache. All architectures use 2 level FTBs.

178

and a 32-entry CBQ (SF-32).

For most benchmarks, the SF-32 con�guration performs slightly worse

than the WP-ENQCPF architecture. The benchmark vortex is the exception

however, as SF-32 outperforms WP-ENQCPF for this program. WP-ENQCPF

shortens the branch misprediction penalty by a single cycle, but does not have

the same intelligent replacement algorithm that SF-32 has. Therefore, programs

with a signi�cant number of instruction cache conict misses will see more bene�t

from the SF-32 architecture { and programs with substantial branch mispredic-

tions can see more bene�t from the WP-ENQCPF architecture. It depends on

what the particular benchmark is more constrained by: branch misprediction

or instruction cache misses. Additionally, the way predictor performs relatively

worse when considering caches with higher degrees of associativity. This can be

further illustrated by Figures XI.12 and XI.13. These show the performance of

SF-32, WP-ENQCPF, and Perf-ENQCPF (perfect way prediction with enqueue

FDP) for an 8KB 2-way MC cache and an 8KB 4-way MC cache respectively.

Here, vortex sees so much bene�t from the intelligent replacement algorithm

that it is able to outperform even the perfect way prediction con�guration. The

benchmark perl sees more improvement from the SF-32 architecture than the

WP-ENQCPF architecture under the increased cache space constraint. Most

other benchmarks obtain about the same amount of performance from both tech-

niques, although go still sees slightly more bene�t from WP-ENQCPF due to its

relatively poor branch prediction.

Figure XI.14 demonstrates the ability of the speculative fetch bu�er to

provide extra associativity to a cache design. Here, we consider an 8KB direct-

mapped cache con�guration. This cache is plagued with a considerable amount

of conict misses. We show only two architectures in this Figure, the speculative

fetch architecture (SF-32) and way prediction using FDP with enqueue CPF

179

0

1

2

3

4

5

6

crafty eon gcc go m88ksim perl vortex average

B
IP

S
WP-ENQCPF Perf-ENQCPF SF-32

Figure XI.12: 8KB 2-way set-associative cache results for speculative fetch.

This �gure presents BIPS results for three architectures: an MC cache with a

way predictor using FDP with enqueue CPF (WP-ENQCPF), an MC cache with

a perfect way predictor using FDP with enqueue CPF (Perf-ENQCPF), and the

speculative fetch architecture with a 32-entry CBQ (SF-32). The x-axis shows

the 7 benchmarks we examined. These results assume an 8 byte/cycle bus to the

L2 cache. All architectures use 2 level FTBs.

0

1

2

3

4

5

6

crafty eon gcc go m88ksim perl vortex average

B
IP

S

WP-ENQCPF Perf-ENQCPF SF-32

Figure XI.13: 8KB 4-way set associative cache results for speculative fetch.

This �gure presents BIPS results for three architectures: an MC cache with a

way predictor using FDP with enqueue CPF (WP-ENQCPF), an MC cache with

a perfect way predictor using FDP with enqueue CPF (Perf-ENQCPF), and the

speculative fetch architecture with a 32-entry CBQ (SF-32). The x-axis shows

the 7 benchmarks we examined. These results assume an 8 byte/cycle bus to the

L2 cache. All architectures use 2 level FTBs.

180

0

1

2

3

4

5

6

crafty eon gcc go m88ksim perl vortex average

B
IP

S

WP-ENQCPF SF-32

Figure XI.14: 8KB direct-mapped cache results for speculative fetch.

This �gure presents BIPS results for two architectures: an MC cache with a

way predictor using FDP with enqueue CPF (WP-ENQCPF) and the specula-

tive fetch architecture with a 32-entry CBQ (SF-32). The x-axis shows the 7

benchmarks we examined. These results assume an 8 byte/cycle bus to the L2

cache. Both architectures use 2 level FTBs.

(WP-ENQCPF). There is no need to show perfect way prediction as this is a

direct mapped con�guration and there is only a single way to search (i.e. WP-

ENQCPF is the same as perfect way prediction in this instance). Here, the SF-32

case is able to outperform WP-ENQCPF for all benchmarks { even though the

instruction cache in the SF-32 case still takes two cycles to access. This can be

fully attributed to the bene�t obtainable from the intelligent replacement policy.

