
d d

Techniques for Extracting Instruction Level Parallelism on MIMD Architectures

Gary Tyson and Matthew Farrens
Computer Science Department
University of California, Davis

Davis, CA 95616 tel: (916) 752-9678, fax: (916) 752-4767
email: tyson@cs.ucdavis.edu, farrens@cs.ucdavis.edu

Abstract
Extensive research has been done on extracting

parallelism from single instruction stream processors.
This paper presents some results of our investigation into
ways to modify MIMD architectures to allow them to
extract the instruction level parallelism achieved by
current superscalar and VLIW machines. A new architec-
ture is proposed which utilizes the advantages of a multi-
ple instruction stream design while addressing some of
the limitations that have prevented MIMD architectures
from performing ILP operation. A new code scheduling
mechanism is described to support this new architecture
by partitioning instructions across multiple processing
elements in order to exploit this level of parallelism.

1. Introduction
The compiler and code scheduler for a multi-issue

architecture requires a high degree of sophistication in
order to realize the full potential for parallel execution. It
must be able to assign independent instructions to opera-
tional units in a manner that minimizes the number of
cycles in which no instructions can be issued. The task of
the scheduler in a multi-issue system is further compli-
cated by the fact that while the latency of operational
units and memory remain fixed, the number of instruc-
tions that must be scheduled in a period is increased by
the width of the issue stage.

Several studies [JoWa89, TjFl70] indicate that com-
pilers using simple scheduling techniques are capable of
identifying 2-3 independent instructions per cycle. Other
studies [AuSo92, BuYP91] suggest that even more paral-
lelism can be found if the compiler’s scheduler is capable
of performing extensive code motion.

In this paper, we will present a brief overview of
single and multiple instruction stream approaches to mul-
tiple issue processor design. We will then introduce the
basics of a multiple instruction stream/multiple issue
architecture we have developed, show how code is
scheduled for several loops, and present an analysis of the
performance of this architecture.

2. Multiple instruction issue architectures
Several distinct approaches have been taken in the

development of multiple issue architectures. The Very
Long Instruction Word (VLIW) approach increases the

resources available to (and the demands on) the compiler.
It is responsible for all scheduling, including the assign-
ment of null operations to functional units that cannot be
assigned a useful task during a given cycle. VLIW advo-
cates believe that since the compiler has the most com-
plete information about the entire program, it is best
suited to deal with the inclusion of additional resources
(e.g. ALUs, FPUs and I/O units), and is best able to
increase instruction execution bandwidth in areas of the
code that were previously performance limited by
resource constraints. However, VLIW does not support
out-of-order execution, and any change of the hardware
description requires all code to be recompiled in order for
the program to work correctly.

Superscalar advocates believe that this backward
code incompatibility is unacceptable, and that a hardware
scheduler can just as efficiently allocate resources to the
list of instructions ready for execution. Originally, some
researchers believed that a hardware based scheduler was
capable of generating an efficient schedule of resources
independent of the original compiler schedule. However,
the hardware implementation of the scheduler is restricted
to selecting instructions from a fixed-size window of
available instructions, and thus does not have the breadth
of information available to it that the compiler does at
compile time. This lack of knowledge prevents it from
scheduling code as efficiently as a VLIW. As research
into these two techniques has progressed, advocates of
each approach have learned to appreciate the interaction
of the static, compiler induced schedule with the more
dynamic capabilities found in a runtime analysis of
resource usage.

A third approach to issuing multiple instructions
takes advantages of the characteristics found in the Von
Neuman computational model. Decoupled architectures
attempt to exploit the independent nature of control flow,
memory access and data manipulation operations that
comprise conventional computations by splitting a task
into distinct pieces and executing them on separate pieces
of hardware. Since these hardware units communicate via
FIFO queues, the instruction streams are allowed to slip
with respect to one another, providing dynamic support
for out-of-order execution. This approach attempts to take
advantage of the best that VLIW and superscalar have to
offer; the compiler partitions the tasks in a manner simi-
lar to VLIW, and the queues provide the same dynamic

d d

scheduling benefits found in superscalar.
These decoupled systems differ from VLIW and

superscalar designs in the manner in which the indepen-
dently issued instructions interact. VLIW and superscalar
processors can be thought of as very tightly coupled
shared memory systems; they share not only addressable
memory but also register space. This shared register
approach differs from the explicit message passing (via
FIFO ordered queues) found in decoupled machines.
Furthermore, in order to transmit data among operational
units by writing and then reading the contents of a regis-
ter, the clocks on VLIW and superscalar processors must
be synchronized. This requirement is relaxed with an
explicit message passing approach. [Smit82]

The greater flexibility found in a decoupled design
allows both single and multiple instruction stream
descriptions of a task. The ZS-1 [SDVK87] and WM
[Wulf92] systems operate in a decoupled manner while
receiving instructions from a single instruction stream.
Their architectural component descriptions are similar to
those of Split Register superscalar designs
[Site93, SCHP92]. The PIPE machine, in contrast,
[GHLP85] consists of two PIPE processors [CGKP87]
which run asynchronously, each with their own instruc-
tion stream, and cooperate on the execution of a single
task.

3. Exploiting ILP on a MIMD architecture
Parallelism in a single instruction stream architec-

ture resides primarily at the instruction level, and is a
well-studied problem [JoWa89, Wall91]. Extracting
parallelism on a MIMD architecture, on the other hand,
has traditionally been accomplished by partitioning the
program into data independent portions and assigning
them to separate processing elements, ignoring any other
parallelism that might exist. Little research has been done
on exploiting instruction level parallelism across proces-
sors on a multiple instruction stream machine.

