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Abstract

Modern cache designs exploit spatial locality by fetching
large blocks of data called cache lines on a cache miss. Sub-
sequent references to words within the same cache line re-
sult in cache hits. Although this approach benefits from spa-
tial locality, less than half of the data brought into the cache
gets used before eviction. The unused portion of the cache
line negatively impacts performance by wasting bandwidth
and polluting the cache by replacing potentially useful data
that would otherwise remain in the cache.

This paper describes an alternative approach to exploit
spatial locality available in data caches. On a cache miss,
our mechanism, called Spatial Footprint Predictor (SFP),
predicts which portions of a cache block will get used be-
fore getting evicted. The high accuracy of the predictor al-
lows us to exploit spatial locality exhibited in larger blocks
of data yielding better miss ratios without significantly im-
pacting the memory access latencies. Our evaluation of
this mechanism shows that the miss rate of the cache is
improved, on average, by 18% in addition to a significant
reduction in the bandwidth requirement.

1. Introduction

This paper introduces an approach to alleviate the grow-
ing memory latency problem [3] by better exploiting the
spatial localityexhibited by applications. Spatial locality
is the tendency of neighboring memory locations to be ref-
erenced close together in time. The traditional approach
for exploiting spatial locality is to use a cache line (con-
sisting of several words) to fetch data into the cache on a
cache miss. This prefetching improves the cache perfor-
mance when a reasonable fraction of the prefetched words
get used. Otherwise the excessive cache pollution hurts per-
formance by prematurely evicting potentially useful data.
Since spatial locality varies across different applications as
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well as within an application, cache designers generally
choose a line size with the best average performance across
a broad range of reference patterns. Although traditional
caches benefit from spatial locality, they exploit only a small
fraction of the spatial locality available.

As the available chip area increases, cache effectiveness
can be improved by using bigger caches. However, bigger
caches increase access latency, thereby requiring more, or
longer, cycles to access them. The cache access latency is
especially important in first-level (L1) caches where short
single-cycle accesses are desirable. Our approach is to use
some of the available chip area to implement predictors that
better exploit spatial locality. The predictors minimize the
impact on the access latency by keeping the bulk of their
operations off the critical path.

Several hardware and software based prefetching mech-
anisms that improve the effectiveness of the caches have
been studied. However, most of the work [16, 9, 2, 5, 13]
has focussed on numeric applications with well-structured
loops and regular access patterns. Other efforts [10, 12]
have focussed on using the compiler to prefetch pointer tar-
gets on integer applications. However, very little work has
been done to exploit the spatial locality in integer applica-
tions based on the dynamic behavior of the application. The
SLDT [7] mechanism attempts to detect and exploit the spa-
tial locality at run time.

In this paper, we present a new predictor, called theSpa-
tial Footprint Predictor(SFP), which predicts the neighbor-
ing words that should be prefetched on a cache miss. The
accuracy of the predictor allows us to build a cache (which
uses small lines and fetches multiple lines on a miss) to ex-
ploit the spatial locality available to large cache lines with-
out excessive pollution. We also present mechanisms that
use the predictor to improve the miss rates with little impact
on the cache access latency. We show that these mecha-
nisms significantly reduce the miss rates and the bandwidth
in first-level caches for popular real-world applications. Our
simulations show the mechanism can potentially reduce the
miss rates by 35% on average. A practical implementation
reduces the miss rates by around 18%. The scheme requires



no modifications to the Instruction Set Architecture (ISA).

2. Spatial Locality

Memory hierarchies rely on locality in the application’s
memory reference stream to deliver performance. The lo-
cality can be classified into two categories—temporal and
spatial. Temporal locality is the property whereby a ref-
erence to a memory location indicates that the same lo-
cation will very likely be referenced again in the near fu-
ture. Spatial locality is the property whereby a reference
to a memory location indicates that a neighboring location
will very likely be referenced in the near future. Temporal
locality is exploited by having a cache between the proces-
sor and the memory that is big enough so that a word gets
accessed multiple times before getting evicted. Spatial lo-
cality is exploited by using blocks spanning multiple words
to move data between the different layers of the hierarchy.
We study the spatial locality exhibited by applications at the
data cache level and present mechanisms to better exploit it.

Today’s cache designs exploit spatial locality in appli-
cations at the cache line granularity. On a cache miss, the
cache fetches the entire line containing the reference. The
words within the line that get referenced before the line is
evicted reduce the number of the misses incurred by the ap-
plication, while the words that do not get referenced be-
fore eviction potentially hurt performance by polluting the
cache. However, since the spatial locality exhibited by ap-
plications for a given cache size varies significantly, differ-
ent line sizes yield the best performance for the different
applications. So, a line size that performs well across a
wide range of applications has to be chosen. In addition,
other considerations like reducing the amount of tag stor-
age (which requires larger lines) and reducing the amount
of false sharing on multiprocessors (which requires smaller
lines) influence the selection of the “best” line size. The re-
sult is that caches benefit only from a small fraction of the
spatial locality exhibited by the application.

The spatial locality varies not only across different ap-
plications but also within the different parts of the same ap-
plication. A few applications have uniform spatial locality
behavior and perform well when using a fixed cache line
size. However, for most integer applications, the spatial lo-
cality exhibited is fairly non-uniform. This variation is hard
to predict statically and, therefore, exploiting the spatial lo-
cality effectively requires run-time prediction mechanisms.

2.1. Related Work

Several studies [14, 17] have examined the effects of dif-
ferent cache line sizes on cache performance. One of the
studies [14] also investigated the effect of varying the fetch

size independent of the line size and concluded that the op-
timal statically determined fetch size was generally twice
the line size. The dual data cache [6] has two indepen-
dent parts for data that exhibit temporal and spatial locality.
However, their locality detection mechanism was geared for
numeric codes with constant stride vectors. The Spatial Lo-
cality Detection Table [7] attempts to dynamically pick the
right fetch size based on the memory reference. However,
it does it at a much coarser granularity than our mechanism.
They also do not address the problem of increased L1 cache
access latency associated with small cache lines.