Figure XI.11(b) shows that all architectures examined dissipate rela-

tively small amounts of energy. The speculative fetch architecture is able to

reduce energy consumption somewhat more than the WP-ENQCPF architecture

due to the more intelligent replacement policy and due to the absence of the way

predictor. If cache blocks can be kept around longer when they will be needed in

the near future, we can avoid energy intensive L2 accesses.

The di�erence between the SF-12 and SF-32 is relatively small for most

benchmarks, with the exception of vortex.

181

XI.E Summary

In this Chapter, we have presented a complexity-e�ective and energy-

e�cient approach to instruction cache prefetching, speculative fetch. The specu-

lative fetch architecture combines an energy e�cient cache design with enqueue

cache probe �ltered fetch directed prefetching and an intelligent cache replace-

ment algorithm that can look ahead at the cache block request stream. We have

compared this technique to a similar FDP scheme that makes use of a way predic-

tor. The use of the way predictor reduces the branch misprediction penalty, but

adds complexity to the overall design as there must be some way misprediction

recovery mechanism. The speculative fetch architecture performs a serial cache

lookup, and requires no way prediction, but is able to provide the same energy

savings and the same average performance. This design is exible enough to ac-

commodate more storage structures, such as a victim cache, which could also be

decoupled and augmented with a CCT.

Chapter XII

Conclusions

In this thesis, we have investigated a decoupled front-end architecture

that uses a fetch target queue (FTQ), which is a small FIFO queue used to store

predicted fetch addresses from the branch prediction unit. The FTQ provides

a decoupled front-end that allows the branch predictor and instruction cache to

run more independently. Decoupling the components of the front-end architecture

enables a number of optimizations, and we demonstrated three of these in this

study: the construction of a multilevel branch predictor, e�ective instruction

cache prefetching, and an energy-e�cient cache replacement policy.

To better evaluate our architecture, we made use of results in both

IPC and BIPS (billion instructions per nanosecond). While IPC provides some

notion of performance, BIPS gives a complete picture as it takes into account

the cycle time of the processor. It is essential for architects to study both the

improvement in performance obtained through a particular technique and the

impact the technique (in terms of the size of structures used) will have on the

cycle time of the processor. To obtain cycle time information, we made use of

the CACTI 2.0 [74] timing model. This also provided us with energy data for

Chapter XI.

The FTQ enables a number of optimizations based on the predicted

182

183

fetch stream it contains. We �rst showed that a multilevel branch predictor

can be an e�ective technique to achieve high prediction accuracy while retaining

small cycle times. In our results, we saw that the best performing two level branch

predictor (a 128 entry �rst level fetch target bu�er with an 8192 entry second

level) achieved a 5% speedup on average in BIPS over the best performing single

level FTB con�guration (a 512 entry FTB). These results assume no interconnect

scaling bottleneck. In the event of poor interconnect scaling, the gap in cycle

times between the single level tables and the multilevel tables can be signi�cant:

the best two-level we examined con�guration provides a 14% speedup on average

over the best single level con�guration we examined.

We also demonstrated how the FTQ can be used to direct instruction

cache prefetching. With this technique, we were able to provide a speedup in

IPC of 17% for an 8 byte/cycle bus to the L2 cache. We showed how cache probe

�ltering could be an e�ective technique for reducing bus utilization and attaining

higher levels of performance. Our best performing �ltration technique, enqueue

cache probe �ltering, provided an average 30% speedup over a base con�guration

without prefetching for the 8 byte/cycle bus con�guration. However, the per-

formance of fetch-directed prefetching is essentially tied to the accuracy of the

prediction stream and the occupancy of the FTQ.

Finally, we explored a number of complexity and energy dissipation is-

sues in the design of the instruction cache. We proposed the MC cache design,

a technique that showed a 27% reduction in energy dissipation from a contem-

porary cache design. We then examined the addition of way prediction to our

architecture in order to reduce the branch misprediction penalty by enabling a

single cycle instruction cache access (at a reduced cycle time). This design pro-

vided a 10% improvement over the use of an NLS architecture, thanks to the

FTB. Finally, we explored the speculative fetch architecture. This architecture

184

has the potential to provide even higher levels of BIPS performance for bench-

marks which are heavily constrained by instruction cache conict misses. This

is accomplished through the use of an intelligent replacement policy which can

reduce instruction cache block thrashing. Moreover, this technique reduced the

complexity of fetch directed prefetching by consolidating the prefetch veri�cation

and enqueuing mechanism to a single site (rather than any arbitrary FTQ loca-

tion) and by integrating prefetching into the normal operation of the instruction

cache. For a space-constrained instruction cache (an 8KB direct-mapped cache),

the speculative fetch architecture provides an additional 5% improvement over

the FDP architecture with way prediction. The 16KB 2-way set associative in-

struction cache that we examined throughout this thesis sees around the same

performance on average for both of these techniques.

