Managing Data Caches using Selective Cache Line Replacement

Gary Tyson Matthew Farrens Andrew R. Pleszkun
John Matthews

Department of Computer Science Computer Science Department Department of Electrical
University of California, Riverside University of California, Davis and Computer Engineering
Riverside, CA Davis, CA 95616 University of Colorado-Boulder
(tyson@cs.ucr.edu) (farrens@cs.ucdavis.edu) Boulder, CO 80309-0425
(matthewj @cs.ucdavis.edu) (arp@tosca.colorado.edu)
Abstract

As processor performance continues to improve, more demands are being placed on the perfor-
mance of the memory system. The caches employed in current processor designs are very similar
to those described in early cache studies. In this paper, a detailed characterization of data
cache behavior for individual load instructionsis given. It will be shown that by selectively allo-
cating cache lines according the characteristics of individual load instructions, overall perfor-
mance can be improved for both the data cache and the memory system. This approach can
improve some aspects of memory performance by as much as 60 percent on existing executables.

1. Introduction

The average data access time is a measure of the time it takes to read a data item from
memory. Since most programs need to access data, minimizing this term is crucial to achieving
high performance. Unfortunately, access time to off-chip memory (measured in processor clock
cycles) has increased dramatically as the disparity between main memory access times and pro-
cessor clock speeds widen. This disparity is likely to continue to grow, since there is no indica-
tion that dynamic memory access times will decrease significantly in the near future.

This work was supported by National Science Foundation Grants CCR-94-03651, CCR-92-
13627, M1P-92-57259, and grants from the SUN Microsystems and Tektronix corporations.

In order to minimize the impact of slow main memory access times, several strategies have
been used. Most machines now include afirst-level cache, which is designed to reduce the aver-
age data access time by capturing the most frequently used data items. If necessary, a second-
level cache can aso be added to the system --- since the second-level cache will presumably be
smaller than the main memory, it can be built using faster and more expensive logic.

Another option is to interleave main memory, so that each word of a cache line does not
have to experience the full latency of the main memory. Widening the bus between the primary
cache and the main memory (or second-level cache) is aso an option. Both of these approaches
have the effect of increasing the bandwidth of the data flowing across the chip boundary. The
effectiveness of these strategies depends on how easy it is for designers to increase the number
of pinson achip and/or increase the rate at which these pins are driven.

Data cache cycle times have been able to keep pace with the clock cycle of the machine,
lock-up free caches designs have been used, more pipelined cache designs are beginning to
appear, and a number of schemes to deal with writes so that data writes do not slow down the
normal operations of the cache have been developed.

All these traditional approaches help decrease the average access time to the cache, but
they do not fundamentally change the way in which the cache operates. The placement and
replacement strategies are essentially the same as when caches first appeared. As multiple-issue
processors continue to increase the the number of instructions that can be issued each cycle,
there will be a corresponding increase in the demands placed on the bandwidth to the data
memory --- the data cache in particular will be hard-pressed to service more than one data refer-
ence per cycle.

Since it is not clear that traditional methods of reducing the data cache miss rate and miss
penalty will be sufficient, we believe that a somewhat different approach is warranted. In this
paper, we examine the potential of reducing the average data access time by dynamically decid-
ing whether to cache a particular data item based on the address of the load instruction generat-
ing the request. The techniques we will be describing are largely orthogonal to standard miss
rate/miss penalty reduction techniques, and should work well in conjunction with improvements
made on other fronts.

2. Background

Caches are a very well-studied and well-understood tool used to reduce the average
memory access time. In this section we will briefly summarize the aspects of cache behavior
relevant to this study.

In a system with a cache, the average access time for a memory reference is a function of
the hit rate in the cache, the corresponding miss rate and the
miss penalty. From [HePa9(0]:

Memory stall clock cycles = Reads x Read Miss Rate x Read Miss Penalty
+ Writes x Write Miss Rate x Write Miss Penalty

This equation shows that in order to minimize the average access time, the hit rate should be
maximized (thereby minimizing the miss rate) while simultaneously minimizing the miss
penalty.

2.1. Reducing Cache Misses (Miss Rate)

Cache misses can be categorized into three types of misses. Compulsory, Capacity and

Conflict [HePa90].! Compulsory misses are those misses that are initially experienced when a
cache is being filled (often called cold start misses), and are very difficult to eliminate. A capa-
city miss occurs in a cache when more active data items exist than the cache can encompass.
These misses can be reduced in number by either increasing the number of lines in the cache or
by increasing the size of each line in the cache (or both). A conflict miss may occur in cache
designs that restrict the placement of data items in the cache, when more items map to the same
cache set than the associativity of the cache supports. In order to reduce the number of conflict
misses, the design should relax the restrictions on the placement of aline in the cache. Conflict
misses do not occur in afully associative cache, but become the dominate miss category in the
large direct mapped caches commonly used. Generally, increasing the associativity of the cache
reduces the frequency of conflict misses.

The miss rate is best reduced by increasing the size and/or the associativity of the cache.
Unfortunately, in the design of today’s high-performance processors, it is difficult to substan-
tially increase either of these terms because the access time of the data cache must first and
foremost match the clock cycle time of the processor. Several studies have investigated the rela-
tionship between cache access time, cache size and cache associativity [MuQF91, WaRP92].
These studies carefully parameterized a hardware model of the components of the cache (such as
data array, tag array, compare logic, bus delays, etc.) and found, for example, that going from a
direct mapped to 2-way associative cache substantially increases the access time to the cache. A
similar conclusion can be made when increasing the primary cache size much beyond 16K bytes.

1The cache design will determine the relative weight of each type of miss on the overall cache missrate.

2.2. Reducing Miss Penalty

The miss penalty accounts for the time it takes to read a cache line from (or write a cache
line to) the next level in the memory hierarchy. This penalty has been climbing as the disparity
between main memory access times and processor clock speeds widen. Especially in processor
designs with on-chip caches, access time to off-chip memory (measured in processor clock
cycles) hasincreased dramatically.

A number of studies have proposed techniques (either compiler-based or hardware-based)
that reduce the miss penalty of the cache by performing some type of data prefetch
[CaPo, ChBad5, KILe9l]. If data items are prefetched during idle data cache cycles, references
to a prefetched item will find it already in the cache and thus will not cause a miss and the asso-
ciated miss penalty will not be experienced. An example of hardware-based prefetching is the
work by Chen and Baer [ChBa95]. In this paper the authors propose keeping a history of the
strides of data references, and using that information to make predictions as to what should be
prefetched. 1BM uses a similar hardware approach [EKPP93] in which they associate previous
miss behavior with aload instruction and use that information to do prefetching.

A somewhat different hardware approach to reducing the miss penalty is put forth by
[Joup90]. The author makes the observation that a cache or a degree of associativity that is too
small will lead to a substantial number of conflict (or capacity) misses, and that there is a good
chance that the line that is selected for replacement will be needed again soon. Therefore, he
proposes the use of a small, fully associative buffer sitting at the back end of the cache (called a
victim cache) to buffer these replaced lines. By keeping these recently replaced lines in close
proximity to the data cache, subsequent references to them will not experience the full main
memory miss penalty.

Among the most intriguing software approaches to reducing the miss penalty is a study by
Abraham, et. al. [ASWR93] in which they observe that a very small number of load instructions
are responsible for causing a disproportionate percentage of cache misses. By using profiling
techniques similar to those used to schedule code for VLIW machines, the compiler can accu-
rately identify those data reference instructions which cause the highest data cache miss rates.
By recognizing these data references and using specia instructions to control the cache, the
software can effectively prefetch those instructions and reduce the miss penalty.

3. Deciding What to Cache

Instead of concentrating on miss penalty, cache size or cache associativity, we decided to
look at the source of cache misses. One could potentialy reduce the miss rate of the data cache
by simply not caching those data references that lead to a high miss rate. As Abraham, et €.

-4-

[ASWR93] point out, a large percentage of the data misses are caused by avery small number of
instructions. Instead of using this information to make prefetching decisions, we decided to look
at the impact on the data cache miss rate if the data cache is smarter about what it decides to
cache and does not allow these troublesome instructions to allocate space in the data cache.
Such an approach has the potential to more effectively utilize the cache because instructions that
generate a large number of cache misses are removing more heavily utilized data items from the
cache. In addition, if we do not cache the data associated with high-miss-rate instructions,
memory bandwidth requirements could be reduced since these references would only request a
single word from memory, instead of an entire cache line.