There are a number of reasons why this approach
merits further investigation, however. Superscalar
machines do not scale well - expanding the number of
processing elements available necessitates a correspond-
ing increase in the size of the hardware window over
which code scheduling occurs, significantly increasing the
scheduling complexity. Compilers for VLIW machines
can help circumvent this problem, but do not support
out-of-order execution well.

Exploiting instruction level parallelism on MIMD
architectures can overcome both these problems. The
instruction issue stage of each processor can perform in a
simple single-issue, in-order manner, avoiding much of
the hardware complexity required to support out-of-order
issue in a single instruction stream approach. Out-of-
order issue is also supported on a MIMD because the pro-
cessors are run independently; therefore, any indepen-
dent instructions executed on different processors can
issue in any order without necessitating any hardware

support. This is fundamentally different than multiple
issue in a VLIW machine because a strict ordering of
instructions is not imposed by the compiler unless a
dependence exists. Furthermore, by incorporating multi-
ple program counters, a MIMD machine provides the
architecture with more dataflow information by enriching
the specification of the object language; taken to its
extreme this would allow a dataflow machine description
of the program.

Separating a program into multiple single issue
instruction streams additionally allows the decentraliza-
tion of the hardware resources, since there is no central
instruction window from which instructions are issued.
Similarly, there is no central register file to be overloaded
with contention among the processing elements, which
allows for easier expandability in a MIMD approach.

While a MIMD approach to code scheduling
clearly possesses certain advantages, historically these
architectures have suffered from severe limitations. Data
transfer latencies have been high, and the bandwidth
required to support high-throughput, low contention data
transfer has been unavailable because of pin limitations
and/or board-level interconnects. Even if maximum data
transfer rates can be made acceptable, the need to provide
synchronization points can cause unacceptable perfor-
mance loss. Using main memory to handle data transfers
between processors can also lead to an unacceptable
dependence on memory latency. These problems help
explain why current MIMD designs do not exploit ILP.

Increasing the number of transistors that can be
fabricated per square centimeter provides the means by
which many of the interprocessor communication prob-
lems can be eliminated. Placing several of these process-
ing elements on the same die circumvents the pin limita-
tions on bandwidth, and supports high on-chip data
transfer rates. In addition, using FIFO queues in a
manner similar to that used by decoupled machines pro-
vides a clean way to handle synchronization. These facts
led to the design of the MISC architecture, a decoupled
MIMD machine that is designed to support and exploit
instruction level parallelism.

4. The multiple instruction stream computer (MISC)
The MISC architecture was designed to handle

many of the dynamic characteristics of program execution
by allowing the compiler to convey more information to
the hardware during code translation. Variable opera-
tional unit latencies (primarily memory loads) create
difficulties for code scheduling in VLIW and superscalar
processors, due to the sequential instruction flow imposed
by translating a dataflow intermediate representation to a
single instruction stream architecture. Superscalar designs
can remove some of the restrictions imposed by single
stream scheduling by regenerating some the dataflow
information at the issue stage of the pipeline, but not
without considerable hardware issue logic. Furthermore,
software pipelining [Lam88] and loop unrolling schemes

d d

[WeSm87]

have difficulty in efficiently scheduling instructions with
variable latency dependencies.

MISC avoids these scheduling problems by allow-
ing operations with indeterminate latencies to transfer
data between PEs. The inherent asynchronous relation-
ship among the PEs can compensate for the variability of
the latency without affecting the execution rate of non-
dependent instructions.

The MISC processor has been described in detail in
[TyFP92]. A brief overview of MISC will be presented
here, focusing on aspects of the architecture that will be
featured in the code scheduling discussion later in the
paper. MISC is a direct descendant of the PIPE project,
but unlike the two processor PIPE design, the MISC sys-
tem is capable of balancing the processor load of instruc-
tions performing control flow, memory access and exe-
cute operations among multiple processors. As its name
indicates, MISC is composed of multiple Processing Ele-
ments (PEs) which cooperate in the execution of a task.

The example MISC configuration used throughout
this paper consists of four processing elements, a bank
selected data cache (DCache) and a set of internal data
paths used to transmit data among PEs and the DCache.
The component design of this MISC configuration is illus-
trated in figure 1. Each PE executes in an asynchronous
manner from other PEs and the DCache. The internal
data paths are used to facilitate communication between
elements (PEs and/or DCache). Each data path is con-
trolled by a single element; for instance, the internal data
path labeled PBUS1 is controlled (written) solely by PE1.
Each PE has its own bus (PBUS{1-4}), and the data

Processor 1 Processor 2 Processor 3 Processor 4

1234

PBus 4
PBus 3
PBus 2
PBus 1

1234

1 1 1 11 1 1 12 2 2 2 223 3 3 34 4 4 422

1234

LAQ/SAQ
List

Data Q

Return List

Data Cache Unit

CBus 1
CBus 2 Register File

P1 P2 P3 P4

PC

From:

Optional Unit

Result Bus

Out

VREG

To: PBus

M1 M2

I/O #1 I/O #2

Cache 1 Cache 2

CBus Ctrl

CBusPBus

Q Q Q Q Q Q

DREG

IREG
Ctrl

ICache

FPU

IU

Q

ICacheICacheICacheICache

SrcA

SrcB

1 12 23 4

Figure 1: MISC Machine MISC Processing Element

cache controls two busses (CBUS1 and CBUS2). Each
PE is capable of transmitting a message directly to any
other processor (including itself), or of broadcasting a
message to all processors.