These techniques prove useful when examining ideal interconnect scal-

ing. However, the potential bene�t is even greater in the face of the interconnect

scaling bottleneck. In order to reach future processor performance goals, Agarwal

et al. [2] claim that architects may no longer be able to both improve IPC and

increase the clock speed of the processor. To increase the clock speed, it may

be necessary to decrease the size of the structures that are used in the processor

pipeline, which can impact performance. However, the use of multilevel hierar-

chies and intelligent prefetching strategies can allow us to use smaller structures

in the pipeline { which in turn allows us to increase the clock speed. And as we

have shown, these designs need not add complexity or increase energy dissipation

in the processor.

The design of decoupled components in the processor pipeline provides

us with two advantages: latency tolerance and processor look-ahead. Components

that are decoupled from one another can operate relatively independently and

can more easily be changed to a multilevel hierarchy. In this thesis, we have

185

shown how decoupling the branch predictor from the instruction cache enables

a multilevel branch predictor hierarchy. This helps to simplify the core pipeline

by enabling a smaller �rst level branch predictor. Because decoupling allows

components to run ahead of one another, we can also get insight into the future

resource needs of the processor. In this thesis we examined using the stream of

fetch addresses contained in the FTQ to guide instruction cache prefetching. This

can allow us to use smaller �rst level instruction caches, which can again simplify

the core pipeline. Such techniques can aid in keeping large memory structures

and complex logic o� of the critical path of the processor core, and will greatly

aid in scaling these processor to future technology sizes.

Chapter XIII

Future Work

There are a number of other optimizations which could be enabled by

the FTQ design. In addition to instruction cache prefetching, the FTQ could be

used to direct data cache prefetch in a manner similar to that proposed in [20].

The FTQ could also be used to index into other PC-based predictors (such as

value or address predictors) further ahead in the pipeline.

XIII.A Branch Prediction

The use of a multi-level branch predictor, like the FTB, provides us

with a signi�cant amount of instruction state. Extra bits could be stored in the

branch predictor to help guide later stages of the pipeline. For example, we used

extra state in the multi-level branch predictor to perform eviction prefetching in

Chapter X. The state can be used to help guide cache replacement policies, and

to track branch con�dence, value predictability, or any other useful metric.

Other future work on the FTB will involve the use of a more intelligent

replacement mechanism for the �rst level FTB. By storing di�erent types of

branch con�dence and usefulness measures in the FTB, we will be able to keep

the most important fetch blocks in the �rst level FTB at all times. Fetch blocks

186

187

that are not fetch critical (i.e. they occur when the FTQ already has considerable

occupancy, occur infrequently, occur during a cache miss, etc) will be kept in the

second level FTB and will not replace a more critical fetch block in the �rst level

FTB. This technique should help benchmarks like m88ksim which do not have

good average FTQ occupancy and cannot tolerate second level FTB accesses for

critical fetch blocks.

Finally, it would prove interesting to use other branch predictor archi-

tectures in place of the FTB on our decoupled front-end. It may also be useful

to combine these predictors together in the front-end. While a trace cache [75]

is able to provide high bandwidth fetching, it is a large structure that may not

scale well to future technology sizes. The trace cache may need to be kept small,

and only used to store the most important instructions in a program (possible

those used in a frequently executed loop). These important instructions can then

be dynamically optimized by the trace cache. The FTB can be used to handle

the remainder of the program.

XIII.B Value Prediction

Value and address prediction have been shown to be e�ective at reducing

instruction latency in the processor pipeline [51, 52, 29, 31, 76, 89, 71]. A value

predictor attempts to predict the result of or the inputs to a particular instruction.