Since the study by Abraham, et el. [ASWR93] did not look at an extensive set of bench-
mark programs, we began by performing experiments similar to theirs in which we measured the
miss rate associated with individual load and store instructions for a more extensive set of pro-
grams. Using the ATOM program trace facilities [SrEu94] and the SPEC92 suite of bench-
marks, such statistics were relatively straight-forward to gather. Each program in the SPEC 92
suite was instrumented in order to track the data cache hit rate associated with each unique data
address. We simulated a 32-byte line size, and both 8K-byte and 16K-byte caches, which were
direct mapped, 2-way set associative, 4-way set associative, and direct-mapped with a victim
cache.

Table 1 presents a detailed breakdown of each benchmark anayzed, the input that was
used, the total number of load data references and the hit rates for each of the cache
configurations simulated. Our results are not surprising, and match those from many other stu-
dies --- as expected, a direct mapped cache performs the worst in genera while increasing the
associativity improves the hit rate.

An examination of the table reveals that using a 16 line victim cache in conjunction with a
direct mapped cache provides cache hit rates that generaly lie somewhere between the 2-way
and 4-way associative configurations. In fact, in several benchmarks a considerable improve-
ment over 4-way associativity is demonstrated (e.g. a jump from 64% to 84% in su2cor). This
indicates that the number of conflicting items in the direct mapped cache is small but can be
clustered in asingle cache line. By allowing the associativity of the victim cache to be directed
at those contention spots, performance can be improved using less hardware.

In order to better understand what is causing the cache misses we looked at the reference
pattern of each program in greater detail. Table 2 presents the cumulative percentage of data
references and data cache misses caused by the most heavily executed load instructions in an
8K-byte direct mapped cache. Each row of the table contains the information gleaned from a

Table 1: Data Cache Hit Ratefor SPEC Benchmarks

SPEC Input # of 8K Cache Hit Rate (%) 16K Cache Hit Rate (%)
Benchmark File LoadRefs | D 2 4 \% D 2 4 Vv
compress ||in 24434068|79.73 84.77 8535 84.38|81.33 8594 86.3 8541
egntott int_pri_3.eqn | 231129466|94.14 954 9549 095.47|94.72 95.62 9567 95.65
espresso.cps ||cps.in 110649363|92.82 9449 95.04 94.45/96.07 96.84 96.97 97.08
espresso.tail ||tail.in 218814920(92.32 95.6 96.26 9547|9558 98 98.68 97.44
espresso.ti ||ti.in 123094748|92.74 94.37 9512 94.69|95.62 96.57 96.99 96.84
gcc.insn insn.i 42239266 |91.19 94.06 95.02 93.87(945 9653 97.11 96.09
gcc.integrate||integrate.i 18050705(90.68 93.97 95.09 93.62(94.27 96.58 97.27 96.11
gcc.stmt stmt.i 34338681/90.86 94.13 953 93.86|94.64 96.8 9747 9641
gcc.tree tree. 15088536 90.81 94.04 9522 93.79|94.86 97.07 97.74 96.61
li li_input.lsp |1923073359|89.75 9458 9568 94.81|934 9659 97.32 96.85
sc.loadal loadal 325317586 (84.43 86.38 87.17 86.55|86.37 87.64 87.77 87.51
sc.loada2 loada2 365851437 (88.44 90.44 91.14 90.87|90.18 91.76 91.95 91.63
sc.loada3 loada3 104774876|92.73 9431 9496 94.7 |94.77 95.62 95.83 95.66
Int Ave 90.05 9281 93.60 92.81(92.79 94.74 9516 94.56
doduc doducin 337197266 (88.54 9296 96.36 94.01|91.31 96.74 97.29 95.78
ear ref.m22 3833127750(96.73 97.62 97.52 97.72|98.69 99.53 99.93 99.28
fpppp natoms 1529995204 19459 97.64 98.05 96.81|96.44 99.12 99.7 98.12
hydro2d hydro2d.in |137629308981.5 83.69 84.79 83.36(81.98 84.68 8491 83.64
mdljdp2 input.file 414815687 |85.51 88.44 9156 89.23|93.00 93.81 945 94.04
mdljsp2 input.file 753307193 |95.33 96.97 97.67 97.58(97.35 9852 98.6 98.58
nasa NASA7.CHK | 1768897327 |56.61 59.75 5828 62.32|64.7 69.66 69.61 68.89
ora params 1343836643 |97.15 100.00 100.00 100.00{97.15 100.00 100.00 100.00
spice2g6 greycode.in |5265522592|69.75 72.99 7426 7293|7823 81.21 83.29 80.08
su2cor su2cor.in 1069475885 |48.61 49.71 6453 84.42|6297 65.79 655 85.59
swmz256 swm256.in |2851234080|75.72 68.66 66.54 92.87(92.88 92.64 91.95 93.23
tomcatv 247280519 |63.78 60.25 66.03 86.08|75.44 86.24 88.06 88.06
waveb 758316846 |89.08 91.58 9148 93.82|94.76 9584 9581 95.71
FP Ave 80.22 8156 8362 8855|86.53 89.52 89.93 90.85

run of the given SPEC benchmark, and the 8 columns which are labeled with a percentage of
total dynamic references and total data cache misses each have two sub-columns indicating the
total number of static instructions that caused that percentage and the percentage of the total

-6-

number of instructions that represents.

If we look at the compress benchmark, for example, we see that 34 static instructions are
responsible for 75% of all load references and those 34 instructions account for 1.11% of al load
instructions in the benchmark (e.g. there are 3058 load instructions in compress and 34/3058 =
1.11%). Continuing across the table, we see that 54 (1.77%) of the load/store instructions
account for 95% of the data references. The remaining 98.23% of load/store instructions gen-
erate only 5% of the data references. This demonstrates a well known principle of program exe-
cution, that a small portion of the program is responsible for much of the execution effort. This
is an effect of the 90/10 locality rule which states that a program spends approximately 90% of
execution time in only 10% of the code.

Table 2: Cumulative Load Instruction Reference Counts

Percent of Total Data References Percent of Total Data Cache Misses
Bench- Load 5% ‘ 90% 95% 99% 5% ‘ 90% 95% 99%

mark Inst || #of | %of | #0f | %of | #of | %of | #of | %of || #0f | %of | #0of | %of | #0of | %of | #of | %of
Insts | Total | Insts | Total | Insts | Total | Insts | Tota || Insts | Total | Insts | Total | Insts | Total | Insts | Total

compress 3058 34 111| 49 160 54 177 60 1.96 6 020 9 0.29 15 049 29 095
eqgntott 4656 8 017 59 127 9% 2.06 157 337 6 0.13 19 041 33 071 96 2.06
espresso.cps || 16647 || 137 082| 299 1.80| 588 3.53| 1388 834| 72 043 | 237 142 | 423 254 | 998 599
espresso.tail ||16647| 150 090| 366 220| 599 3.60| 1265 7.60 8 050 | 235 141 | 385 231 | 876 526
espresso.ti 16647 159 096 | 419 252 | 690 4.14| 1408 8.46 98 059 | 302 181 | 520 312 | 1105 6.64
gec.insn 51555|(1322 256 | 2874 5574232 821 | 6931 1344| 735 143 (1562 3.03 |2205 4.28 |3862 7.49
gcc.integrate || 51555 (| 1750 3.39 | 3691 7.16 | 5382 10.44 | 9003 17.46| 880 1.71 |2017 391 |3026 5.87 |5814 11.28
gce.stmt 51555|(1765 3.42|3682 7.14|5409 1049 | 9215 17.87| 972 1.89 (2176 4.22 | 3301 6.40 [5890 11.42
gcc.tree 51555|/1929 3.74 | 4042 7.84 5993 11.62 | 10817 20.98| 1033 2.00 (2439 4.73 | 3553 6.89 | 6114 11.86
li 8083|| 103 1.27| 165 204| 224 277 345 427 50 0.62 | 108 134 | 152 188 | 236 292
sc.loadal 15968 101 0.63| 252 158 | 421 264| 1054 6.60 14 0.09 71 044 | 141 088 | 39% 248
sc.loada2 15968 133 0.83| 360 225| 552 346| 1207 756| 47 029 | 144 090 | 252 158 | 585 3.66
sc.loada3 15968 119 0.75| 336 21 519 325| 1206 7.55 82 051 | 227 142 | 328 205 | 552 346
doduc 21313|[1485 6.97 | 2167 10.17 | 2404 11.28 | 3069 14.4 301 141 | 563 264 | 787 3.69 |1069 5.02
ear 6079 15 025 27 044 39 064 153 252 14 0.23 39 0.64 49 0.81 57 094
fpppp 19012 (| 2106 11.08 | 2951 15.52 | 3233 17.00 | 3586 18.86| 147 0.77 | 273 144 | 357 183 | 499 262
hydro2d 17595(253 144 | 360 205| 448 255 635 361 121 069 | 218 124 | 285 162 | 438 249
mdljdp2 17493 13 0.07 61 0.35 98 0.56 165 094 19 011 54 0.31 66 0.38 85 049
mdljsp2 17560 24 014 82 047 121 0.69 215 1.22 28 0.16 68 0.39 84 048 | 113 064
nasa 17634 192 1.09| 330 187 | 432 245 636 3.61 99 056 | 178 101 | 234 133 | 383 217
ora 14526 31 021 41 028 47 0.32 84 0.58 3 0.02 4 0.03 5 0.03 6 0.04
spice2g6 35185|| 100 028 | 35 1.01| 530 151 716 2.03 11 0.03 60 017 | 105 0.3 234 0.67
su2cor 20636|| 189 092 394 191 620 300| 1301 6.30|| 137 0.66 | 362 175 | 547 265 |1227 595
swm256 15141 28 0.18 50 033 57 038 63 042 27 0.18 37 024 40 0.26 50 033
tomcatv 13422 63 047 92 069 101 0.75 109 081 29 0.22 69 051 83 0.62 94 0.70
waveb 23087 || 276 120 | 471 204 | 608 263| 1076 4.66 78 034 | 187 081 | 296 128 | 514 223