The processing elements (figure 1) are collectively
responsible for the execution of a single task, with each
PE having its own independent instruction stream and its
own instruction cache. Each PE is identical and main-
tains all state information required to function as an
independent processor - in fact, the MISC hardware is
capable of running four completely unrelated tasks in
parallel. However, is assumed that a single task will be
partitioned (by the compiler) into four instruction streams
that cooperate in the execution of that task. Each PE con-
tains a 5-stage pipeline, 32 General Purpose Registers
(GPRs) which are available for data storage that persists
over multiple references, a FIFO processor queue (PQ)
for each PE in the system (including itself) to store data
transfers between PEs, a Program Counter (PC), a Vector
Register (VREG), and 2 memory queues (MQs) which
contain data requested from memory. The size of each of
the queues (PQs and MQs) is not given here, however
their size is an architecturally visible component; the
compiler must know the size of each queue (they need not
all be the same size) in order to schedule code correctly
and avoid deadlocks due to resource depletion.)

All instructions in MISC are 32 bits in length and
have three 6-bit source operand fields and a 6-bit destina-
tion operand field. In addition, many instructions allow
for two of the source fields to be replaced by a 12-bit con-
stant. Each source field can address any of the 32 GPRs,
a PQ, a MQ, the PC, the VREG, or a small signed con-
stant (-16 to 15). The destination specifier may address a

d d

GPR or routing information for a data transfer onto the
PE’s PBUS. At the instruction issue stage, if a queue is
specified as a source input and that queue is currently
empty, that instruction is delayed until all required input
operands are available.

There are three types of MISC instructions: predi-
cated operations [AKPW83], vector operations, and sen-
tinel operations (which use a sentinel value to terminate
iterations of the instruction). Predicated ALU/FPU opera-
tions perform all scalar operations as well as allow condi-
tional operations to be specified concisely. A predicate
operation uses the third source field to determine whether
or not the operation will complete (and thereby change
the state of the machine). This allows the issue logic to
proceed without interrupt through short segments of con-
ditionally executed code by conditionally completing
instead of branching around code.

In the case of control flow operations, the dest field
is used as a constant to determine the number of delayed
branch slots [FaPl91] to be filled. The address of the
branch is calculated as the sum of the src1 and src2
operands, and the src3 operand specifies the register to be
tested.

Vector instructions use the third source operand
(src3) to specify a vector count. When a vector instruc-
tion arrives at the issue stage of the instruction pipeline,
the vector register (VREG) is cleared and a vector count
register (VCOUNT) is loaded from src3. The scalar ver-
sion of the vector instruction is then executed and the
VREG is incremented until the contents of VREG are
equal to VCOUNT. Once the VREG equals VCOUNT nor-
mal instruction pipeline function continues.

In a sentinel instruction, the src3 field specifies a
register whose contents are compared to the sentinel value
(assumed to be zero in the initial design). If the contents
of the register do not match the sentinel, the scalar ver-
sion of the instruction is allowed to issue. This pattern of
compare and issue is repeated until the comparison pro-
duces a match.

5. Scheduling code on a MISC
The MISC compiler makes use of existing optimi-

zation techniques, both to simplify its construction and to
provide a comparable compilation environment for per-
formance evaluation of the architecture. For those optim-
ization that are unique to MISC, or where existing tech-
niques require modification (e.g. register allocation incor-
porating queues), care has been taken to maintain the
same level of complexity found in current optimizers.
The very portable C compiler (vpcc) [BeDa91] under
development at the University of Virginia is used as the
base compiler for MISC.

The code generator translates a dependency graph
representation of a program (in Register Transfer List
(RTL) form) to produce parallel machine code. This
translation has four phases: code separation, processor
load balancing, loop translation and list scheduling. The

code separation phase partitions the operations required
by the program onto multiple (virtual) processing ele-
ments in a manner that subsumes the effects of memory
and operational unit latencies. Processor load balancing
then repartitions the schedule to evenly distribute the
operations on the number of physical processing elements
available on the target machine. The list scheduling
phase then generates the machine instructions for each of
the processing elements. A detailed description of this
process follows in the remainder of this section.

5.1. Code separation
The task of the code separator is to partition the

task across processing elements, with the goal of minim-
izing the effects of high memory latency and high func-
tional unit latency for operations like multiply and divide
by decoupling the creation of the data item from its use.
Much like initial register allocation strategies, code
separation assumes an infinite number of processing ele-
ments. The mapping of operations to the physical pro-
cessing elements available on the target architecture is left
to the processor load balancing phase.

The partitioning algorithm processes the depen-
dency graph from the root (first operation) to the leaves
(dependent operations). Information concerning opera-
tional latency and register use is examined and operations
are assigned to processing elements in a bottom-up or
dependent-first order. This leads to a reverse schedule in
which the final operations for a block are scheduled first
and those instructions that use data items that are not
available (due to operational latencies) are scheduled on a
different processing element.

Branching is handled slightly differently. Branch
instructions are duplicated across all processing elements
to ensure that each processing element conforms to the
same control flow, and all instructions that calculate
branch conditions are assigned to the processing element
that has no instructions containing data dependencies; this
allows a single processor to lead the execution.

5.2. Using leading processes to hide latency
The concept of a leading processing element is cen-

tral to the understanding of code separation. In a MIMD
architecture, each of the instruction streams executes
independently of the other (ignoring for a moment any
data dependencies). If operations are scheduled carefully,
we can affect the relative execution of the streams, allow-
ing some of the streams to proceed farther ahead in the
computation than others. Staggering the relative entry
cycles for the execution of a section of code provides a
perfect method for hiding the delay imposed by high
latency operations. For example, if the instruction that
issues the high latency operation is scheduled on a pro-
cessor that enters that section of code a sufficient number
of cycles before the processor that uses the item, the
effects of the latency will be hidden. In such a case it is
possible for the leader PE will be executing instructions

d d

in a new section of code while trailing PEs are still com-
pleting previous sections.

To illustrate each phase of the code generation pro-
cess, a simple example (Lawrence Livermore Loop 3)
will be used.