If the result of an operation is predicted, instructions that are currently waiting

on the completion of the operation may speculatively execute. If the inputs to a

particular instruction are value predicted, the instruction itself can speculatively

execute. An address predictor attempts to predict the memory location that a

load or store will access. The load or store will speculatively execute with the

predicted address.

The predictor tables used can be quite complex and fairly large. The

188

fetch addresses stored in the FTQ can initiate the predictor access earlier in

the pipeline, even before the corresponding instruction cache blocks are fetched,

storing the result with the fetch block in the FTQ. This can allow for larger and

more accurate predictors to be used, and even allow these predictors to be located

o�-chip.

One example of this is context prediction [76]. In a context value pre-

dictor that predicts the results of an operation, the last n values of an instruction

are stored in hashed form in a �rst level table that is hashed by instruction PC.

These values are used to index into a second level table that contains the actual

value to be predicted. In [76], a �rst level table with 216 entries and a second

level table with 220 entries were used. Assuming the predictor stores 32-bit val-

ues in the second level table, the second level will be at least 32 MB in size, and

will likely require multiple cycles to access alone (not including the number of

cycles necessary to access the �rst level table to generate the index to the second

level table). But with the fetch addresses stored in the FTQ, we could conceiv-

ably initiate the predictor access earlier in the pipeline - storing the result in the

FTQ itself if the prediction has not yet been consumed. This could allow even

larger and more accurate predictors to be used, potentially even allowing these

predictors to be located o�-chip.

Bibliography

[1] A. Agarwal and S. Pudar. Column-associative caches: A technique for re-

ducing the miss rate of direct mapped caches. In 20th Annual International

Symposium on Computer Architecture, 1993.

[2] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus

ipc: The end of the road for conventional microarchitectures. In 27th Annual

International Symposium on Computer Architecture, 2000.

[3] D. Albonesi. Selective cache ways: On-demand cache resource allocation. In

32st International Symposium on Microarchitecture, November 1999.

[4] T. Austin, B. Calder, and G. Reinman. Modi�ed cacti model source and doc-

umentation distribution. http://www-cse.ucsd.edu/users/calder/bacti, Oc-

tober 1998.

[5] R. Bahar, G. Albera, and S. Manne. Power and performance tradeo�s us-

ing various caching strategies. In International Symposium on Low Power

Electronics and Design, 1998.

[6] H. Bakoglu and J. Meindl. Optimal interconnect circuits for VLSI. IEEE

Transactions on Computers, 32(5):903{909, May 1985.

[7] N. Bellas, I. Hajj, and C. Polychronopoulos. A new scheme for i-cache energy

reduction in high-performance processors. In International Symposium on

Low Power Electronics and Design, 1998.

[8] M. Bohr. Interconnect scaling - the real limiter to high-performance ulsi.

In Tech. Dig. of the International Electron Devices Meeting, pages 241{244,

December 1995.

[9] M. Bohr. Silicon trends and limits for advanced microprocessors. Commu-

nications of the ACM, 41(3):80{87, March 1998.

[10] J. O. Bondi, A. K. Nanda, and S. Dutta. Integrating a misprediction recovery

cache (MRC) into a superscalar pipeline. In Proceedings of the 29th Annual

189

190

International Symposium on Microarchitecture, pages 14{23, December 2{4,

1996.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In 27th Annual In-

ternational Symposium on Computer Architecture, 2000.

[12] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.

Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June

1997.

[13] B. Calder and D. Grunwald. Fast and accurate instruction fetch and branch

prediction. In Proceedings of the 21st International Symposium on Computer

Architecture, pages 2{11, April 1994.

[14] B. Calder and D. Grunwald. Reducing branch costs via branch alignment.

In 6th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 242{251, October 1994.

[15] B. Calder and D. Grunwald. Next cache line and set prediction. In 22nd

Annual International Symposium on Computer Architecture, 1995.

[16] B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative

cache. In International Symposium on High Performance Computer Archi-

tecture, 1996.

[17] B. Calder, G. Reinman, and D. Tullsen. Selective value prediction. In 26th

Annual International Symposium on Computer Architecture, May 1999.

[18] P. Chang, E. Hao, and Y. Patt. Target prediction for indirect jumps. In

Proceedings of the 24th Annual International Symposium on Computer Ar-

chitecture, pages 274{283, June 1997.