Abrahamet al.[1] show that a large percentage of misses
are caused by a small percentage of instructions. They use
this information to prefetch data referenced by a few in-
structions identified through profiling. Tysonet al. [18]
use this information to dynamically make cache bypassing
decisions. Another study [8] shows that, in some applica-
tions, few instructions reference large amounts of data with
widely varying data access patterns. So they use the data ad-
dress to dynamically make cache bypassing and prefetching
decisions [8, 7]. We study the effectiveness of using both
instruction and data addresses to predict spatial locality.

2.2. Approach

The goal is to exploit the spatial locality available to long
cache lines without excessive pollution and without signifi-
cantly impacting the cache access latency. For this, we use a
cache with small lines and fetch multiple neighboring cache
lines on a cache miss based on the run-time behavior of the
application. To achieve this at a reasonable cost, we need to
address two problems. First, we need a predictor that pre-
dicts the neighboring lines that are very likely to be used in
the near future. Second, we need to reduce the amount of
tag space required by caches with small lines.

We introduce some terminology used in this paper. A
cache line is the smallest replaceable unit in a cache. Cache
lines are grouped into aligned groups of adjacent lines in the
virtual address space calledsectors. Sectors are divided into
two groups—inactiveand active. All sectors are initially
inactive. The cache lines within a sector that get referenced
while it is active define thespatial footprintof that sector.
A spatial footprint for a sector is stored as a bit vector with
a bit for every line in the sector.

We propose a class of predictors called Spatial Footprint
Predictors that exploit spatial locality at sector granularity.
While a sector is active, its spatial footprint is recorded.
When a sector is inactive, a cache miss activates it and
causes the predictor to predict the spatial footprint for that
sector based on previously recorded footprints. This allows
the cache to fetch only those lines within the sector that are
very likely to be used in the near future.

Tagging a cache with small lines at cache line granular-



Benchmark Instructions References Miss MBytes
(millions) (millions) Ratio Fetched

draw 38.9 1.7 5.80 54.0
gcc 26.5 0.2 1.88 7.6
go 18.6 0.4 4.19 12.6
pc db 30.0 0.6 2.77 19.0
pres1 46.8 0.7 2.48 22.3
pres2 43.7 0.9 3.92 29.1
specweb 69.1 2.7 11.81 69.3
sprdsht 36.0 0.5 2.09 15.6
tpcc 32.4 0.3 6.69 9.9
tpcc long 148.8 1.4 3.27 45.8
wdproc1 41.4 0.4 1.54 13.3
wdproc2 30.0 0.4 1.79 12.0

Figure 1. Benchmark Characteristics

ity requires bigger tag arrays and longer access times. An
alternative is to use sectored caches which tag the cache at
sector granularity and use a bit-vector to store validity infor-
mation for the cache lines within the sector. Although this
approach would benefit from reduced bandwidth require-
ments, the unused cache lines within the sectors would re-
sult in poor utilization of the cache, resulting in worse hit
ratios and, ultimately, worse cache performance. We use
a decoupled sectored cache [15] (described in Section 6.2)
that allows us to use smaller arrays with little impact on the
cache access latency.

3. Experimental Setup

We study Spatial Footprint Prediction for L1 data caches.
In the base configuration, the L1 data cache used is a 16 K-
byte four-way set-associative cache. Each sector contains
16 lines while each line contains 8 bytes. The cache is also
write-through and fetch-on-write.

Analysis was performed using the Intel MRL reference
traces which includes the following:

• 2 integer traces from SPEC (go and gcc)

• 2 transaction processing server traces—one with 325
warehouses and 60 clients (tpcc) and another with 50
warehouses and 36 clients (tpcclong).

• 1 web server trace obtained from SPECweb96.

• 7 popular PC-based applications including a database
application, 2 presentation applications, 2 word pro-
cessing applications, a spreadsheet application and

a drawing program. All application traces were ob-
tained from the benchmark suite released by BAPCO
sysmark32. Typically, the applications are interac-
tively driven by a user via a graphical user interface.
During tracing, the applications were automated us-
ing scripts. The functionality exercised in the appli-
cations was chosen to be representative of commonly
used ones like spell-checking and reformatting.

All 12 traces are full system address traces including all
activity from both the OS (NT4.0) and the application in-
cluding any activity in dynamically linked libraries. The
traces include all instruction and data addresses generated
by the program but specify no other instruction information.
All 12 traces were gathered on an Intel Architecture proces-
sor running a complex instruction set architecture, and were
chosen both for their popularity in the PC market segment
and for their high Misses Per Instruction.

The cache simulator measures the cache miss ratio and
the fetch bandwidth. The fetch bandwidth is the number
of bytes fetched into the cache due to both read and write
operations. It does not include the store bandwidth due to
the writes because it is not affected by our implementation.
The miss ratio and the fetch bandwidth for the base con-
figuration are presented in Figure 1. The miss ratios are
lower than on most other platforms. This is because the
small number of architectural registers available on the In-
tel platform causes a larger fraction of local variables to be
stored in memory instead of registers. The extra references
generated, usually, have very good locality properties and
hit in the first-level cache. The result is that the first-level
caches sees more memory references and a lower miss ratio.
However, the performance of the first-level cache has a sig-
nificant impact on the performance of the applications. All
numbers presented in the remainder of the paper are nor-
malized to the base configuration.