Given that a small number of instructions are responsible for the majority of data refer-
ences, it is reasonable to expect that this same effect would be reflected in the distribution of
cache misses. Thisis aso shown in Table 2 --- overall, we find that not only does the 90/10 law
still hold, but the miss pattern is even more clustered than the overall reference pattern. For
amost all benchmarks, less than 5% of the total number of load instructions are responsible for
causing over 99% of al cache misses.

The data in Table 2 makes it clear that in general a small number of load/store instruction
have a disproportionately large effect on the cache miss rate when compared to the number of
total data references they generate. This is not all that surprising if one considers program
behavior. References to globa variables and to local variables (even if they reference the pro-
cedure call stack) can account for the data references with a large hit rate, especially if one con-
siders the looping behavior of programs. Examples of references that generate low hit rates
would include references to items in a linked-list, or traversing through an array with a long
stride.

4. Analysisof Caching Potential

Given that a small number of load instructions are responsible for generating the majority
of data cache misses, we decided to measure the cache hit rate and the corresponding memory
bandwidth required if these troublesome load instructions were prohibited from allocating space
in the data cache. In order to accomplish this, we examined the cache behavior of each load
instruction and identified the ones with the lowest cache hit rate. These were marked C/NA
(Cacheable/Non-Allocatable), which means that the data references generated by these load
instructions will not invoke the allocation policy of the hardware cache management algorithm.
It does not mean that the referenced data will not be in the cache --- the data item might be in
the cache if adifferent instruction, that will allocate on miss, references that address.

It isimportant to stress that we are deciding whether or not to allocate based on the instruc-
tion address, not the effective address of the data reference. Thus, a cache lookup for an item is
unaffected by whether it is marked C/NA or not --- only the allocation on amissis affected. We
looked at both static (similar to [ASWR93]) and dynamic approaches to identifying and marking
these C/NA instructions.

4.1. Static Method

We began by modeling a simple strategy in which al load instructions that do not meet a
threshold for cache hit rate are marked C/NA. We looked at several threshold values, balancing
the desire to remove poorly performing loads with the conflicting desire to utilize the cache for

as many references as possible. We finally settled on a threshold value of 75% (instructions that
cause a miss more than 75% of the time are marked C/NA). This number was chosen for a
number of reasons. A lower value proved too aggressive in removing load references from using
the cache, and a higher value did not remove a sufficient number of load instructions to help per-
formance. Furthermore, the 75% threshold aso relates to the memory bandwidth requirements
for a cache line replacement (32 bytes) and a 64-bit load reference (8 bytes), and is the same
value settled on by [ASWR93].

4.1.1. CacheHit Rateand Memory Bandwidth Utilization

Table 3 shows the change in cache hit rate and required memory bandwidth after the
poorest performing instructions were marked C/NA. Column one contains the name of the
benchmark program and column two shows the range of instructions that were made C/NA
(since the count of instructions varied depending on the cache configuration). Columns 3-7
show the change in hit rates (compared to the entries in Table 1) for caches that are direct
mapped and 2-way set associative. As can be seen in the table, there was a uniform dlight
decrease in the hit rate across all configurations.

A potentially more meaningful measure of the demands made on the memory system is to
determine the total amount of data (in bytes) that must be fetched from the memory system.
Since we used a system configuration in our simulations similar to that of the Alpha (32 byte
cache lines and single references being 8 bytes), we were able to determine the total number of
bytes that the memory system must process and the impact of these C/NA transformations on the
bus activity.

We calculated the total bus utilization for the Static case by multiplying the number of allo-
catable misses by 4 (32/8), and adding the number of references to instructions marked C/NA.
Dividing this number by the base case bus utilization allows us to calculate the percentage
change in the bus bandwidth needed by the Static approach. The results of these calculations are
shown in the last 4 columns of Table 3. So, for example, after the C/NA transformations the
compress program run on a 16K-byte 2-way set associative data cache requires 61.62% less
bandwidth than that required by the same program run on the same hardware without the C/NA
transformations.

The table shows a significant overall decrease in the required memory bandwidth. In partic-
ular, it shows that the static scheme used in conjunction with an 8K direct mapped cache results
in an average decrease in bus activity of approximately 30% for both the integer and the floating
point programs.

Table 3: Changein Data Cache Hit Rate and Memory Bandwidth
After Removal of Target Instructions (Static)

% Change in Cache Hit Rate % Change in Memory Bandwidth Requirements
Bench- # of C/NA || 8K-byte Cache | 16K-byte Cache 8K-byte Cache 16K-byte Cache

mark Instructions|| Direct | 2-way | Direct | 2-way Direct 2-way Direct 2-way
compress 5-10 -234| -1.76| -3.08 | -2.38 -56.18 -62.62 -55.36 -61.62
egntott 25-54 -147| -158| -154 | -137 -17.51 -14.09 -17.58 -13.84
espresso.cps|| 94-216 -244| -192| -0.72 | -054 -18.36 -20.93 -17.50 -24.13
espresso.tail | 93-265 -281| -135| -025 | -0.24 -25.08 -21.36 -18.28 -6.69
espresso.ti 108-265 || -2.72| -247| -131 | -1.05 -22.50 -27.83 -17.85 -22.01
gcc.insn 259-725 || -317| -227| -207 | -154 -24.29 -19.95 -16.68 -7.59
gcc.integrate|| 131-406 -295| -2.30| -1.65 -1.27 -20.12 -14.51 -1241 -2.47
gec.stmt 182-614 || -292| -2.04| -136 | -1.00 -20.76 -15.89 -12.89 -5.96
gcc.tree 63-342 -238| -1.89| -0.83 | -0.49 -21.74 -19.32 -16.93 -8.22
li 59-135 -357| -352| -224 | -287 -17.48 3.98 -19.26 14.23
sc.loadal 181-295 ||-16.56 | -14.78 | -13.71 | -13.32 -53.23 -49.57 -51.18 -52.62
sc.loada? 233-381 || -9.98|-10.07| -9.40 | -9.05 -47.16 -40.44 -42.57 -42.40
sc.loada3 153-274 -3.78 | -248| -211 -0.61 -51.88 -57.91 -52.21 -66.11
Int Ave -439| -373| -310 | -2.75 -30.48 -27.73 -26.98 -23.03
doduc 358-707 || -269| -393| -225| -211 -41.02 -27.52 -36.88 -14.84
ear 7-49 -049 | -0.35| -0.25 0.03 -4.20 -2.51 -18.34 -19.14
fpppp 51-263 -1.87| -039| -171 | -011 -26.27 -28.48 -13.03 -25.56
hydro2d 390-491 |-21.76 | -19.53| -20.99 | -17.94 10.67 14.49 10.54 14.80
mdljdp2 117-143 || -6.80| -6.16| -557 | -5.29 -2.55 -8.01 -4.95 -6.07
mdljsp2 47-74 -044 | -033| -014 | -0.12 1.95 2.22 0.93 1.59
nasa 448-635 |-15.27 | -15.85| -17.43 | -16.05 -43.49 -41.49 -36.53 -33.50
ora 0-3 -081| 0.00|| -0.81 0.00 -67.86 -0.38 -67.86 0.15
Spice2g6 320-446 || -23.95 | -24.63| -26.87 | -27.24 -49.39 -45.53 -34.30 -27.79
su2cor 889-1650 || -3.40| -3.77| -12.65 | -13.55 -65.06 -64.71 -49.90 -45.63
swm256 61-129 -419| 345| -021 | -0.28 -43.84 -68.49 -2.65 -3.24
tomcatv 46-78 ||-11.74| -9.35| -8.99 | -11.48 -42.05 -45.27 -34.00 5.59
waveb 127-240 || -255| -2.79| -157 | -1.03 -24.25 -13.38 3.18 291
FP Ave -7.38 | -6.43| -7.65 -7.32 -30.57 -25.31 -21.83 -11.59

4.1.2. Memory Activity

Another important measure of the effectiveness of this technique is the amount of memory
traffic that ensues. This information is shown in Table 4. There are 4 classifications of load

-10-

instructions shown in this table:

Cacheable/Non-Allocatable --- those load instructions that have been identified as
C/NA.