The RTL representation of the intermediate code
prior to code scheduling appears in figure 3. Each line of
the RTL description either defines a label or describes an
operation to be performed in the resulting code. Each
RTL line shown throughout this section will contain a
comment (delimited by ’;’) to explain its operation. Vir-
tual register labels (specified as t1, t2, t3, etc.) define
intermediate points in the calculation and may or may not
map to physical registers or queues. To avoid confusion
the actual register mapping has been omitted.

As referred to previously, the code scheduler can
use the knowledge that basic blocks are entered by suc-
cessive processing elements on different cycles to hide
the latency of long latency instructions. For example, if
an instruction with a completion latency of 5 cycles can
be issued by a leading PE with the result destined for a PE
trailing by 5 or more cycles, the affects of the operational
latency are completely subsumed.

A simple approach the scheduler can take is to
assume a fixed latency period between processing ele-
ment block entries and enforce a strict ordering on PE
leadership. This approach can be used to get reasonable
performance from the scheduler; however, greater benefit

int inner_product() {
int k, q=0;
for (k=0; k<1024 ; k++)

q = q + z[k] * x[k];
}

Figure 2: Livermore Loop 3 (Inner Product)

ii
[1] t1 = 0 ; q=0
[2] t2 = 0 ; k=0
[3] t3 = 1024 ; set register for test
[4] t4 = LOC[_z] ; t4 = base of array z
[5] t5 = LOC[_x] ; t5 = base of array x

[6] L1:
[7] t6 = (t2>=t3) ; calculate branch cond
[8] PC = t6, L2 ; branch if true
[9] t7 = M[t4+t2] ; load t7= z[k]
[10] t8 = M[t5+t2] ; load t8= x[k]
[11] t9 = t7 * t8 ; (z[k] * x[k])
[12] t1 = t1 + t9 ; q = q + (z[k] * x[k])
[13] t2 = t2 + 1 ; k++
[14] PC = L1
[15] L2:iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 3: RTL Representation of LLL3
prior to Code Separation

can be found from calculating the expected stagger in
relative basic block entry/exit cycles. This can be accom-
plished by augmenting the standard dataflow analysis
gathered in the code separation phase with expected com-
pletion times for each of the processing elements in the
virtual machine.

It is possible that a constant value for the entry time
stagger will be grossly erroneous; this is the case when a
loop containing a recurrence is scheduled such that only
one processing element is delayed by a recurrence rela-
tion while the remaining processing elements proceed to
the next iteration (and finally to the loop completion). In
this situation, the processing element delayed by the
recurrence (and any processing elements dependent on
that one) will enter the basic block following the loop ter-
mination many cycles later than the lead processing ele-
ments. If the code scheduler can recognize when this
occurs, a normally less efficient schedule can be created
for the basic block succeeding the loop that avoids any
use of the processing elements that are lagging far behind.
This has the effect of concurrently executing the succes-
sor blocks and the loop containing the recurrence. The
MISC code scheduler incorporates this augmentation to
the dataflow analysis and the benefits of this approach are
discussed in the analysis in section 6.

In order to determine which operations should
migrate to a new processing element, the scheduler
locates all data dependencies that have latencies that can
not be hidden with a simple reordering of instructions.
From this list of candidate operations, ones that are
involved in a dependency circuit are scheduled to a single
processing element. This tends to negate the transmission
time penalties between processing elements as well as
greatly simplifying the deadlock detection scheme in the
code generator. Unfortunately, migrating the operation to
another processing element may create new hardware
dependencies, which may conflict with others. For exam-
ple, if migrating a multiply operation requires that the
destination for the product be a FIFO ordered queue
(since queues are used to transfer data between process-
ing elements), a conflict may arise if that queue is already
allocated to a previously existing instruction. In these
cases, the migration cannot proceed unless that conflict
can be resolved in a later optimization step.

This separation tends to identify operations by
function: flow control, memory access or data manipula-
tion, with the leader PE performing control flow opera-
tions, and trailing PEs supporting memory access and data
manipulation. This creates a dependency between the PE
that generates the data and a trailing PE which consumes
the data, which tends to separate code into memory access
and data manipulation functions due to the long latency of
memory loads. A graph of these inter-PE dependencies is
constructed to aid in the scheduling process, and the
scheduler attempts to avoid circuits in the dependency
graph to simplify deadlock elimination and to ensure that
the ordering of PE execution is maintained (i.e. PE

d d

leader-ship does not transfer).
Code separation provides a model which is capable

of balancing PE loads in applications that contain little
balance between memory access and data manipulation.
It also provides the flexibility to handle code generation
for a variable number of processing elements. It should
be noted that unlike more coarsely grained parallel com-
putations, the separation of instructions on MISC tends to
be between dependent operations.

Applying the code partitioning strategy to the
example code in figure 3 results in the specification in
figure 4. A second column has been inserted after each
line number to indicate which processing element(s) pro-
cess this RTL line. For instance, the first line ([1]) initial-
izes the variable q to zero. Since the only use of q is in
code allocated to PE3, the initialization of q is allocated
to PE3. Notice also that branch operations (lines [8] and
[14]) are allocated across all active processing elements.
The separation of operations occurs in lines [9] through
[12]. Since line [12] has a high latency dependency (due
to the multiplication) to line [11] they are partitioned to
different PEs. Similarly, the memory latency between
lines [9] and [11], and lines [10] and [11] require a third
PE to be included in the schedule. Lines [9] and [10] can
be issued to the same PE because no dependency exists
between them; loop control variable calculation also are
issued to the lead PE.