Our primary goal is to reduce the miss ratio of the L1
cache by exploiting spatial locality available to long cache
lines while keeping pollution at a minimum. The differ-
ence between fetch bandwidth in the different configura-
tions gives us an idea of the amount of pollution.

4. Spatial Footprint Predictors

Before describing the predictors, we introduce some
more terminology. A memory reference that activates an
inactive sector is referred to as anominating reference. The
sector containing the nominating reference is thenominat-
ing sector; the cache line containing the nominating refer-
ence is thenominating line; and the instruction that gener-
ated the nominating reference is thenominating instruction.

Spatial footprint prediction consists of two parts: a
mechanism to measure the spatial footprint of the active



sectors, and a mechanism that uses the spatial footprint his-
tory to predict future footprints. We use two tables (Fig-
ure 3) in our implementation—a Spatial Footprint History
Table (SHT) and an Active Sector Table (AST). The SHT
is used to store some of the previously recorded footprints.
Each entry consists of a tag to resolve conflicts among the
entries and one or more of the previously recorded foot-
prints depending on the amount of history used by the pre-
dictor. The index into the SHT also depends on the predic-
tor. The AST is used to record the footprint while a sector
is active in the cache and is indexed by the sector address.
Each entry consists of a tag to resolve conflicts, the index
into the SHT (SHTi), and a bit vector to record the footprint.
In addition, it contains the nominating line number1 (LN)
and a flag whose use is described in Section 5.

The predictors we studied differ primarily by how they
index the SHT and the amount of spatial footprint history
used. They use some combination of bits from the nomi-
nating reference address and the nominating instruction to
generate the SHT index. In addition, they use the last one or
two footprints stored in the corresponding SHT entry. When
the history consists of more than one footprint, a bitwise OR
is used to generate the predicted footprint.

The predictors are named based on the SHT index (su-
perscript) and the amount of history used (subscript). The
data address based predictors use either the nominating
sector address (SFP

SA
1 ) or the nominating line address

(SFP
LA
1 andSFP

LA
2 ). Using the instruction address alone

as the index yields poor results because the different data lo-
cations accessed from a single instruction are not aligned at
the same offset within the sector. To deal with the different
alignment, the footprints can be shifted so that the nomi-
nating lines are aligned with each other. However, shifting
the footprint hurts the predictor accuracy because it requires
guessing the few bits that get shifted in. The alternative is to
use the nominating instruction address along with the nom-
inating line number (SFP

IA,LN
1

). Finally, we present a pre-
dictor (SFP

IA,DA
1

) which uses the nominating instruction
address along with the nominating reference address.

The predictors are quite similar. On a cache miss in an
inactive sector, the predictor predicts a spatial footprint that
is used to fetch lines. It activates that sector, allocates an
entry in the AST for it and initializes the footprint bit vector
and the SHT index. Every subsequent reference to a line
within that sector causes the corresponding bit in the foot-
print to be set. When the sector is deactivated, the recorded
footprint is migrated into the SHT and the AST entry is in-
validated.

1The 4 bits in the data address that specifies the nominating line within
the sector.

4.1. Experimental Evaluation

In this section, we evaluate the various Spatial Footprint
Predictors using a sectored cache. All the lines within a
sector are fetched on a miss—the predictors are not used to
fetch lines selectively. In this setup, a sector is active while
it is in the cache and it becomes inactive when it is evicted.
While the sector is active, its footprint in recorded. When
the sector is evicted, the recorded footprint is compared
with the predicted footprint from each of the predictors2 to
measure their accuracy.

This approach has two benefits. First, it allows us
to study the predictors in isolation from the specific de-
sign choices made in a practical implementation (Sec-
tions 5 & 6). Second, the measurements made in this sec-
tion are useful in explaining the results obtained in Sec-
tions 5 & 6.

We use a 16 KBytes cache throughout this paper. How-
ever, in this section, we use a 32 KBytes cache to compen-
sate for the inefficient use of cache resources due to the use
of long sectors. This is done to get a better correlation be-
tween the results in this section and the results in the other
sections. As always, the cache has 8 byte lines and 16 lines
per sector. Also, we use infinite tables for AST and SHT to
avoid any conflict among entries.

We measured three different aspects of the various
predictors—the number of lines missed on average, the
number of extra lines fetched on average, and the percent-
age of times the predictor failed to make a prediction for
lack of history (Figure 2). The first two measure the pre-
dictor accuracy while the last one, coupled with the size
and associativity of the SHT, determines the coverage of
the predictor.

Comparing the line-based predictor (SFP
LA
1 ) against the

sector-based predictor (SFP
SA
1 ) shows thatSFP

LA
1 is con-

sistently more accurate thatSFP
SA
1 . The difference is es-

pecially dramatic in the case ofpres2. This is probably the
result of several different footprints being associated with
the same sector. The surprising result, however, is that the
SFP

LA
1 suffers only twice as many cold misses in the SHT

as theSFP
SA
1 . This implies that, on average, only two of

the 16 lines in a sector are nominating lines.
The instruction-based predictor (SFP

IA,LN
1

) performs
about as well as the sector-based predictor (SFP

SA
1 ). How-

ever, in one of the benchmarks (specweb), it is more ac-
curate and suffers fewer cold misses than any of the data
address based predictors.

The predictor that uses both the instruction address and
the data address (SFP

IA,DA
1

) is consistently more accurate
than all other predictors. However, it also suffers more cold

2Predictors are usually invoked at sector activation time. However, in-
voking them at deactivation time (which is when they are needed in this
section) generates the same footprint.