Increased --- load instructions that are cached and have a higher miss rate because of
the transformation.

No Change --- load instructions that are cached and maintain their origina cache hit
activity.

Decreased --- load instructions that are cached and have a lower miss rate because of
the transformation.

In order to reduce the tremendous amount of data generated, we show information that has been
averaged over all benchmarks for an 8K-byte direct mapped cache.

In order to better understand what is happening, imagine a situation where items A and B
both map to the same cache line and are repeatedly accessed. In this case each reference will
experience a high miss rate. However, by prohibiting one of these items (A, for example) from
alocating the cache line on a miss, the remaining item (B) will experience a much lower miss
rate due to the elimination of contention. This effect is shown in the Decreased field of the
table.

On the other hand, some items with a high miss rate actually perform a useful function by
bringing a line into the cache that will be later referenced by other load instructions. By elim-
inating the cache line allocation of these instructions, the cache hit performance of these other
loads is decreased --- thisisreflected in the Increased field.

Table 4: Analysisof Average Memory Reference Activity (Static)

Instruction Number of | % of |Memory Refs Pre- Memory Refs Post-Transformation Change
Classification Instructions| Refs | Transformation C/NA Non-C/NA

CNA 351 19% | 117,282,922 149,700,459 - 27.64%
Increased Miss Rate 443 12% 10,070,793 - 45,447,421 351.28%
No Change 3,882 35% 14,297,639 - 14,297,639 0.00%
Decreased Miss Rate 753 33% 43,831,661 - 31,260,346 -28.68%
Not Referenced 16,054 - - - - -
Total 21,483 [100% | 185,483,016 149,700,459 91,005,406 29.77%

-11-

The first column of Table 4 shows the load instruction classification. The second and third
columns show the average number of load instructions and the percentage of the total load refer-
ences these instructions perform, respectively. The fourth column contains the average number
of references to memory (the number of cache misses) that occurred before any loads were
marked C/NA. The fifth and sixth columns show the number of memory references after the
C/INA transformations were performed and which instructions were responsible for the refer-
ences.

In this table we see that the total number of memory references has increased by over 29%.
Thisis due in large part to the 351% increase in the number of cache misses experience by 443
of the non-C/NA load instructions. This approach is apparently being too aggressive in marking
loads C/NA --- by blindly removing those loads with poor performance, we are often ssimply
shifting a miss from that instruction to the next instruction referencing that location. Clearly, a
more refined approach to marking certain high missload instructions C/NA iscalled for.

4.2. Improved Static Method

In order to improve the performance of the simple static technique, the number of instruc-
tions marked C/NA had to be reduced. This was accomplished by associating with each cache
line the address of the instruction that was responsible for bringing that line into the cache. This
information allowed us to distinguish between misses that bring data into the cache that is later
referenced (performed a useful prefetch) and those misses that are not referenced before the data
is returned to memory due to the cache replacement strategy. Only instructions that do not per-
form auseful prefetch are marked C/NA. Werefer to this as the Improved Static Method.

In our simulations, this modification to the static approach was implemented in the follow-
ing manner: We used the same 75% hit rate threshold to identify potential C/NA instructions.
Once these were identified, they were analyzed to determine if they were performing a useful
prefetch. If at least 3/4 of the misses prove to be prefetches, then the instruction was removed
from the C/NA list, resulting in aless aggressive application of C/NA.

4.2.1. Hit Rateand Memory Bandwidth Utilization

As shown in Table 5, the Improved Static approach provides hit rates very close to those
presented in Table 1. Cache performance was only dightly worse for the both the integer and
floating point benchmarks (on average).

Table 5 also shows how the improved Static scheme affects the bus bandwidth. The table
shows that the Improved Static scheme consistently reduced the memory bandwidth require-
ments over the original Static scheme. This was achieved by reducing the memory requirements

-12 -

Table5: Changein Data Cache Hit Rate and Memory Bandwidth
After Removal of Instructions (Improved Static)

% Change in Cache Hit Rate % Change in Memory Bandwidth Reguirements
Bench- ||# of C/NA|| 8K-byte Cache | 16K-byte Cache 8K-byte Cache 16K -byte Cache

mark nstructiong| Direct | 2-way | Direct | 2-way Direct 2-way Direct 2-way
compress 5-7 -0.28 | -1.76| -1.02 | -2.38 -58.71 -62.62 -58.12 -61.62
egntott 11-30 -1.19| -145| -128 | -1.28 -18.43 -14.55 -18.60 -14.20
lespresso.cps| 50-120 -0.36 | -0.46| -0.17 | -0.10 -22.12 -24.03 -17.50 -24.78
lespresso.tail | 38-129 0.18 | -0.04 0.18 | -0.09 -14.09 -7.68 -13.17 -6.60
espresso.ti 59-145 -0.35| -0.36| -0.24 0.01 -25.79 -31.43 -23.24 -28.83
gcc.insn 89-341 -097| -055| -0.37 | -0.22 -26.25 -23.94 -18.99 -13.32
gcc.integrate| 30-185 -1.06 | -0.75| -044 | -0.21 -22.30 -17.81 -15.18 -6.89
gce.stmt 62-290 -1.08| -059(| -0.35 | -0.20 -23.10 -19.20 -15.24 -9.50
gcc.tree 30-176 -1.13| -1.08| -042 | -0.19 -23.53 -21.27 -17.88 -9.74
li 21-49 024| 0.07 0.63 0.00 -22.28 -5.86 -26.74 -2.69
sc.|oadal 77-123 -540| -587| -481 | -431 -55.96 -53.69 -54.97 -57.45
sc.|oada2 91-160 -386| -356| -3.09 | -264 -48.87 -43.87 -44.61 -45.64
sc.|oada3 48-103 -1.23 | -0.18| -0.69 0.61 -52.32 -58.66 -53.67 -68.19
Int Ave -1.27| -1.28| -093 | -0.85 -31.83 -29.59 -29.07 -26.88
doduc 83-254 0.83| -0.04 060 | -0.22 -43.10 -26.68 -39.75 -15.68
ear 2-17 0.13| 0.10 0.19 0.08 -8.94 -7.31 -26.67 -21.74
fpppp 28-110 0.00| 0.07| -0.23 0.03 -31.10 -29.77 -19.74 -27.41
hydro2d 70-115 -0.84| -0.02| -0.78 | -0.02 -2.03 -0.57 -1.92 -0.22
mdljdp2 33-49 -050| -0.29| -0.18 | -0.08 -2.87 -9.57 -3.42 -5.23
mdljsp2 10-18 0.00| 0.01 0.00 0.00 -0.44 -0.57 -0.38 -0.17
nasa 237-379 || -386| -3.18| -4.34 | -459 -49.17 -47.01 -42.61 -39.44
ora 0-1 -0.20 | 0.00| -0.20 0.00 -41.07 -0.38 -41.07 0.15
Spice2g6 161-246 || -22.34 | -23.44 || -25.52 | -25.99 -49.81 -46.30 -35.16 -29.04
su2cor 323-1522 | 0.73| 124| -500 | -534 -67.06 -67.16 -54.26 -50.52
SWwm?256 39-99 -001| 444 0.00 0.09 -45.73 -69.26 -3.30 -4.42
tomcatv 3-31 496 | 4.33 329 | -0.25 -43.71 -40.95 -40.31 -3.85
waveb 38-88 006 | -0.36| -0.12 0.02 -29.23 -18.63 -3.27 -3.34
FP Ave -162 | -1.32| -248 | -2.79 -31.87 -28.01 -23.99 -15.45

for more than 1/2 of the cache misses, those that did not allocate a new cache line. In particular,
Table 5 shows that the improved static scheme used in conjunction with an 8K cache results in
an average decrease in bus activity of approximately 30%, and by more than 50% for 5 of the

-13-

programs.