[19] I.K. Chen, C.C. Lee, and T.N. Mudge. Instruction prefetching using branch

prediction information. In International Conference on Computer Design,

pages 593{601, October 1997.

[20] T-F. Chen and J-L. Baer. E�ective hardware-based data prefetching for high

performance processors. IEEE Transactions on Computers, 5(44):609{623,

May 1995.

[21] T.F. Chen and J.L. Baer. Reducing memory latency via non-blocking and

prefetching caches. In Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-IV), pages 51{61, October 1992.

191

[22] Y. Chou and J. Shen. Instruction path coprocessors. In 27th Annual Inter-

national Symposium on Computer Architecture, 2000.

[23] G. Chrysos and J. Emer. Memory dependence prediction using store sets.

In 25th Annual International Symposium on Computer Architecture, June

1998.

[24] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel. Optimization of

instruction fetch mechanisms for high issue rates. In 22nd Annual Interna-

tional Symposium on Computer Architecture, pages 333{344, June 1995.

[25] J. Montanaro et al. A 160 mhz 32b 0.5w cmos risc microprocessor. In Digital

Technical Journal, August 1997.

[26] K. Farkas and N. Jouppi. Complexity/performance tradeo�s with non-

blocking loads. In 21st Annual International Symposium on Computer Ar-

chitecture, pages 211{222, April 1994.

[27] K.I. Farkas, N.P. Jouppi, and P. Chow. How useful are non-blocking

loads, stream bu�ers and speculative execution in multiple issue processors?

In Proceedings of the First International Symposium on High-Performance

Computer Architecture, January 1995.

[28] J. A. Fisher. Trace scheduling : A technique for global microcode com-

paction. IEEE Trans. Comput., C-30(7):478{490, 1981.

[29] F. Gabbay and A. Mendelson. Speculative execution based on value pre-

diction. EE Department TR 1080, Technion - Israel Institue of Technology,

November 1996.

[30] K. Ghose and M. Kamble. Reducing power in superscalar processor caches

using subbanking, multiple line bu�ers and bit-line segmentation. In Pro-

ceedings of the International Symposium on Low Power Design, 1999.

[31] J. Gonzalez and A. Gonzalez. The potential of data value speculation to

boost ilp. In 12th International Conference on Supercomputing, 1998.

[32] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-

processors. In IEEE Journal of Solid State Circuits, 1996.

[33] C. Thomas Gray, Wentai Liu, and Ralph K. Cain III. Wave Pipelining:

Theory and CMOS Implementation. Kluwer Academic Publishers, Norwell,

MA, 1993.

[34] L. Gwennap. Power issues may limit future cpus. Microprocessor Report,

August 1996.

192

[35] E. Hao, P. Chang, M. Evers, and Y. Patt. Increasing the instruction fetch

rate via block-structured instruction set architectures. In Proceedings of the

29th Annual International Symposium on Microarchitecture, pages 191{200,

December 1996.

[36] J. Hennessy and D. Patterson. Computer Architecture a Quantitative Ap-

proach. Morgan Kaufmann Publishers, Inc., 1996.

[37] H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching in a texture cache ar-

chitecture. In Proceedings of the 1998 Eurographics/SIGGRAPH Workshop

on Graphics Hardware, 1999.

[38] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting set-associative

cache for high performance and low energy consumption. In International

Symposium on Low Power Electronics and Design (ISLPED'99), 1999.

[39] D. Joseph and D. Grunwald. Prefetching using markov predictors. In 24th

Annual International Symposium on Computer Architecture, June 1997.

[40] N. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully associative cache and prefetch bu�ers. In Proceedings of the 17th

Annual International Symposium on Computer Architecture, May 1990.

[41] N. P. Jouppi and S. J. E. Wilton. Tradeo�s in two-level on-chip caching.

In Proceedings of the 21st Annual International Symposium on Computer

Architecture, pages 34{45, April 1994.

[42] S. Jourdan, T. Hsing, J. Stark, and Y. Patt. The e�ects of mispredicted-path

execution on branch prediction structures. In Proceedings of the International

Conference on Parallel Architectures and Compilation Techniques, October

1996.

[43] M. Kamble and K. Ghose. Analytical energy dissipation models for low power

caches. International Symposium on Low Power Electronics and Design,

1997.