Benchmark SFP
LA
1 SFP

LA
2 SFP

SA
1 SFP

IA,LN
1

SFP
IA,DA
1

draw 0.06 0.03 0.35 0.37 0.03
gcc 0.88 0.53 1.07 1.23 0.32
go 0.38 0.29 0.40 0.40 0.27

Number pc db 0.45 0.28 0.64 0.42 0.21
of pres1 0.19 0.12 0.29 0.25 0.11

Lines pres2 0.23 0.12 1.25 1.70 0.16
Missed specweb 0.31 0.19 0.38 0.13 0.07

Per sprdsht 0.38 0.23 0.55 0.40 0.23
Sector tpcc 0.44 0.21 0.68 0.40 0.26

tpcc long 0.34 0.16 0.58 0.53 0.23
wdproc1 0.36 0.20 0.67 0.51 0.21
wdproc2 0.43 0.26 0.58 0.46 0.26
Mean 0.40 0.24 0.68 0.62 0.21

draw 0.06 0.08 0.57 0.37 0.04
gcc 0.93 1.42 1.27 1.22 0.35
go 0.38 0.66 0.76 0.40 0.26

Number pc db 0.47 0.71 0.83 0.42 0.20
of pres1 0.20 0.30 0.39 0.25 0.11

Extra pres2 0.23 0.34 1.58 1.70 0.16
Lines specweb 0.31 0.50 0.48 0.13 0.07

Fetched sprdsht 0.39 0.59 0.72 0.39 0.22
Per tpcc 0.44 0.64 0.82 0.40 0.26

Sector tpcc long 0.35 0.49 0.70 0.53 0.23
wdproc1 0.39 0.56 0.89 0.51 0.21
wdproc2 0.43 0.64 0.74 0.45 0.25
Mean 0.42 0.63 0.89 0.62 0.21

draw 3.03 3.03 1.77 0.24 3.73
gcc 14.27 14.27 6.44 11.78 43.30
go 2.42 2.42 0.67 5.08 34.60

Percentage pc db 10.15 10.15 4.94 6.02 17.48
of pres1 9.01 9.01 6.45 3.78 12.09

Cold pres2 3.79 3.79 2.08 2.28 5.49
Misses specweb 2.43 2.43 1.37 0.51 3.56

in sprdsht 5.92 5.92 2.73 5.83 10.82
SHT tpcc 6.60 6.60 3.95 3.28 10.11

tpcc long 8.06 8.06 5.63 1.44 17.93
wdproc1 12.31 12.31 6.56 6.93 19.35
wdproc2 10.18 10.18 5.46 9.26 17.23
Mean 8.02 8.02 4.37 5.13 17.79

Figure 2. Characteristics of the Spatial Footprint Predictors



misses in the SHT. The difference is huge in the case of the
two SPEC benchmarks (gccandgo).

Using more spatial footprint history allows additional
line fetches to be traded for fewer missed lines. By using a
bitwise OR to combine the footprints, we bias the predictors
towards reducing the number of lines missed. Comparing
the entries forSFP

LA
1 andSFP

LA
2 shows that, on average,

the numbers of lines missed by the predictor is decreased
by 50%, while the number of extra lines fetched increases
by approximately the same amount.

Since we do not measure the miss ratios in this sec-
tion, we cannot directly compare these predictors with tra-
ditional caches. However, to put things in perspective, we
present some back of the envelope calculations to compare
the amount of prefetching and pollution due to SFP predic-
tors with the amount of prefetching and pollution that oc-
curs in traditional caches which use 32-byte lines. We use 8
bytes as the smallest unit here.

When runninggcc, the traditional cache brings in 4 units
of data each time and does not use around 40% (1.6) of
them before eviction. So each miss prefetches 3 units—1.4
of which get used while the remaining 1.6 units contribute
to pollution. This is in contrast with theSFP

IA,DA
1

predic-
tor which brings in around 5 units on average while miss-
ing 0.32 units (which incur additional misses) and not us-
ing about 0.35 units before eviction. i.e. 1.32 misses fetch
5.32 units. This translates into each miss prefetching 3.03
(= (5.32−1.32)/1.32) units—2.78 of which get used while
only 0.35 units contribute to pollution.

5. Implementation

Using the spatial footprint predictor with a sectored
cache might reduce the fetch bandwidth. However, it will
hurt the miss ratio because of underutilization of the cache.
So we use a cache tagged at cache line granularity. This al-
lows the lines within the same sector in the virtual memory
to reside in the cache independent of each other. The imple-
mentation in this section (Figure 3) uses a larger tag array
(because of the smaller lines) and infinite tables for SHT
and AST. In Section 6, we study the effect of using smaller
tag arrays and reasonable table sizes.

A default predictor is needed for the cases when the SFP
predictor fails to make a prediction because no spatial his-
tory is available. On a cache miss in an inactive sector, the
SFP predictor or the default predictor is invoked depending
on whether an entry was found in the SHT. Lines missed due
to mispredictions result in cache misses in an active sector.
The recovery mechanism, though simple, is fairly different
for the two predictors. This is because the default predictor
is not a “real” footprint predictor.

The AST has a flag field to indicate which of the two
predictors was used when the sector was activated. On a

cache miss in an active sector, this predictor flag is used to
determine which predictor was used earlier and invoke the
corresponding recovery mechanism.

5.1. Spatial Footprint Predictor

The simple definitions of active and inactive sectors from
the previous section need to be redefined. This is because
the lines within a sector are treated independently. As be-
fore, all sectors in virtual memory are initially inactive. A
cache miss in an inactive sector causes that sector to be-
come active. A sector is deactivated again if the AST entry
is evicted because of conflict. A sector is also deactivated
on a miss to a line which is marked used in the footprint.
This happens when a line in an active sector was fetched,
evicted and needs to be fetched again.