4.2.2. Memory Activity

An examination of the memory activity shown in Table 6 reveals severa interesting obser-
vations. For example, the number of instructions in the C/NA class dropped from 351 to 187,
indicating that there are a lot of instructions with high miss rates that are actually performing
useful work (prefetching). As one might expect, the increase in memory activity due to the
CINA instructions dropped as well. However, the most dramatic change is in the number of
instructions that have their miss rate increase --- this drops from 443 to 307, resulting in a reduc-
tion in memory activity from 351% to 62%.

The most significant number in Table 6 is the total change in memory activity. This shows
that by applying the improved Static method to a program the cache hit rates can be maintained
while simultaneously decreasing the amount of traffic to memory.

5. Dynamic Cache M odel

It is clear that the use of the improved static approach will improve data cache perfor-
mance. However, the static approach requires training runs of the program, and the introduction
of new instructions in order to specify the aternate cache operation. Both of these factors
markedly decrease the applicability of this approach. Our goal isto develop a scheme that will
provide the same performance enhancement transparently.

In order to select which items should be marked C/NA, we turn to the body of work on
branch prediction strategies. There has been a great amount written about branch prediction
strategies recently [CaGr94, FiFr92, PaS92, Smit81, YeP9l, YeP92, YeP93]. Briefly, dynamic

Table 6: Analysis of Average Memory Reference Activity (Improved Static)

Instruction Number of | % of |Memory Refs Pre- Memory Refs Post-Transformation Change
Classification Instructions| Refs | Transformation CINA Non-C/NA

CNA 187 | 11% 71,394,580 87,222,835 - 22.17%
Increased Miss Rate 307 7% 12,050,735 - 19,620,224 62.81%
No Change 4,152 | 47% 37,264,111 - 37,264,111 0.00%
Decreased Miss Rate 782 | 35% 73,301,176 - 51,759,319 -29.39%
Not Referenced 16,054 - - - - -
Total 21,483 |100%| 194,010,602 87,222,835 108,643,654 0.96%

-14 -

branch prediction strategies collect run-time information about branch behavior to predict
whether a branch will be taken in the future. Typically, these strategies typicaly associate
several bits of information with a branch instruction that track the past history of the branch
instruction. Thisinformation is updated each time the branch instruction is executed and is used
to make a prediction about the branch instruction’s behavior.

In asimilar way, several bits can be associated with aload instruction. A table, similar to a
branch prediction table, can be maintained which tracks whether the data referenced by a load
instruction caused a missin the data cache. Thisinformation can then be used to decide whether
an instruction should be marked C/NA.

5.1. Dynamic 2-bit Counter Scheme

In our study, we simulated miss prediction tables using a 2-bit counter associated with each
load instruction. A miss prediction counter isinitially set to zero and it isincremented each time
aload causes a cache miss. If the load instruction causes a cache hit, the counter is decremented.
When the counter entersits highest state ("11"), the instruction is marked C/NA.

It is worth stressing again that the counters ssmply inform the cache allocation hardware
whether the data should be placed in the cache on a miss. Regardless of the state of the counters,
a data cache lookup is performed on every data reference, since the data may have been brought
into the cache by some other instruction. Thus, there is the possibility that in one phase of pro-
gram execution an instruction will be prevented from caching its data, but in a different phase of
the program it will be allowed to do so.

To develop a more transparent scheme, we looked to previous work done in branch predic-
tion. In [CHYP94], Chang and Patt use a counter based scheme to choose the best performing
scheme among different branch predictors. We use this same approach to determine whether the
reference pattern for aload instruction is being captured by the cache. For each load instruction
a 2-hit state entry captures the recent cache hit behavior for that instruction. The 2-bit entry
specifies one of 4 states (numbered 1 to 4) representing recent cache accesses. States 1 through
3 represent a recent cache state in which some references were found in the cache; state 4
represents the situation where few cache hits are occurring. The state is modified by each refer-
ence; a cache hit will decrease the state number while a cache miss increases the state number.

The cache placement strategy is then modified to only allocate a cache line on a miss, when
the instruction that missed isin states 1, 2, or 3. This means that load instructions that have a
cache hit rate of 25% or more over the last few references will alocate a cache line on amiss. If
recent cache references for this instruction have all been misses, then no allocation will occur.
This differs from the static method because poor cache performance does not have to continue

-15-

throughout the execution to mark an instruction C/NA (the load instruction’s status, whether it is
C/NA or not, can change during the execution of the program). Since the C/NA marking is
maintained as part of the miss prediction table, it does not require new types of instructions to be
added to the architecture as would be the case with a static scheme.

Experiments were performed using 2-bit counter miss prediction schemes. Initialy the size
of the miss prediction table was unlimited in order to evaluate the ability of the 2-bit scheme to
track a hit/miss history. In later runs the size of the miss prediction table was fixed.

Table 7 summarizes the average memory reference activity when using 2-bit counters for
miss prediction on the SPEC benchmarks. As in Tables 4 and 6 for the static schemes, the
results are averaged across all the benchmarks for an 8K byte direct mapped cache configuration.
Unlike the results for the static schemes, the C/NA instruction classification is broken down into
3 categories. This is necessary because with a dynamic scheme an instruction can be in the
CINA state only part of the time. Thus, we decided on the three categories: (1) <5 C/NA, the
instruction was in the C/NA state for less than 5% of its references, but for at least one reference,
(2) 5-95 C/NA, the instruction was in the C/NA state for between 5% and 95% of its references,
and (3) > 95 C/NA, the instruction was in the C/NA state for 95% or more of its references.
Another difference in these tables is the separation of the post-transformation misses into two
types, those misses that do not cause a cache line replacement (because the load instruction isin
the C/NA state), and those misses that do cause aline replacement.

Table 7: Analysis of Average Memory Reference Activity:
Dynamic 2-bit Counter Scheme

Instruction Number of | % of [Memory Refs Pre- Memory Refs Post-Transformation Change
Classification Instructions| Refs | Transformation C/INA Non-C/NA

<5 CNA 762 33% 66,335,966 44,468,025 35,402,802 20.40%
5-95 CNA 359 6% 21,741,685 74,689,601 4,450,122 264.00%
> 05 CNA 509 15% 61,618,437 174,892,281 219,579 184.19%
Increased Miss Rate 292 5% 1,264,062 - 1,833,090 45.02%
No Change 2,999 21% 8,624,533 - 8,624,533 0.00%
Decreased Miss Rate 507 20% 24,824,073 - 9,764,111 -60.67%
Not Referenced 16,054
Total 21,483 |100% | 184,408,757 294,049,907 60,294,238 92.15%

-16 -

Looking at the results shown in Table 7, we first note that the number of instructions that
spend some amount of time in the C/NA state is much larger than for either of the static
methods. This is seen by comparing the first line (C/NA) of Tables 4 and 6 with the first three
lines of Table 7. Clearly the dynamic behavior of the program has a significant impact on
whether the data item for a particular load instruction will be found in the cache. Further com-
parisons between the static results and dynamic results indicate that, as one might expect, the 2-
bit dynamic scheme is moving instructions from the Increase, No Change and Decrease
categories into one of the C/NA categories. Overal, this shift increased the average number of
memory references by 92.15%.

5.2. Improved Dynamic 2-bit Counter Scheme

Aswith the first static scheme, the 2-bit miss prediction scheme is too aggressive in classi-
fying instructions as C/NA. Too quickly marking an instruction as C/NA results in the large
92% increase in memory references. As a next step, we modified the 2-bit scheme to mimic the
Improved Static scheme. In the Improved Dynamic scheme, each line of the cache has associ-
ated with it the address of the load instruction that brought that line into the cache. On a cache
hit, the 2-bit counter associated with the instruction that caused the hit is decremented and in
addition, the 2-bit counter associated with the instruction that brought the cache line into the
cache is also decremented. Thus, those instructions that do useful prefetching of data for other
instructions are not marked as C/NA. Results of simulations using the Improved Dynamic 2-bit
miss prediction table are shown in Table 8.