5.3. Processor load balancing
The schedule generated by the code separator is

incomplete in two areas. First, the partitioning is per-
formed on virtual processors, which may not equal the
actual number of physical processors. Second, no con-
sideration has been given to equally distributing opera-
tions among the processors. The goal of the load balanc-
ing phase is to remedy these deficiencies.

In the example program (figure 4) the codeii
[1] [PE3] t1 = 0 ; q=0
[2] [PE1] t2 = 0 ; k=0
[3] [PE1] t3 = 1024 ; set register for test
[4] [PE1] t4 = LOC[_z] ; t4 = base of array z
[5] [PE1] t5 = LOC[_x] ; t5 = base of array x

[6] [PE1-3] L1:
[7] [PE1] t6 = (t2>=t3) ; PE1 calcs branch cond
[8] [PE1-3] PC = t6, L2 ; branch if true
[9] [PE1] t7 = M[t4+t2] ; load t7= z[k]
[10] [PE1] t8 = M[t5+t2] ; load t8= x[k]
[11] [PE2] t9 = t7 * t8 ; (z[k] * x[k])
[12] [PE3] t1 = t1 + t9 ; q = q + (z[k] * x[k])
[13] [PE1] t2 = t2 + 1 ; k++
[14] [PE1-3] PC = L1
[15] [PE1-3] L2:iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 4: RTL for LLL3 after Code Separation

separation phase allocates only three processing elements
while the physical target machine contains four process-
ing elements. Therefore, the two independent memory
operations (the vector loads for x and z) are split onto two
processing elements. This leads to a schedule that utilizes
the full capabilities of the target architecture. The
modified schedule is show in figure 5.

5.4. Loop translation
While code separation generally achieves excellent

results in code containing no branches, greater benefit can
be achieved by devising optimizations that examine the
more general nature of control flow. Of particular impor-
tance is the optimization of natural loops. Two optimiza-
tion techniques are applied to loops in this compiler -
branch reduction and induction variable calculation.
These two optimizations attempt to eliminate instructions
in inner loops, which can lead to significant performance
improvements when these loop iterations account for a
large portion of the execution time.

5.4.1. Branch reduction
One ramification of having multiple processors

cooperating on the execution of a task is that many more
branch instructions are required in order to keep the
instruction flows synchronized. This duplication of
branch instructions in each stream can lead to a
significant increase in the total number of instructions
required to perform a task.

The MISC architecture provides two mechanisms
to reduce the need for branch duplication:
VLOOP/SLOOP instructions and predicated execution.
The vector loop (VLOOP) instruction uses the vector
register in conjunction with a Delay Register (DREG) to
realize a very simple branch hiding (or zero cycle branch)
instruction. It is used in cases where the number of times
a basic block will execute is known at the initial entry intoii

[1] [PE4] t1 = 0 ; q=0
[2] [PE1] t2 = 0 ; k=0
[3] [PE1] t3 = 1024 ; set register for test
[4] [PE1] t4 = LOC[_z] ; t4 = base of array z
[5] [PE2] t5 = LOC[_x] ; t5 = base of array x

[6] [PE1-4] L1:
[7] [PE1] t6 = (t2>=t3) ; PE1 calcs branch cond
[8] [PE1-4] PC = t6, L2 ; branch if true
[9] [PE1] t7 = M[t4+t2] ; load t7= z[k]
[10] [PE2] t8 = M[t5+t2] ; load t8= x[k]
[11] [PE3] t9 = t7 * t8 ; (z[k] * x[k])
[12] [PE4] t1 = t1 + t9 ; q = q + (z[k] * x[k])
[13] [PE1-2] t2 = t2 + 1 ; k++
[14] [PE1-4] PC = L1
[15] [PE1-4] L2:iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 5: RTL for LLL3 after Load Balancing

d d

the loop (either as a constant or register variable).
The sentinel loop (SLOOP) instruction provides

branch hiding capability to more generalized (while)
loops. SLOOP operates in a manner similar to the
VLOOP except that a sentinel comparison is made instead
of a VREG calculation. When a SLOOP instruction
reaches the issue stage of the pipeline, the src3 operand is
tested to see if the first iteration of the loop should be exe-
cuted. The src3 operand specifier is then saved to allow
for additional sentinel tests to be performed during the
last instruction issued each time through the loop body.
Loop iteration continues until the sentinel marker is
reached.

Conventional wisdom holds that instruction level
implementations of higher level semantics seldom lead to
performance improvements because of the complexity of
implementation and the scarcity of application. While this
may be true for a standard sequential processor, the vec-
tor and sentinel instructions defined in MISC can be
implemented with minimal hardware modification to the
issue logic and the existence of multiple instruction
streams leads to a greater potential for application of
these instructions. Often the application of a complex
construct (e.g. a while loop) is virtually impossible in a
single instruction stream design because of the complex-
ity of evaluating the test condition. The need to both
evaluate a complex test condition and perform the control
flow operation cannot be reduced to a single instruction.
However, in a multiple instruction stream machine such
as MISC, a single PE can evaluate the test condition and
broadcast the boolean result to all PEs, increasing the
number of simple boolean tests evaluated during the exe-
cution of these loop semantics.

Hyperblock transformation [MLCH92] also reduces
the effects of branching by eliminating branching opera-
tions in favor of predicated execution. One problem with
hyperblock scheduling is that while it may be useful to
eliminate a branch to allow more efficient use of some
operational units (e.g. load/store operations), the necessity
of translating all instructions effected by the branch into a
predicated form can lead to an overall decrease in execu-
tion performance. Hyperblock scheduling of MISC code
allows for PEs to be transformed in an independent
manner. This allows PEs that can benefit from the remo-
val of a branch operation to proceed with the hyperblock
transformation while other PEs may more efficiently
schedule instructions by retaining that branch. This also
allows the application of VLOOP and SLOOP on a
greater number of inner loops (containing small segments
of conditionally executed code), since loop operations
cannot contain branches, but can contain predicated
instructions.