The miss rate is fairly sensitive to the sector deactivation
policy because it determines the duration during which foot-
prints are recorded. If the deactivation policy is too lazy,
the cache incurs an extra miss for every reference in the
active sectors and causes multiple footprints to get merged
into one. If the deactivation policy is too aggressive, the
footprints get fragmented into multiple footprints resulting
in poor prediction accuracy. Our deactivation policy was
chosen because of its simplicity and better performance on
reasonable SHT table sizes. A more aggressive deactivation
policy, which in addition to the above conditions also deac-
tivates a sector when the nominating line is evicted, results
in better performance (about 5% better on average) when
using an infinite SHT but yields worse performance (about
5% worse on average) for reasonable size tables.

When the SFP predictor is invoked, the corresponding
entry in the SHT is used to predict the footprint and fetch the
corresponding lines. When the SHT recovery mechanism is
invoked, only the line that caused the miss is fetched. Since
the number of lines mispredicted by the SFP is fairly low,
just bringing in one line is good enough.

5.2. Default Predictor

A default predictor is needed for the case when the spa-
tial footprint predictor fails to make a prediction for lack
of spatial footprint history. We use a simple global pre-
dictor as our default predictor. The predictor observes the
spatial footprints generated by the running application and,
depending on the locality observed, predicts the number
of adjacent lines that should fetched on a miss. The de-
fault predictor essentially choses between “line sizes” of
32, 64 and 128 by fetching 4, 8 or 16 aligned block of
lines. It maintains a cost meter for each of the line sizes.
The cost meters are initialized to zero and updated each
time a recorded spatial footprint is moved into the SHT.
For each of the three meters, it uses the footprint to com-



AST

Tag SHTi LN SF

01111

Default
Predictor

IA
DA

SFP

SHT

Tag
SF1 SF2

01101 10101

SF History

Predicted
SF

SHTi

LN SHTi
SF

SHTi
LN

SA

SF
LN

Sector
Activation

Sector
Deactivation

Hit?

flag

Hit?SHT

Figure 3. On sector activation, an AST entry is allocated and the predicted spatial footprint is used
to fetch lines. On sector deactivation, the recorded footprint is used to update the two predictors.

pute the number of lines it would have missed and the num-
ber of extra lines it would have fetched had the correspond-
ing line size been chosen. These two values are combined
using a cost function and the meters updated using each
of the corresponding values. We used the cost function
Cost(missed, extra) = 2 ∗ missed + extra.

When the default predictor is invoked, the number of
lines associated with the meter displaying the lowest cost
is chosen. An aligned group of contiguous lines consist-
ing of the number of lines chosen is fetched. Exactly the
same thing is done when the recovery mechanism for the
default predictor is invoked. This effectively mimics the
behavior of traditional caches with the same line size as the
one picked by the default predictor. Due to the coarse gran-
ularity of the default predictor, the number of lines chosen
by it rarely changes during the execution of an application.

5.3. Experimental Evaluation

We use a cache simulator to look at four of the predictors
(SFP

LA
1 , SFP

IA,DA
1

, SFP
SA
1 andSFP

LA
2 ). All predictors

use 32 bits to index the SHT. So we use 20 bits of data
address together with 12 bits of the instruction address in
the implementation ofSFP

IA,DA
1

. Since some instructions
access a lot of different data locations, the data address bits
are used as the lower order bits in the SHT index. This
reduces the conflict significantly when using a reasonable
sized SHT (Section 6).

Figure 4 presents the relative miss ratio and fetch band-
width of traditional caches with varying line and cache sizes
along with the corresponding numbers for caches using the
various SFP predictors. The first set of numbers is for tra-
ditional 16 KBytes caches with line size varying from 8 to

128 (the sector size in SFP caches). The second set of num-
bers correspond to traditional caches using 32 byte line but
with cache sizes of 8 KBytes, 16 KBytes and 32 KBytes.
The last set of numbers correspond to 16 KByte SFP caches
with 8 byte lines and 16 lines per sector.

The first thing to note is that the best line size is applica-
tion dependent. Comparing the SFP caches with caches of
varying line size shows that most of the SFP caches achieve
close to (and often better than) the best miss rate for each
application. The fetch bandwidth in each case is also fairly
close to the lowest value which occurs when using 8 byte
lines. In traditional caches, the best miss ratio and the
lowest fetch bandwidth rarely occurs at the same line size.
However, the SFP mechanism successfully tracks both.

Comparing the SFP caches with the 32 KB cache shows
that the miss rates are comparable and the fetch bandwidth
is often better for the SFP caches. In a few cases (e.g.
specweb), the best SFP cache has a lower miss rate too.

The reduction in miss rates for the SFPs come from two
sources—exploiting spatial locality at the sector granularity
and lower pollution. The miss ratios for the various SFP
caches relative to each other match with the results in Sec-
tion 4. SFP

IA,DA
1

andSFP
LA
2 have similar miss ratios fol-

lowed bySFP
LA
1 . SFP

SA
1 is the least effective. The fetch

bandwidth has three components—the useful data brought
in, the pollution due to the default predictor and the pollu-
tion due to the SFP predictor. The contribution of the use-
ful data fetched to the bandwidth should be approximately
the same for all the predictors. The difference between the
fetch bandwidth forSFP