Table 8: Analysisof Average Memory Reference Activity:
Improved Dynamic 2-bit Counter Scheme

Instruction Number of | % of [Memory Refs Pre- Memory Refs Post-Transformation Change
Classification Instructions| Refs | Transformation C/NA Non-C/NA

<5 CNA 127 13% 40,882,222 7,444,975 33,045,760 -0.96%
5-95 CNA 27 1% 13,190,156 10,163,917 3,245,702 1.66%
> 95 CNA 60 3% 16,139,174 22,274,664 108,829 38.69%
Increased Miss Rate 294 7% 10,322,771 - 14,972,303 45.04%
No Change 4,263 49% 59,529,909 - 59,529,909 0.00%
Decreased Miss Rate 657 27% 49,787,636 - 36,480,045 -26.73%
Not Referenced 16,054 - - - - -
Total 21,483 |100% | 189,851,867 39,883,556 147,382,549 -1.36%

-17 -

As can be seen in Table 8, the number of instructions that are placed in the C/NA category
is much smaller when compared with those in Table 7. This results in reducing the number of
memory references such that there is actually a 1.36% decrease compared to a conventional
cache. The small change in the number of memory references and the small number of instruc-
tions in the C/NA categories indicate that perhaps this improved strategy is too conservative in
marking instructions whose data should not be cached.

Table 9 provides a summary of the results of an analysis of the memory bandwidth require-
ments of the dynamic schemes for each of the SPEC benchmarks. This analysis accounts for
transferring an entire cache line from memory on a cache misses and also referencing data items
that will not be cached. The data in the table is a computation of the percentage of memory
bandwidth required compared to a conventional cache scheme that does not use a miss predic-
tion table. The columns of the table show the average memory bandwidth required for 8K-byte
and 16K-byte direct mapped and 2-way associative caches using the 2-bit dynamic and
improved dynamic strategies.

Theresultsin Table 9 indicate that the bandwidth requirements of the dynamic schemes are
not reduced as substantially as with the static schemes. This makes sense since with the static
schemes, we have more information when marking which instructions should be C/NA.
Nonetheless, for most programs the bandwidth requirements are reduced, and in several cases
the reductions are substantial. Furthermore, the data in Tables 7-10 indicate the trade-offs
between caching data items and the resultant bandwidth requirements. With the more aggressive
dynamic strategy, where more instructions are marked C/NA, there is more memory activity.
However, the memory activity is for a single data item instead of an entire cache line. Thus,
there is a reduction in the required memory bandwidth. On the other hand, with the Improved
Dynamic strategy, there is less memory activity, but the required memory bandwidth is higher
than the simple dynamic scheme (though still less than the requirements of an unmodified cache)
since the memory activity involves more fetches of entire cache lines.

5.3. Impact of Fixed-Size Miss Prediction Table

The next set of experiments that we performed involved fixing the size of the miss predic-
tion table. For this set of experiments we looked at a direct mapped cache of 8K-bytes using the
first dynamic prediction strategy. The miss prediction table was fixed 4-way set associative,
while the table size was varied. The results of these experiments are summarized in Figure 1 for
the initial dynamic prediction scheme.

In Figure 1, we have plotted the table size on horizontal axis, while the hit rate in the table
and the resultant bandwidth requirements are plotted on the vertical axis. As can be seen in the

-18-

Table9: Changein Cache Hit Rate and Memory Bandwidth

After Removal of Instructions (Improved Dynamic)

% Change in Cache Hit Rate

% Change in Memory Bandwidth Requirements

Bench- ||# of C/INA|| 8K-byte Cache | 16K-byte Cache 8K-byte Cache 16K -byte Cache

mark nstructiong| Direct | 2-way | Direct | 2-way Direct 2-way Direct 2-way
compress 7-7 -0.36 | -0.57 || -0.59 -0.75 -50.31 -63.69 -45.45 -58.86
egntott 52-73 -0.05 | -0.03 | -0.11 -0.11 -20.23 -24.79 -20.60 -24.16
espresso.cps|| 120-247 || -0.25 | -0.30 || -0.13 0.13 -7.54 -8.54 -6.87 -8.72
espresso.tail|| 75-204 | -0.01 | -0.16 || -0.03 -0.57 -1.04 -0.80 -0.23 -0.43
espresso.ti || 180-315 || -0.02 | 0.31 0.02 0.29 -14.43 -18.17 -13.59 -17.96
gcc.insn 291-551 || -0.29 | -0.40 || -0.27 -0.64 -8.30 -8.50 -6.32 -6.75
gcc.integrate| 310-595 || -0.09 | -0.44 | -0.10 -0.58 -8.78 -8.48 -6.66 -5.91
gce.stmt 338-676 || -0.02 | -0.35 || -0.06 -0.46 -7.72 -7.19 -5.95 -5.40
gcc.tree 200-481 || 0.06 | -0.23 | -0.01 -0.49 -6.95 -6.99 -5.82 -5.13
li 47-91 -0.05 | 022 0.03 0.25 -7.36 -1.04 -10.14 -0.38
sc.loadal 66-137 || -7.22 | -5.46 || -6.30 -5.32 -54.99 -52.64 -54.17 -52.94
sc.|oada2 85-155 || -6.06 | -3.85 | -5.85 -4.09 -51.02 -43.57 -51.46 -43.09
sc.loada3 38-91 -1.71 | 013 -0.93 0.24 -46.88 -58.07 -50.29 -62.59
Int Ave -1.24 | -0.86 || -1.10 -0.93 -21.97 -23.27 -21.35 -22.49
doduc 8-24 032 | 109 0.31 -0.94 -5.25 -1.32 -6.45 -1.24
ear 1-8 0.02 | 0.05 0.09 -0.23 -0.50 212 -7.39 -2.35
foppp 84-97 -0.08 | -0.78 || -0.19 -0.98 -1.15 -4.37 3.10 -3.82
hydro2d 82-135 013 | -0.34 0.17 -1.05 -3.21 -0.08 -3.08 -0.05
mdljdp2 17-21 -0.04 | 0.77 | -0.01 0.22 -0.82 -0.92 -0.58 -0.51
mdljsp2 12-14 000 | 061 0.00 0.06 -0.15 -0.13 -0.12 0.01
nasa 317-354 || -0.15 | -0.02 || -2.88 -4.73 -51.68 -50.01 -47.34 -44.59
ora 3-3 0.00 | 0.00 0.00 0.00 0.00 -0.09 0.00 0.18
Spice2g6 236-301 || -4.09 | -3.56 || -4.17 -4.56 -27.39 -25.86 -17.34 -16.68
su2cor 318-1267| 2.62 | 26.09 1.08 | 15.73 -24.86 0.72 -16.75 0.33
SWm256 46-50 0.00 | 24.21 0.00 0.59 -0.46 -1.53 -1.49 -1.60
tomcatv 1-39 -4.86 | 25.83 || -1.18 1.82 -13.69 0.00 -3.21 0.00
waves 96-125 || -146 | 121 | -1.31 -0.97 -5.07 -7.49 -0.97 -0.10
FP Ave -058 | 578 | -0.62 0.38 -10.33 -6.84 -7.82 -5.42

-19-

Table 10 shows the optimal cache hit rates for 4 different cache configurations, assuming
the same cache parameters as before (32 byte lines, 4 byte words, write through, non-allocate on
write miss). The Sandard LRU column is for a standard LRU replacement strategy, which is
included for comparison purposes. The Optimal MR column contains data for the Must Replace
strategy, in which one of the items in a set must be replaced when processing a cache miss. The
Optimal C/NA column shows the data for the C/NA scheme with full knowledge of the future.
As this table shows, it is possible in the ideal case for the C/NA strategy to actually increase the
cache hit rate, especially for direct mapped caches. In our experiments, our implementation of
the C/NA strategy did not accomplish this. However, the table does show that in the optimal
case a direct-mapped cache using C/NA has a hit rate that exceeds that of a 2-way set associative
cache using LRU and approaches that of a 2-way set associative cache with optimal replacement
or a4-way set associative cache using standard LRU.

Table 11 shows the average number of bytes needed per data reference for four different
cache configurations, while Table 12 contains the reduction in bandwidth requirements in per-
centages compared to the optimal MR at the same level of associativity. The same cache param-
eters as before were used, as well as the same bandwidth parameters (regular cache miss fetches
32 bytes, C/NA miss fetches 8). The average number of bytes per reference was calculated
using the following formula:

Total Bandwidth = Regular Cache Miss x 32 + C/NA Cache Missx 4
Aver age Bytes/Ref Total Bandwidth / Total Load Instruction Count

Table 11 reveals that a cache using the C/NA strategy has the potential to substantially reduce
the amount of necessary bus bandwidth (by as much as 64% in the case of su2cor). Looking at
this table and Tables 6 and 9, we also see that while the improved static scheme comes fairly

close to the limit of bandwidth reduction, the dynamic schemes are not yet approaching the
ideal.