[44] R. Kessler. The alpha 21264 microprocessor. In IEEE Micro, April 1999.

[45] J. Kin, M. Gupta, and W. Mangione-Smith. The �lter cache:an energy

e�cient memory structure. In IEEE International Symposium on Microar-

chitecture, December 1997.

[46] U. Ko, P. Balsara, and A. Nanda. Energy optimization of multi-level proces-

sor cache architectures. In Proceedings of the International Symposium on

Low Power Design, 1995.

193

[47] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In 8th

Annual International Symposium of Computer Architecture, pages 81{87,

May 1981.

[48] D. Lammers. IBM's copper interconnects hit the market. EETimes, 9/3

issue, September 1998.

[49] D. Lammers. TI's 0.13-micron process speeds system-on-a-chip designs. EE-

Times, 10/23 issue, October 1998.

[50] S. Lee, Y. Wang, and P. Yew. Decoupled value prediction on trace processors.

In Proceedings of the Sixth International Symposium on High-Performance

Computer Architecture, 2000.

[51] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load

value prediction. In 17th International Conference on Architectural Support

for Programming Languages and operating Systems, pages 138{147, October

1996.

[52] M.H. Lipasti and J.P. Shen. Exceeding the dataow limit via value pre-

diction. In 29th International Symposium on Microarchitecture, December

1996.

[53] C.-K. Luk and T. C. Mowry. Cooperative prefetching: Compiler and hard-

ware support for e�ective instruction prefetching in modern processors. In

31st International Symposium on Microarchitecture, December 1998.

[54] J. McCormack, R. McNamara, C. Gianos, L. Seiler, N. Jouppi, and K. Cor-

rell. Neon: a single-chip 3d workstation graphics accelerator. In Proceedings

of the 1998 EUROGRAPHICS/SIGGRAPH workshop on Graphics Hard-

ware, 1999.

[55] G. McFarland and M. Flynn. Limits of scaling mosfets. CSL TR-95-62,

Stanford University, November 1995.

[56] S. McFarling. Procedure merging with instruction caches. Proceedings of

the ACM SIGPLAN '91 Conference on Programming Language Design and

Implementation, 26(6):71{79, June 1991.

[57] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital

Equipment Corporation, Western Research Lab, June 1993.

[58] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch band-

width requirement in wide-issue superscalar processors. In Proceedings of the

International Conference on Parallel Architectures and Compilation Tech-

niques, 1999.

194

[59] S. Oh, K. Rahmat, O. Nakagawa, and J. Moll. A scaling scheme and opti-

mization methodology for deep sub-micron interconnect. In IEEE Interna-

tional Conference on Computer Design, pages 320{325, October 1996.

[60] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-e�ective super-

scalar processors. In Proceedings of the 24th Annual International Sympo-

sium on Computer Architecture, pages 206{218, June 1997.

[61] S. Palacharla and R. Kessler. Evaluating stream bu�ers as secondary cache

replacement. In 21st Annual International Symposium on Computer Archi-

tecture, April 1994.

[62] J. C. H. Park and M. Schlansker. On Predicated Execution. Technical Report

HPL-91-58, HP Labs, May 1991.

[63] S. Patel, D. Friendly, and Y. Patt. Critical issues regarding the trace cache

fetch mechanism. CSE-TR-335-97, University of Michigan, May 1997.

[64] C.H. Perleberg and A.J. Smith. Branch target bu�er design and optimiza-

tion. IEEE Transactions on Computers, 42(4):396{412, 1993.

[65] K. Pettis and R. C. Hansen. Pro�le guided code positioning. Proceedings of

the ACM SIGPLAN '90 Conference on Programming Language Design and

Implementation, 25(6):16{27, June 1990.

[66] J. Pierce and T. Mudge. Wrong-path instruction prefetching. In 29th Inter-

national Symposium on Microarchitecture, pages 165{175, December 1996.

[67] Fred Pollack. New microarchitectural challenges in the coming generations

of cmos process technologies. Slides from Fred Pollack's Micro32 keynote

speech, November 1999.

[68] T.R. Puzak. Analysis of cache replacement-algorithms. Ph.D. Dissertation,

University of Massachusetts, Amherst MA, 1985.