LA
1 andSFP

IA,DA
1

is due to the
greater reliance ofSFP

IA,DA
1

on the default predictor while
the difference between the fetch bandwidth forSFP

LA
1 and

SFP
LA
2 is due to larger pollution by theSFP

LA
2 predictor.
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Ratio 8 B 16 B 32 B 64 B 128 B 8 KB 16 KB 32 KB

draw 1.37 1.14 1.00 0.86 0.74 1.03 1.00 0.93 0.82 0.81 0.86 0.79
gcc 1.72 1.28 1.00 0.86 0.87 1.73 1.00 0.52 0.84 0.64 0.89 0.75
go 0.85 0.85 1.00 1.48 2.32 1.94 1.00 0.62 0.75 0.76 0.77 0.74
pc db 1.55 1.20 1.00 0.91 0.90 1.50 1.00 0.64 0.71 0.64 0.77 0.67
pres1 1.64 1.19 1.00 0.94 0.90 1.44 1.00 0.67 0.68 0.66 0.70 0.66
pres2 2.26 1.46 1.00 0.77 0.68 1.33 1.00 0.79 0.75 0.72 0.79 0.73
specweb 1.42 1.30 1.00 0.87 0.81 1.12 1.00 0.92 0.91 0.75 0.94 0.84
sprdsht 1.39 1.14 1.00 1.00 1.14 1.75 1.00 0.58 0.71 0.67 0.75 0.67
tpcc 1.56 1.24 1.00 0.91 0.87 1.41 1.00 0.62 0.77 0.70 0.85 0.69
tpcc long 2.19 1.46 1.00 0.80 0.69 1.22 1.00 0.81 0.76 0.72 0.77 0.70
wdproc1 1.85 1.27 1.00 0.88 0.81 1.48 1.00 0.64 0.63 0.59 0.70 0.60
wdproc2 1.50 1.17 1.00 1.00 1.09 1.87 1.00 0.53 0.72 0.69 0.75 0.68
Mean 1.61 1.23 1.00 0.94 0.98 1.48 1.00 0.69 0.75 0.70 0.80 0.71

Relative 16KB Cache 32B Line
Fetch with Line Size with Cache Size SFP

LA
1 SFP

IA,DA
1

SFP
SA
1 SFP
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2

Bandwidth 8 B 16 B 32 B 64 B 128 B 8 KB 16 KB 32 KB

draw 0.34 0.57 1.00 1.73 2.96 1.04 1.00 0.93 0.39 0.39 0.39 0.41
gcc 0.43 0.64 1.00 1.72 3.47 1.73 1.00 0.52 0.69 0.99 0.61 0.75
go 0.21 0.42 1.00 2.96 9.30 1.94 1.00 0.62 0.38 0.56 0.33 0.46
pc db 0.40 0.61 1.00 1.82 3.58 1.50 1.00 0.64 0.55 0.58 0.52 0.59
pres1 0.41 0.60 1.00 1.88 3.58 1.44 1.00 0.66 0.50 0.52 0.49 0.52
pres2 0.57 0.73 1.00 1.53 2.71 1.33 1.00 0.79 0.72 0.75 0.70 0.74
specweb 0.36 0.65 1.00 1.75 3.24 1.12 1.00 0.92 0.43 0.40 0.44 0.47
sprdsht 0.35 0.57 1.00 2.00 4.57 1.75 1.00 0.59 0.45 0.47 0.44 0.49
tpcc 0.39 0.62 1.00 1.82 3.47 1.40 1.00 0.62 0.50 0.50 0.50 0.53
tpcc long 0.55 0.73 1.00 1.59 2.75 1.22 1.00 0.82 0.66 0.65 0.66 0.68
wdproc1 0.47 0.63 1.00 1.76 3.26 1.48 1.00 0.64 0.66 0.73 0.60 0.68
wdproc2 0.38 0.58 1.00 2.00 4.35 1.86 1.00 0.53 0.51 0.55 0.49 0.54
Mean 0.40 0.61 1.00 1.88 3.94 1.49 1.00 0.69 0.54 0.59 0.52 0.57

Figure 4. Miss ratio and Fetch Bandwidth for (i) 16 KB caches with line sizes of 8, 16, 32, 64 and
128 (ii) 8 KB, 16 KB and 32 KB cache with 32 byte line and (iii) various 16 KB caches using the SFP
mechanism. All numbers are normalized to the 16 KB cache with 32 byte line. The bar graph presents
just the gcc results.
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Figure 5. A Decoupled sectored cache where
the tag array is four-way and the data array
is two-way associative. There are 4 lines to a
sector while the size of a cache line is cl.

6. Practical Considerations

In this Section, we study the effect of using reasonable
sized tag array and tables. We do this in two stages and
examine the performance degradation at each stage.

6.1. Limiting the SHT Size

We use a 1024 entry, four-way set associative SHT in
our implementation. The SHT is looked up on every cache
access so that the spatial footprint is available on a miss. No
extra cycles are added to the miss penalty.

Once an SHT entry is used, it will no longer be used
until it is updated with a newly recorded footprint. When
the predictor is using a history of one, the SHT entry does
not have anything useful once it is used. So it is invalidated.
If this is not done, the useless entry will be the last one to
be evicted because it is the least recently used entry.

6.2. Using Smaller Tag Array

Sectored caches have been used to deal with the large
tag array required by caches with small lines. In a sectored
cache, a single address tag is associated with a sector con-
sisting of several cache lines, while validity tags are asso-
ciated with each of the cache lines. However, this results
in bad performance due to poor utilization of the cache re-
sources. Seznec [15] proposed decoupled sectored caches

as a way to reconcile low tag implementation cost with low
miss ratio. In a decoupled sectored cache, instead of the
static association between the tag and data, the association
is determined dynamically at allocation time. The address
tag location associated with a cache line is dynamically cho-
sen among several possible tag locations. Figure 5 shows a
decoupled sectored cache where the tag array is four-way
set associative and the data array is two-way set associa-
tive. Each sector has 4 lines. This means that a tagA can
be associated with up to 4 lines—one in each ofS0, S1, S2
andS3. Similarly, each lineS0can have its tag in one of
four location—A, B, C and D). This mapping is dynami-
cally maintained by using tag selector bits for every line to
specify the location of the tag. It also maintains the validity
information on a per line basis.