During branch reduction, a variant form of hyper-
block transformation is used to convert jumps (primarily
around short segments of conditionally executed code)
into predicated instructions. After this has been accom-
plished, each inner loop is examined to determine

whether the VLOOP or SLOOP operations can be
inserted in place of the explicit branching operations. For
loops containing no remaining branch operations (other
than a single branch exit and the backward branch at the
end of the loop), the VLOOP or SLOOP operator is
inserted.

In the example of figure 5 it is a simple matter to
determine that a VLOOP operation provides the required
loop control operation. The effects of applying the loop
translation along with induction variable calculation can
be seen in figure 6.

5.4.2. Induction variable calculation
An induction variable is a variable whose value is

consistently modified (incremented or decremented) by a
constant value on each iteration of a loop. These vari-
ables are often used to determine the number of iterations.
Furthermore, induction variables are often used to index
array data items or manipulate memory pointers. Induc-
tion variables can be defined in terms of an induction
expression. While a number of expressions are possible,
a useful induction expression is:

IV(1)=dee, IV(i+1)=IV(i) + cee for all i > 1

where i is the iteration count (value 1 on the first iteration).
The detection of induction variables is a well understood
problem. The algorithm used in this compiler is derived
from [AhS] (Algorithm 10.9).

Once the control state of the machine has been
modified to support loop operations, it is a simple
modification to handle the calculation of induction vari-
ables used in the loop. The src1 and src2 fields of the
loop instructions are free to contain the cee and dee
values; VREG will maintain the induction value and src3
will control loop termination as described above.

In the example in figure 5 both array index calcula-
tions can be performed by the hardware. This leads to the
RTL description after loop translation show in figure 6.

5.5. List scheduling
List scheduling refers to a class of code scheduling

algorithms that seek to generate a near optimal schedule
for a set of instructions available for immediate execu-
tion. A least cost schedule is developed that attempts to
schedule all instructions in the shortest time. List
scheduling on MISC operates on each of the processing
element individually, scheduling to avoid wasted cycles
(due to latency). Simple list scheduling is complicated by
the necessity to interpret queue register specifications in
the RTL and avoid reordering queuing operations. Furth-
ermore, the implementation of loop operations is left to
this phase of the code generation. In the example the
VLOOP operations for each of the processors can be
replaced with the vector version since each loop consist
of a single instruction and the default induction calcula-
tion is used (or no induction variable is referenced in PE3
and PE4). A flow graph representation of the MISC

d d

iii
[1] [PE4] t1 = 0 ; q=0
[2]
[3] [PE1-4] t3 = 1024 ; set register for test
[4] [PE1] t4 = LOC[_z] ; t4 = base of array z
[5] [PE2] t5 = LOC[_x] ; t5 = base of array x

[6]
[7]
[8] [PE1-4] VLOOP 1,0,t3 ; cee = 1, dee = 0
[9] [PE1] t7 = M[t4+VREG] ; load t7=z[k]
[10] [PE2] t8 = M[t5+VREG] ; load t8=x[k]
[11] [PE3] t9 = t7 * t8 ; (z[k] * x[k])
[12] [PE4] t1 = t1 + t9 ; q = q + (z[k]*x[k])
[13]
[14] [PE1-4] VLOOP_END
[15] [PE1-4] L2:iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 6: RTL for LLL3 after Loop Translation

object code is shown in figure 7.

6. Analysis
The Lawrence Livermore Loops were selected as

the benchmarks, because they are amenable to hand-
coding, and are representative of a large class of scientific
programs. The first 12 loops were compiled for both the
MIPS and MISC architectures. The MIPS code was com-
piled using the cc compiler with optimization -O2, and
the MISC code was generated using the IAGO [TySF93]
compilation environment using the techniques discussed
in section 5 of this paper. Operational latencies for MISC

PE1 PE2

PE3

PE4

DCache

PE4 <- M1 * M2

PBUS 1 PBUS 2CBUS 2CBUS 1

PBUS 3

vlaq2 {PE3} <- z[VREG]

q <- q + PE3

vlaq {PE3} <- x[VREG]

Figure 7: Execution flow for LLL3

were set as follows:

Memory Loads 10 Branches 2
Integer Add 2 Integer Mult 5cc

c

In order to compare the performance of MISC to
the MIPS processor we examined the total number of
cycles required to complete (Cmplet) a given loop and
the number of cycles required before the execution of
instructions after the loop can start (Next). The Next
number is interesting because, since MISC PEs operate
independently, one PE can complete it’s work on a given
loop and begin execution of the code following the loop
prior to the official loop termination.

As can be seen in table 1, for a majority of the
loops we see a three to four-fold decrease in the cycles
required by the MISC machine over the MIPS processor
in completion of a loop. This demonstrates that MISC is
effectively extracting the parallelism available in the
benchmark. In several of these benchmarks there is less
of a performance increase (most notably in LLL6 and
LLL11); this is due to a recurrence constraint found in the
data manipulated by the loop. In these cases, adding
more processors will not increase performance regardless
of the approach used, since the parallelism is simply not
available in the loop.