7. Conclusionsand Future Work

In this work, we have investigated the potential for improving average data access time by
being more selective in what data items are cached. This work was motivated by the apparent
limitations in the size, organization and speed of first level data caches. To make the data cache
smarter with respect to the items it caches, we first examined and analyzed which instructions
generated data cache misses. In this analysis, we confirmed and expanded on the results of other
work that indicates a very smal number of instructions are responsible for a very large

-21-

Table 10: Optimal Cache Hit Rates Assuming Full Knowledge of Future

Optimal Cache Hit Rates, 8K byte Cache

Direct Mapped Two-way SA Four-way SA Fully Associative
Benchmark Optimal | Standard | Optimal | Optimal | Standard | Optimal | Optimal Optimal
Standard Standard
Program CNA LRU MR CNA MR LRU CNA CNA
compress 0.797 | 0832 | 0.848 | 0864 | 0.872 | 0854 | 0.875 | 0.878 0.885 0.885
doduc 0.883 | 0909 | 0930 | 0944 | 0949 | 0964 | 0972 | 0.972 0.977 0.977
ear 0961 | 0968 | 0976 | 0981 | 0.982 | 0975 | 0984 | 0.984 0.999 0.999
egntott 0939 | 0945 | 0954 | 0956 | 0.956 | 0955 | 0.957 | 0.957 0.958 0.958
espresso.cps | 0931 | 0941 | 0945 | 0958 | 0960 | 0.950 | 0.966 | 0.967 0.972 0.972
espresso.tail | 0929 | 0940 | 0956 | 0969 | 0970 | 0.963 | 0.978 | 0.978 0.983 0.983
espresso.ti 0929 | 0941 | 0944 | 0958 | 0.961 | 0951 | 0.967 | 0.967 0.973 0.973
fpppp 0930 | 0948 | 0976 | 0982 | 0.986 | 0981 | 0.989 | 0.990 0.995 0.995
gcc.insn 0910 | 0928 | 0941 | 0950 | 0.955 | 0950 | 0.963 | 0.965 0.972 0.972
gcc.integrate| 0906 | 0.926 | 0940 | 0951 | 0956 | 0.951 | 0.965 | 0.967 0.975 0.975
gee.stmt 0907 | 0927 | 0941 | 0952 | 0.957 | 0953 | 0.967 | 0.968 0.976 0.976
gcc.tree 0906 | 0927 | 0940 | 0952 | 0.957 | 0952 | 0.967 | 0.969 0.977 0.977
hydro2d 0815 | 0821 | 0.837 | 0.848 | 0.848 | 0.848 | 0.857 | 0.857 0.859 0.859
li 0899 | 0920 | 0946 | 0.956 | 0.958 | 0.957 | 0.968 | 0.968 0.975 0.975
mdljdp2 0855 | 0881 | 0.884 | 0911 | 0.917 | 0916 | 0941 | 0.942 0.953 0.953
mdljsp2 0953 | 0964 | 0970 | 0976 | 0.977 | 0977 | 0.984 | 0.984 0.988 0.988
nasa 0566 | 0654 | 0598 | 0669 | 0.695 | 0583 | 0.694 | 0.702 0.738 0.738
ora 0.963 | 0973 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 1.000
sc.loadal 0.788 | 0815 | 0.810 | 0.833 | 0.838 | 0872 | 0.845 | 0.846 0.851 0.851
sc.loada2 0859 | 0878 | 0904 | 0.897 | 0.901 | 0911 | 0.907 | 0.908 0.912 0.912
sc.loada3 0910 | 0929 | 0943 | 0950 | 0.954 | 0950 | 0.961 | 0.962 0.967 0.967
su2cor 0491 | 0611 | 0497 | 0583 | 0.619 | 0645 | 0.735 | 0.735 0.866 0.866
swm256 0.757 | 0830 | 0.687 | 0.791 | 0.831 | 0665 | 0.829 | 0.848 0.933 0.933
tomcatv 0638 | 0726 | 0.603 | 0693 | 0.735 | 0660 | 0.769 | 0.776 0.887 0.887
average 0851 | 0881 | 0.874 | 0.897 | 0.906 | 0.891 | 0.918 | 0.920 0.940 0.940

-22-

Table 11: Average Number of Bytes/Reference in the Optimal Case

Average Bytes per Reference, 8K byte Cache

Direct Mapped Two-way SA Four-way SA Fully Associative
Benchmark Standard Optimal | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal
Program CNA MR CNA MR CNA MR CNA
compress 6.5005 | 3.0333 | 4.3651 | 2.2677 | 4.0071 | 2.2635 | 3.6649 | 2.2643
doduc 3.7559 | 22217 | 1.7876| 1.4222 | 0.9100 | 0.8245 | 0.7236 | 0.6948
ear 1.2524 | 0.8443 | 0.5918| 0.5443 | 0.4992 | 0.4715 | 0.0149 | 0.0065
eqgntott 1.9611 | 1.4338 | 1.4184| 1.2364 | 1.3800 | 1.2159 | 1.3594 | 1.2011
espresso.bca | 3.2679 | 2.5479 | 2.5506 | 2.0415 | 2.2739 | 1.7936 | 2.1245 | 1.7142
espresso.cps | 2.1968 | 1.4973 | 1.3292| 1.0198 | 1.0755 | 0.8509 | 0.9069 | 0.7358
espresso.tail | 2.2676 | 1.6326 | 0.9964 | 0.9108 | 0.7031 | 0.6795 | 0.5415 | 0.5355
espresso.ti 2.2875 | 1.4533 | 1.3538| 0.9643 | 1.0711 | 0.7834 | 0.8709 | 0.6485
foppp 2.2462 | 1.1943 | 0.5634 | 0.3600 | 0.3560 | 0.2556 | 0.1547 | 0.1284
gcc.insn 2.8910 | 1.7458 | 1.5896| 1.1910 | 1.1717 | 0.9538 | 0.8983 | 0.7742
gcc.integrate| 2.9998 | 1.7878 | 1.5792| 1.1657 | 1.1152 | 0.9079 | 0.8052 | 0.7128
gcc.stmt 2.9843 | 1.7740 | 1.5329| 1.1440 | 1.0663 | 0.8799 | 0.7649 | 0.6833
gcc.tree 2.9952 | 1.7447 | 15503 | 1.1256 | 1.0435 | 0.8472 | 0.7250 | 0.6502
hydro2d 5.9246 | 55937 | 4.8557 | 4.8442 | 45854 | 45841 | 4.4964 | 4.4955
li 3.2260 | 20276 | 1.4126| 1.2742 | 1.0294 | 0.9869 | 0.8125 | 0.7992
mdljdp2 4.6369 | 3.1184 | 2.8541| 2.3720 | 1.9036 | 1.7789 | 15197 | 14771
mdljsp2 1.5077 | 0.8942 | 0.7631| 0.6675 | 0.5183 | 0.4947 | 0.3780 | 0.3770
nasa 13.8962 | 7.1330 | 10.5884 | 6.5081 | 9.8055 | 6.3993 | 8.3837 | 55312
ora 1.1727 | 0.6597 | 0.0000| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
sc.loadal 6.7994 | 3.8262 | 5.3456 | 3.3711 | 4.9624 | 3.3048 | 4.7820 | 3.2928
sc.loada2 45279 | 3.0101 | 3.2961 | 2.6208 | 2.9913 | 2.4693 | 2.8054 | 2.3476
sc.loada3 2.8906 | 1.6044 | 1.6154| 1.1357 | 1.2412 | 0.9271 | 1.0548 | 0.7688
su2cor 16.2782 | 5.8322 | 13.3496 | 5.8854 | 8.4952 | 57771 | 4.2945 | 4.2848
swm256 7.7698 | 3.6491 | 6.6886| 3.4930 | 5.4686 | 3.6364 | 2.1463 | 2.1198
tomcatv 11.5902 | 6.5642 | 9.8225| 6.6131 | 7.3837 | 6.6006 | 3.6087 | 3.6085
average 47131 | 26729 | 3.2720| 2.1671 | 2.6023 | 1.9874 | 1.9135 | 1.5941