On a cache reference, the tag verification is slightly more
complicated than in traditional caches and, therefore, takes
longer. However, since the data array access is not af-
fected, a way-predictor [11] can be employed to optimisti-
cally use the data without waiting for the tag matching to
complete [15]. This technique is already used by some
processors to achieve low cache hit time in set-associative
caches. So, using a decoupled sectored cache should have
little impact on the cache access latency.

Decoupled sectored caches were originally proposed to
reduce the size of tag array for L2 cache controllers. For
them to be effective, several lines per sector have to be
present in the cache so that multiple lines can share the same
tag. This property holds in our case because a sector has, on
average, more than 4 lines in the cache. We use a decoupled
sectored cache with four-way set-associative data and tag
array. The data array has 2048 entries while the tag array
has 512 entries so that the ratio of data to tag entries is 4:1.
This is the same number of tags as in the base configuration.

6.3. Reducing the AST Size

Since the decoupled cache is tagged at the sector gran-
ularity, we can combine the AST with the tag array for the
cache. There are two benefits to this approach. First, sepa-
rate tags are not required for the AST. Second, since there is
a tag associated with every sector that has a line in the cache,
there is always a free AST entry available when needed.

6.4. Experimental Evaluation

Figure 6 presents the miss ratios and fetch bandwidth
when using reasonable size tables. Column A shows the
numbers obtained when using infinite size tables (Sec-
tion 5). Column B presents the numbers obtained when us-
ing 1024 entry SHT. Column C presents the numbers when
using a 512 entry AST integrated with a decoupled sectored
cache in addition to a 1024 entry SHT.
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Miss
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draw 0.82 0.90 0.92 0.81 0.89 0.91 0.86 0.94 0.97 0.79 0.91 0.93
gcc 0.84 0.80 0.82 0.64 0.67 0.69 0.89 0.88 0.90 0.75 0.76 0.78
go 0.75 0.79 1.05 0.76 0.80 1.05 0.77 0.77 1.06 0.74 0.79 1.04
pc db 0.71 0.74 0.78 0.64 0.70 0.74 0.77 0.76 0.81 0.67 0.74 0.77
pres1 0.68 0.72 0.82 0.66 0.72 0.82 0.70 0.72 0.82 0.66 0.72 0.82
pres2 0.75 0.73 0.74 0.72 0.71 0.71 0.79 0.79 0.80 0.73 0.72 0.73
specweb 0.91 0.96 0.98 0.75 0.93 0.94 0.94 0.97 0.98 0.84 0.97 0.98
sprdsht 0.71 0.76 0.81 0.67 0.76 0.80 0.75 0.76 0.81 0.67 0.76 0.80
tpcc 0.77 0.83 0.86 0.70 0.81 0.83 0.85 0.85 0.89 0.69 0.82 0.83
tpcc long 0.76 0.91 0.93 0.72 0.91 0.92 0.77 0.92 0.93 0.70 0.91 0.92
wdproc1 0.63 0.66 0.67 0.59 0.65 0.66 0.70 0.69 0.71 0.60 0.65 0.66
wdproc2 0.72 0.75 0.80 0.69 0.75 0.80 0.75 0.75 0.80 0.68 0.75 0.80
Mean 0.75 0.80 0.85 0.70 0.78 0.82 0.80 0.82 0.87 0.71 0.79 0.84

Relative SFP
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1

SFP
SA
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2

Fetch
Bandwidth A B C A B C A B C A B C

draw 0.39 0.56 0.57 0.39 0.57 0.58 0.39 0.55 0.57 0.41 0.63 0.65
gcc 0.69 0.80 0.80 0.99 1.07 1.05 0.61 0.65 0.66 0.75 0.84 0.84
go 0.38 0.52 0.63 0.56 0.70 0.89 0.33 0.33 0.45 0.46 0.54 0.66
pc db 0.55 0.66 0.68 0.58 0.72 0.73 0.52 0.58 0.61 0.59 0.68 0.70
pres1 0.50 0.56 0.60 0.52 0.60 0.63 0.49 0.53 0.57 0.52 0.57 0.61
pres2 0.72 0.90 0.91 0.75 1.02 1.03 0.70 0.77 0.79 0.74 0.94 0.95
specweb 0.43 0.76 0.77 0.40 0.80 0.81 0.44 0.71 0.72 0.47 0.79 0.80
sprdsht 0.45 0.53 0.57 0.47 0.59 0.64 0.44 0.47 0.52 0.49 0.55 0.59
tpcc 0.50 0.57 0.60 0.50 0.65 0.68 0.50 0.52 0.56 0.53 0.60 0.63
tpcc long 0.66 0.80 0.81 0.65 0.84 0.85 0.66 0.76 0.77 0.68 0.81 0.82
wdproc1 0.66 0.86 0.85 0.73 0.96 0.97 0.60 0.75 0.76 0.68 0.87 0.87
wdproc2 0.51 0.59 0.57 0.55 0.66 0.62 0.49 0.53 0.53 0.54 0.61 0.59
Mean 0.54 0.68 0.70 0.59 0.76 0.79 0.52 0.60 0.63 0.57 0.70 0.73

Figure 6. Miss ratio and Fetch Bandwidth for SFP caches with (A) Infinite tables and per line tags (B)
1024 entry SHT and per line tags (C) 1024 entry SHT and decoupled sectored cache integrated with
the AST. All numbers are normalized to the base configuration which uses a 16 KB cache with 32
byte lines. The bar graph presents just the gcc results.



Comparing columns A and B, we see that the biggest
change in miss ratios is forSFP

IA,DA
1

andSFP
LA
2 . For

SFP
IA,DA
1

, this is because it uses the most distinct entries
in the SHT (Section 4) and thereby suffers a higher miss
ratio in the SHT. In the case ofSFP

LA
2 , the use of a small

SHT results in the loss of most of the benefit of using ad-
ditional history. So it performs likeSFP

LA
1 cache. The

corresponding behavior can be observed in the fetch band-
width.