To provide a comparison with a similarly
configured single instruction stream/multiple issue archi-
tecture, the loops were also hand compiled for a four-
issue VLIW architecture based upon the version found in
[RaS92]. This VLIW machine allows four instructions to
be issued per clock cycle, and places no limitations on the
type of instructions that can be issued. Furthermore, it
assumes sufficient resources (e.g. register transfer
bandwidth) to sustain a four instructions per cycle execu-
tion rate. The "ideal" entry in table 2 is derived by deter-
mining the total number of instructions required to com-
plete the program loop, exclusive of branches (which can
be removed by software or hardware techniques in any

Table 1. Comparison of MIPS and MISC
cycle counts for Livermore Loops

ii
Bnch MIPS MISC Improvement

Cmplet Next Cmplet Nextii
LLL1 5611 1232 1205 4.55 4.65
LLL2 1112 256 201 4.34 5.53
LLL3 6664 2063 1025 3.23 6.50
LLL4 3011 753 385 3.99 7.82
LLL5 6979 1994 977 3.50 7.14
LLL6 7726 4982 0 1.55 ∞
LLL7 4338 859 727 5.05 5.97
LLL8 3218 1476 586 2.18 5.49
LLL9 4081 813 609 5.02 6.70
LLL10 3107 1007 506 3.08 6.14
LLL11 3049 2003 0 1.52 ∞
LLL12 3759 1013 1002 3.71 3.75iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

d d

ideal machine). Barring any recurrence relations, the
total instruction count is then divided by the issue
bandwidth (four in this analysis).

The results in table 2 show that the MISC approach
and the VLIW model are capable of extracting about 80%
to 99% of the instruction level parallelism available in
these loops. However, as mentioned previously, the
MISC PEs that finish prior to the overall completion of
the loop are available to begin execution of the code fol-
lowing the loop exit. This demonstrates an important
point in the performance capabilities of a multiple instruc-
tion stream processor; the MISC processor requires only
those processing elements necessary to perform the task
to be allocated to the loop while the unallocated process-
ing elements can proceed into the following code blocks.
In contrast, all functional units in the VLIW processor are
locked into the loop (even if they have nothing to do).

A superscalar design might be capable of allocating
processing resources across loops, but only with a
sufficiently large instruction window and the ability to
correctly predict many branches ahead in the instruction
stream. The MISC approach of separating instruction
streams alleviates these requirements.

To demonstrate the effects of this splitting of
resources let us examine two of the loops in more detail.
If we look at the execution of LLL6 we notice that only
the final processing element is required to perform the
majority of the loop calculation. This is due to a tight
recurrence relation found in the loop equation. In the
VLIW machine all functional units are forced to sit idle in
the loop body until the machine (as a whole) completes
calculation of the loop. In the MISC approach, the three
processing elements not involved in the recurrence calcu-
lation are free to continue execution.

If we now assume that LLL11 follows the execu-
tion of LLL6, we can determine the different stagger rates
on exit from LLL6 and reschedule LLL11 to take

Table 2. Comparison of cycle counts for
MISC, VLIW and Ideal Machines

ii
Bnch PE1 PE2 PE3 PE4 MISC VLIW Idealii

LLL1 1205 1215 1221 1232 1232 1236 1000ii
LLL2 201 201 211 256 256 228 200ii
LLL3 1025 1025 1035 2063 2063 2070 2048ii
LLL4 385 395 404 753 753 771 576ii
LLL5 997 999 1993 4982 4982 4984 4980ii
LLL6 0 997 1995 4982 4982 4984 4980ii
LLL7 727 846 736 859 859 863 780ii
LLL8 586 720 1240 1476 1476 ---- 950ii
LLL9 609 707 712 813 813 708 700ii
LLL10 506 506 1006 1007 1007 1014 750ii
LLL11 0 999 1000 2003 2003 2004 1998ii
LLL12 1002 1012 1013 1013 1013 1013 1000iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3. Comparison of cycle times for MISC
and VLIW executing two loops sequentially

ii
Loop PE1 PE2 PE3 PE4 MIPS VLIW Improvementii

6 0 997 1995 4982 4982 4984 ∞ 1.00ii
11 999 1000 2003 0 2003 2004 ∞ 1.00ii

6 - 11 999 1997 3998 4982 4982 6988 6.99 1.40iic
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

cc
c
c
c

c
c
c
c
c
c

advantage of the free processing elements. Table 3 shows
the result of this rescheduling (done at compile time) and
compares it to the VLIW architecture. As seen in the
table, the ability to overlap execution of the loops allows
the MISC processor to perform both loops in the time
required by the VLIW architecture to perform the first
alone.

We expect this final result to be demonstrative of
the advantage that the multiple instruction stream attains
across basic blocks. Little dataflow analysis is required to
achieve this capability.

7. Conclusions/Future work
In this paper we have examined the feasibility of

using a MIMD approach to extracting instruction level
parallelism. Current MIMD architectures suffer from
various deficiencies which prevent their direct application
to instruction level parallel tasks. A new architecture has
been proposed which alleviates these deficiencies and
provides both reduced hardware complexity and
simplified software scheduling compared to conventional
(single instruction stream) approaches. When supported
with a new code scheduling method, this architecture pro-
vides performance equivalent to the most powerful VLIW
and Superscalar architectures proposed, while maintain-
ing simple hardware and software schemes.

The ability to specify more information in the
object language of the MISC machine (by explicitly
defining separate instruction streams) simplifies the
hardware mechanisms required to support out-of-order
execution. This provides a powerful combination of
software based control flow optimizations with the
dynamic features found in out-of-order execution models
in a more cooperative way than that found in existing
VLIW and Superscalar designs, by increasing the infor-
mation content between the two.

We believe these results will prove to be even more
significant in non-vectorizable code, because of the
latency hiding effects inherent in the decoupled model.
We are currently refining the compilation environment, in
order to examine a much wider range of benchmark pro-
grams.

8. Acknowledgements
This work was supported by the National Science

Foundation under Grant MIP-9257259, and by a generous
donation from SUN Microsystems.

d d

9. References
[AhS] A. V. Aho, R. Sethi and J. D. Ullman, ‘‘Compilers

Principles, Techniques and Tools’’, Addison-
Wesley Publishing, pp. 644.