-23-

Table 12: Effect on Bandwidth (in Percent), Optimal MR vs Optimal C/NA

Effect on Bandwidth (in percent), 8K byte Cache

Benchmark Direct Two-way Four-way Fully
Program Mapped Set Associative Set Associative Associative
compress -53% -48% -44% -38%
doduc -41% -20% -9% -4%
ear -33% -8% -6% -56%
egntott -27% -13% -12% -12%
espresso.bca -22% -20% -21% -19%
espresso.cps -32% -23% -21% -19%
espresso.tail -28% -9% -3% -1%
espresso.ti -36% -29% -27% -26%
fpppp -47% -36% -28% -17%
gce.insn -40% -25% -19% -14%
gcc.integrate -40% -26% -19% -11%
gcc.stmt -41% -25% -17% -11%
gcc.tree -42% -27% -19% -10%
hydro2d -6% 0% 0% 0%
li -37% -10% -4% -2%
mdljdp2 -33% -17% -7% -3%
mdljsp2 -41% -13% -5% 0%
nasa -49% -39% -35% -34%
ora -44% -13% -9% -8%
sc.loadal -44% -37% -33% -31%
sc.loada2 -34% -20% -17% -16%
sc.loada3 -44% -30% -25% -27%
su2cor -64% -56% -32% 0%
swm256 -53% -48% -34% -1%
tomcatv -43% -33% -11% 0%
average -39% -25% -18% -14%

-24-

percentage of data cache misses.

Based on this observation, we analyzed the impact on cache and memory system perfor-
mance if certain data items were not cached. In thefirst part of our simulation studies, we deter-
mined whether an instruction’s data item should be cached by performing a static analysis of
program behavior. The results of these studies indicate that the amount of memory activity, the
required memory bandwidth, could be substantially reduced by not caching al dataitems.

Since this static analysis requires executing the entire program and marking which instruc-
tions should have their data cached, we then looked at dynamic schemes that could dynamically
detect which data items should be cached. The dynamic schemes we investigated are based on
2-bit branch prediction schemes. Instead of a branch prediction table, we have a miss prediction
table that holds a 2-bit counter associated with load and store instructions. We investigated two
2-bit miss prediction strategies. Both of these strategies offered a reduction in a program’s
memory bandwidth requirements. However, neither dynamic scheme performed as well as the
improved static scheme.

We then calculated the optimal performance that could be attained by the various cache
configurations and by the C/NA replacement scheme, in order to evaluate potential effectiveness
of this approach. Without doing this study, it is virtually impossible to ascertain the amount of
effort that should be put into refining and extending the initial studies. Our investigations
reveaed that in the ideal case the C/NA strategy can provide both a small improvement in cache
hit rate and a substantial decrease in necessary bus bandwidth. In fact, in the optimal case, a
direct-mapped cache using C/NA will require approximately 60% of the bandwidth of a cache
not using C/NA, and the hit rate will exceed that of a 2-way set associative cache using LRU and
approach that of a 2-way set associative cache with optimal replacement. These results imply
that this work has the potential to significantly impact processor cache designs in the future, and
should be continued.

We have performed a preliminary study of the feasibility of incorporating a hardware-based
speculative prefetch unit to extend this work. Caches work well in exploiting the spatial and
temporal locality of certain data references, but fail when locality is missing. Prefetch works
well when there is regularity in the access pattern regardless of locality. By incorporating a
hardware prefetch unit for C/NA items, it may be possible to hide the latency of even those loads
that have little locality.

Another possible application of adynamic scheme similar to the one described in this paper
involves dynamically configuring a cache coherence protocol to fit the requirements for each
load instruction; instructions that are likely to share data could use a different protocol from

-25-

those that access local data

We believe that using a method of dynamic configuration of cache operations like the one
described in this paper can have broad applicability. Similar schemes can not only improve the
performance of the cache, but can allow for other hardware based memory enhancements to be
selectively applied.

8. References

[ASWR93] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau and R. Gupta,

[Bela66]

[CaGro4]

[CaPo]

[CHY P94]

[ChBag5]

[EKPP93]

“‘Predictability of Load/Store Instruction Latencies’, Proceedings of the 26th
Annual International Symposium on Microarchitecture, Austin, Texas (December
1-3, 1993), pp. 139-152.

L. A. Belady, ‘A Study of Replacement Algorithms for a Virtual-Storage
Computer’’, IBM Systems Journal, vol. 5, no. 2 (1966), pp. 282-288.

B. Cader and D. Grunwald, ‘‘Fast and Accurate Instruction Fetch and Branch
Prediction’’, Proceedings of the 21st Annual International Symposium on
Computer Architecture, Chicago, Illinois (April 18-21, 1994), pp. 2-11.

D. Cdlahan and A. Porterfield, **Data Cache Performance and Supercomputer
Applications'’, Proceedings of Supercomputing ’ 90, pp. 564-572.

P. Chang, E. Hao, T. Yeh and Y. Patt, ‘*Branch Classification: A New Mechanism
for Improving Branch Predictor Performance’’, Proceedings of the 27th Annual
International Symposium on Microarchitecture, San Jose, Ca. (November 30 -
December 2, 1994), pp. 22-31.

T. Chen and J. Baer, ‘‘Effective Hardware Based Data Prefetching for High-
Performance Processors’, |EEE Transactions on Computers, vol. 44, no. 5 (May
1995), pp. 609-623.

P. G. Emma, J. W. Knight, J. H. Pomerene, T. R. Puzak and R. N. Rechtschaffen,
‘*Cache Miss Facility with Stored Sequences for Data Fetching’’, U.S. Patent
5,233,702(Issued: August 3, 1993).

-26-

[FiFro2]

[HePad0]

[Joup90]

[KILe91]

[MUQF91]

[PaS92]

[Smit81]

[SrEu94]

[WaRP92]

J. A. Fisher and S. M. Freudenberger, ‘‘Predicting Conditional Branch Directions
from Previous Runs of a Program’’, Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, Boston, MA (October 12-15, 1992), pp. 85-95.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufman, San Mateo, California, (1990).

N. Jouppi, ‘‘Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers’, Proceedings of the
Seventeenth Annual International Symposium on Computer Architecture, vol. 18,
no.2 (May 1990), pp. 364-373.

A. C. Klaiber and H. M. Levy, “*An Architecture for Software-Controlled Data
Prefetching’’, Proceedings of the Eighteenth Annual International Symposium on
Computer Architecture, Toronto, Canada (May 27-30, 1991), pp. 43-53.

J. M. Mulder, N. T. Quach and M. J. Flynn, ‘‘An Area Model for On-Chip
Memories and its Application’’, IEEE Journal of Solid-Sate Circuits, vol. 26, no.
2 (February 1991), pp. 98-105.

S. Pan, K. So and J. T. Rahmeh, *‘Improving the Accuracy of Dynamic Branch
Prediction Using Branch Correlation’’, Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, Boston, MA (October 12-15, 1992), pp. 76-84.

J. E. Smith, *‘A Study of Branch Prediction Strategies'’, Proceedings of the Eighth
Annual International Symposium on Computer Architecture, Minneapolis,
Minnesota (May 1981), pp. 135-148.

A. Srivastava and A. Eustace, ‘“‘ATOM: A System for Building Customized
Program Analysis Tools’, Proceedings of the ACM S GPLAN Notices 1994
Conference on Programming Languages and Implementations(June 1994), pp.
196-205.

T. Wada, S. Rgjan and S. A. Przybylski, ‘“*An Analytical Access Time Model for
On-Chip Cache Memories”’, IEEE Journal of Solid-Sate Circuits, vol. 27, no. 8

-27 -

[Y eP91]

[Y eP92]

[YeP93]

(August 1992), pp. 1147-1156.

T. Yeh and Y. Patt, ‘““Two-Level Adaptive Training Branch Prediction’’,
Proceedings of the 24th Annual International Symposium on Microarchitecture,
Albuqguerque, New Mexico (November 18-20, 1991), pp. 51-61.

T. Yeh and Y. Patt, ‘‘Alternative Implementations of Two-Level Adaptive
Training Branch Prediction’’, Proceedings of the Nineteenth Annual International
Symposium on Computer Architecture, Queensland, Australia (May 19-21, 1992),
pp. 124-134.

T.Yehand Y. Patt, ‘A Comparison of Dynamic Branch Predictors that use Two
Levels of Branch History’’, Proceedings of the Twentieth Annual International
Symposium on Computer Architecture, San Diego, CA (May 16-19, 1993), pp.
257-266.

-28-