Comparing columns B and C, we see that the change
in the miss ratios corresponds to the amount of spatial lo-
cality exhibited by the application. The bulk of the differ-
ence can be attributed to the fewer tags used by the decou-
pled sectored cache. On one hand, in applications likego
which have very little locality, the fewer tags available re-
sult in about 20% of the data array not being used. On the
other hand, in applications likepres2andwdproc1which
exhibit a lot of spatial locality, the change in the miss ratio
is marginal. Also, the change in the miss ratio is fairly inde-
pendent of the predictor used. As before, the corresponding
behavior can be observed in the fetch bandwidth.

Overall, theSFP
IA,DA
1

achieves the best miss ratios.
However, practical considerations might makeSFP

LA
1 the

better choice. First, the data address is easily available in
the data caches while additional datapath might be needed
to make the instruction address available. Second, they can
be implemented at a lower cost.

6.5. Cost of the System

The decoupled sectored cache can be designed without
a significant increase in L1 access latency (Section 6.2).
Since the SFP mechanism does not add any operations in
the critical path of an L1 access, the entire implementation
should have little impact on the L1 access latency. In ad-
dition, our mechanism does not affect the miss penalty. So
the reduction in the miss rates and bandwidth from the Sec-
tion 6.4 should translate into better cache performance.

Most latency tolerance mechanisms do so at the expense
of increased bandwidth requirements [4]. However, the SFP
mechanism achieves a lower miss rate and reduces the band-
width requirement at the same time. The L1-L2 bus pro-
tocol will need only minor modifications to benefit from
the lower bandwidth. Current bus protocols support critical
word first where the referenced word is transferred before
the remaining words in the cache line. They can be mod-
ified so that the critical word is transferred first followed
by the specific words within the sector requested by the L1
cache. Since all the words in a sector lie within the same
cache line in the L2 cache, this should be a simple change.

The amount additional space needed to implement the
predictor is about 8.75 KBytes. 512 bytes (2 bits per line)
are need to maintain the dynamic mapping between the tags

and data in the decoupled sectored cache. 5 KBytes ( 1024
entries * ( 3 bytes for tags + 2 bytes for the footprint)) are
used for the SHT. The remaining 3.25 KBytes ( 512 entries
* ( 4 bytes for SHT index + 2 bytes for the footprint + 4 bits
for the nominating line number)) are used by the AST. Not
all of the 2 KBytes needed for the SHT index in the AST
has to be stored explicitly because the sector address can be
generated from its index and the tag in the AST. Two points
are worth noting here. First, none of the additional mem-
ory lies in the critical path of the cache operation. Second,
the optimizations described in Section 7 should reduce the
space requirements significantly.

7. Future Work

The best SFP implementation using reasonable resources
resulted in about an 18% reduction in miss ratio on average.
Although, this is a significant improvement, the biggest re-
duction in miss ratios using infinite tables (Section 5) is
around 35%. Achieving this will require better utilization
of the limited SHT entries.

Having an entire class of predictors which differ in cov-
erage and accuracy allows the design of hybrid predictors.
When the more accurate predictor fails to make a predic-
tion, a less accurate predictor can be used instead. Clever
design of SHT can allow multiple predictors to share the
SHT. For instance, this can be done fairly easily in the case
of SFP

LA
1 andSFP

SA
1 .

One potential problem with SFP prediction is that regu-
lar access patterns while accessing large amount of data can
result in thrashing in the SHT causing the default predictor
to be used extensively. This can be avoided by using the
SFP in combination with a coarse-grain predictor. The lo-
cality detection mechanism (AST) can also be used in the
implementation of the coarse-grain predictor.

The memory overhead of the SFP mechanism can be re-
duced further by compressing the footprints in the SHT.
Preliminary results show that only a small number of dis-
tinct footprints are used. In addition, the size of the tag
array for the SHT can be reduced by using partial tags. In
some case, like theSFP

SA
1 , it might be entirely eliminated

by merging the SHT with the L2 tag array.

Using decoupled-sectored caches allows cache designers
to pick different associativities for the data and tag arrays.
Also, the LRU replacement policy might not be the best
policy for the tag array because evicting a tag entry usually
results in multiple lines getting evicted from the data array.

Finally, the SFP mechanism might be applicable to other
layers of the memory hierarchy including L2.



8. Conclusions

Today’s caches benefit from some of the spatial local-
ity exhibited by applications. However, they exploit only
a small fraction of the spatial locality available. Run-time
mechanisms that observe and adapt to the application be-
havior are more effective alternatives.

Spatial Footprint Predictors can accurately predict the
spatial locality at a very fine grain. Both the instruction
address and the data address can be used for the prediction.
However, the best accuracy is achieved by using a combina-
tion of both. We describe a scheme that translates the pre-
dictor accuracy into lower miss rates and bandwidth usage
without significantly affecting the cache access latencies.

Cache-level simulations on several real-world applica-
tions show that the mechanism can effectively exploit spa-
tial locality available to a long cache line with minimum
pollution. The miss rates for first-level caches is reduced by
35% on average. For all applications, the miss rate is of-
ten better than the best miss rate obtained by using a fixed
line size. The miss rates are also comparable to those rates
achieved by doubling the cache size. Although a practical
implementation of the mechanism loses some of the gains,
the improvements in miss rates are still significant (about
18% on average).

It should be possible to refine the schemes described in
this paper to achieve greater benefits with smaller cost (Sec-
tion 7). Also, the Spatial Footprint Predictor might be useful
in the other layers of the memory hierarchy as well.
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