[AKPW83] J. R. Allen, K. Kennedy, C. Porterfield and J.
Warren, ‘‘Conversion of control dependencies to
data dependencies’’, Proceeding of the 10th ACM
Symposium on Principles of Programming
Languages(January 1983), pp. 177-189.

[AuSo92] T. Austin and G. Sohi, ‘‘Dynamic Dependency
Analysis of Ordinary Programs’’, Proceedings of
the 19th Annual Symposium on Computer
Architecture, vol. 20, no. 2 (May 19-21,
1992), pp. 342-351.

[BeDa91] M. E. Benitez and J. W. Davidson, ‘‘Code
Generation for Streaming: an Access/Execute
Mechanism’’, Proceedings of the Fourth
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Santa Clara, CA (April 8-11, 1991), pp.
132-141.

[BuYP91] M. Butler, T. Yeh and Y. Patt, ‘‘Single Instruction
Stream Parallelism is Greater than Two’’,
Proceedings of the Eighteenth Annual
International Symposium on Computer
Architecture, Toronto, Canada (May 27-30, 1991),
pp. 276-286.

[CGKP87] G. L. Craig, J. R. Goodman, R. H. Katz, A. R.
Pleszkun, K. Ramachandran, J. Sayah and J. E.
Smith, ‘‘PIPE: A High Performance VLSI
Processor Implementation’’, Journal of VLSI and
Computer Systems, vol. 2 (1987).

[FaPl91] M. Farrens and A. Pleszkun, ‘‘Overview of the
PIPE Processor Implementation’’, Proceedings of
the 24th Annual Hawaii International Conference
on System Sciences, Kapaa, Kauai (January 9-11,
1991), pp. 433-443.

[GHLP85] J. R. Goodman, J. T. Hsieh, K. Liou, A. R.
Pleszkun, P. B. Schechter and H. C. Young,
‘‘PIPE: a VLSI Decoupled Architecture’’,
Proceedings of the Twelveth Annual International
Symposium on Computer Architecture(June 1985),
pp. 20-27.

[JoWa89] N. P. Jouppi and D. W. Wall, ‘‘Available
Instruction-Level Parallelism for Superscalar and
Superpipelined Machines’’, Proceedings of the
Third International Conference on Architectural
Support for Programming Languages and
Operating Systems, Boston, Mass (April 3-6,
1989), pp. 272-282.

[Lam88] M. S. Lam, ‘‘Software Pipelining: An Effective
Scheduling Technique for VLIW Machines’’,
Proceedings of the ACM SIGPLAN Notices 1988
Conference on Programming Languages and
Implementations(June 1988), pp. 318-328.

[MLCH92] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank
and R. A. Bringmann, ‘‘Effective Compiler
Support for Predicated Execution Using the
Hyperblock’’, Proceedings of the 25th Annual
International Symposium on Microarchitecture,
Portland, Oregon (December 1-4, 1992), pp. 45-

54.

[RaS92] B. R. Rau, M. S. Schlansker and P. P. Tirumalai,
‘‘Code Generation Schema for Modulo Scheduled
Loops’’, Proceedings of the 25th Annual
International Symposium on Microarchitecture,
Portland, Oregon (December 1-4, 1992), pp. 158-
169.

[Site93] R. L. Sites, ‘‘Alpha AXP Architecture’’,
Communications of the ACM, vol. 36, no. 2
(February, 1993), pp. 33-44.

[Smit82] J. E. Smith, ‘‘Decoupled Access/Execute
Computer Architectures’’, Proceedings of the
Ninth Annual International Symposium on
Computer Architecture, Austin, Texas (April 26-
29, 1982), pp. 112-119.

[SDVK87] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S.
D. Klinger, C. M. Rozewski, D. L. Fowler, K. R.
Scidmore and J. P. Laudon, ‘‘The ZS-1 Central
Processor’’, Proceedings of the Second
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Palo Alto, California (October 1987), pp.
199-204.

[SCHP92] C. Stephens, B. Cogswell, J. Heinlein, G. Palmer
and J. P. Shen, ‘‘Instruction Level Profiling and
Evaluation of the IBM RS/6000’’, Proceedings of
the 19th Annual Symposium on Computer
Architecture, vol. 20, no. 2 (May 19-21,
1992), pp. 180-189.

[TjFl70] G. S. Tjaden and M. J. Flynn, ‘‘Detection and
Parallel Execution of Parallel Instructions’’, IEEE
Transactions on Computer(May 1970), pp. 889-
895.

[TyFP92] G. Tyson, M. Farrens and A. Pleszkun, ‘‘MISC: A
Multiple Instruction Stream Computer’’,
Proceedings of the 25th Annual International
Symposium on Microarchitecture, Portland,
Oregon (December 1-4, 1992), pp. 193-196.

[TySF93] G. S. Tyson, R. Shaw and M. Farrens, ‘‘An
Interactive Compiler Development System’’,
Tcl/Tk Workshop(June 10-11, 1993).

[Wall91] D. Wall, ‘‘Limits of Instruction-Level
Parallelism’’, Proceedings of the Fourth
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Santa Clara, CA (April 8-11, 1991), pp.
176-189.

[WeSm87] S. Weiss and J. E. Smith, ‘‘A Study of Scalar
Compaction Techniques for Pipelined
Supercomputers’’, Proceedings of the Second
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Palo Alto, California (October 1987), pp.
105-109.

[Wulf92] W. Wulf, ‘‘Evaluation of the WM Architecture’’,
Proceedings of the 19th Annual Symposium on
Computer Architecture, vol. 20, no. 2 (May
19-21, 1992), pp. 382-390.

d d