[69] J. Rabaey. Digital Integrated Circuits. Prentice Hall Electronics and VLSI

Series., 1996.

[70] G. Reinman, T. Austin, and B. Calder. A scalable front-end architecture

for fast instruction delivery. In 26th Annual International Symposium on

Computer Architecture, May 1999.

[71] G. Reinman and B. Calder. Predictive techniques for aggressive load spec-

ulation. In 31st International Symposium on Microarchitecture, December

1998.

[72] G. Reinman, B. Calder, and T. Austin. Fetch directed instruction prefetch-

ing. In 32st International Symposium on Microarchitecture, November 1999.

195

[73] G. Reinman, B. Calder, and T. Austin. Optimizations enabled by a decou-

pled front-end architecture. In IEEE Transactions on Computers, 2001.

[74] G. Reinman and N. Jouppi. Cacti version 2.0.

http://www.research.digital.com/wrl/people/jouppi/CACTI.html, June

1999.

[75] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low latency

approach to high bandwidth instruction fetching. In Proceedings of the 29th

Annual International Symposium on Microarchitecture, pages 24{34, Decem-

ber 1996.

[76] Y. Sazeides and J. E. Smith. The predictability of data values. In 30th

International Symposium on Microarchitecture, pages 248{258, December

1997.

[77] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block ahead

branch predictors. In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems,

pages 116{127, October 1996.

[78] T. Sherwood and B. Calder. The time varying behavior of programs. Tech-

nical Report UCSD-CS99-630, University of California, San Diego, August

1999.

[79] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Improving prediction

for procedure returns with return-address-stack repair mechanisms. In Pro-

ceedings of the 31st Annual International Symposium on Microarchitecture,

pages 259{271, December 1998.

[80] K. Skadron, M. Martonosi, and D. Clark. Speculative updates of local and

global branch history: A quantitative analysis. Technical Report TR-589-98,

Princeton Dept. of Computer Science, December 1998.

[81] A. J. Smith. Cache memories. Computing Surveys, 14(3):473{530, September

1982.

[82] J. Smith. Instruction-level distributed processing. In IEEE Computer, April

2001.

[83] J. E. Smith and W.-C. Hsu. Prefetching in supercomputer instruction caches.

In Proceedings of Supercomputing, November 1992.

[84] J. Stark, P. Racunas, and Y. Patt. Reducing the performance impact of

instruction cache misses by writing instructions into the reservation stations

out-of-order. In Proceedings of the 30th International Symposium on Mi-

croarchitecture, pages 34{45, December 1997.

196

[85] C. Su and A. Despain. Cache design tradeo�s for power and performance

optimization: A case study. In Proceedings of the International Symposium

on Low Power Design, 1995.

[86] J. Torrellas, C. Xia, and R. Daigle. Optimizing instruction cache performance

for operating system intensive workloads. In Proceedings of the First In-

ternational Symposium on High-Performance Computer Architecture, pages

360{369, January 1995.

[87] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer. Instruction fetching:

Coping with code bloat. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 345{356, June 1995.

[88] S. Wallace and N. Bagherzadeh. Multiple branch and block prediction.

In Proceedings of the Third International Symposium on High-Performance

Computer Architecture, pages 94{103, 1997.

[89] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid

predictors. In 30th Annual International Symposium on Microarchitecture,

December 1997.

[90] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison

Wesley, 1993.

[91] S. Wilton and N. Jouppi. An enhanced access and cycle time model for

on-chip caches. Compaq WRL TR-93-5, July 1994.

[92] S. Wilton and N. Jouppi. Cacti: An enhanced cache access and cycle time

model. In IEEE Journal of Solid-State Circuits, May 1996.

[93] C. Xia and J. Torrellas. Instruction prefetching of systems codes with layout

optimized for reduced cache misses. In 23rd Annual International Symposium

on Computer Architecture, June 1996.

[94] T. Yeh. Two-level adpative branch prediction and instruction fetch mecha-

nisms for high performance superscalar processors. Ph.D. Dissertation, Uni-

versity of Michigan, 1993.

[95] T. Yeh and Y. Patt. A comprehensive instruction fetch mechanism for a pro-

cessor supporting speculative execution. In Proceedings of the 25th Annual

International Symposium on Microarchitecture, pages 129{139, December

1992.

