
Abstract

Since the introduction of the two-level dynamic branch
prediction scheme, research into branch prediction has followed
two different paths. The first attempted to improve prediction by
reducing aliasing in the second level table, which was shown to
adversely effect prediction rate. The second attempted to
improve prediction rate by combining two or more different com-
ponents in the branch prediction structure. The assumption was
that one component of the hybrid predictor better predicts a cer-
tain set of branches, while the second component better predicts
a separate set of branches. Most papers proposing an aliasing
reduction technique do not compare their new structure with a
hybrid one, and vise versa. Hybrid branch predictors added the
extra complication of the selection mechanism. Studies have
shown the value of incorporating a static and a dynamic selec-
tion mechanism into the hybrid predictor, but have failed to iden-
tify the underlying reasons for their performance.

We present a study that consolidates the hybrid and alias-
ing research paths by showing that most of the advantage in
combining branch prediction is gained by the selection mecha-
nism ability to reduce aliasing. The study also shows the inabil-
ity of a selection mechanism to capture the branches’ changing
best predictor during the programs execution (if such behavior
exists). Subsequently, we show that a dynamic and a properly
profiled static selection mechanism work well for the same rea-
sons: reducing aliasing. We then highlight the advantages and
disadvantages of static and dynamic selection mechanisms. The
conclusion that aliasing reduction is paramount to prediction
accuracy, and the observation that aliasing still degrades per-
formance for large resource allocation, despite numerous alias-
ing-reducing structure, lead to the need for further
improvements.

Keywords: Branch Prediction, Hybrid predictor, Alias-
ing, Selection Mechanism

1. INTRODUCTION
Large improvements in underlying chip technology have

made available an increasing number of transistors to the
microarchitect. In order to improve chips’ performance, design-
ers have employed instruction level parallelism (ILP) to fetch
and execute multiple instructions per cycle. One of the most
conspicuous bottlenecks clogging those wide-issue, deeply pipe-
lined processors is the difficulty of predicting where the instruc-
tion stream will go next. It is argued that by the year 2010 branch
prediction will become the most limiting factor in processor per-
formance, surpassing even the limitation of memory system [1].
Those findings assumed generous resources, implying that sim-
ply increasing the size of the predictor will not solve the prob-
lem.

The introduction of the two-level adaptive branch predic-

tion [2] resulted in considerable research activity. Different vari-
ations of the two-level adaptive branch prediction were
introduced [3]. These are the global variation, which has one
history register in the first level shared by all branches, and the
local variation, which ideally has a history register per branch,
but in reality has a set of branches sharing the same history regis-
ter. It was observed that each of these two-level schemes, and
earlier schemes such as the bimodal predictor [4][5] has its
unique advantages. This led to the idea of combining branch pre-
dictors [6]. The main notion is that one set of branches is better
predicted by scheme A, while a different set of branches is better
predicted by branch prediction scheme B. When it is true, we
will refer to it as true hybrid behavior. In such cases, it may be
beneficial to combine the two schemes in a hybrid predictor and
let each set of branches be predicted by the branch prediction
scheme that predicts it most accurately. We will call this line of
study the ‘hybrid path.’

It was observed that aliasing in the second level of the
two-level branch prediction structures can cause considerable
degradation in prediction in two-level branch prediction struc-
tures [7][8]. This led to the development of numerous branch
prediction structures that attempted to reduce the adverse effect
of aliasing, particularly in the global two-level branch prediction
schemes. We will call this line of study the ‘aliasing path.’

This paper will show that most of the gains achieved in
hybrid predictor are due to the ability of the selection mechanism
to reduce aliasing, not to true hybrid behavior. It follows that
hybrid predictors should be compared to aliasing reducing struc-
tures and vise versa, because they both achieve their goals by
attacking the same problem. We further observe that true hybrid
behavior is due to a limited number of branches, and that both
dynamic and properly profiled static selection mechanisms map
those branches into their respective best component (the differ-
ent predictors that make up the hybrid predictor). Moreover, we
show that both dynamic and static selection mechanisms achieve
the same goals, namely, reducing aliasing, in different ways. We
also show that the advantages of dynamic selection mechanisms
can be applied to static selection mechanisms by a profiling
method. We conclude by comparing a well-known aliasing
reducing predictor with a hybrid implementation.

The paper is organized as follows: Section 2, surveys
related work highlighting respective strengths and weaknesses.
In section 3 we explain the simulation methodology used in this
paper. Section 4 offers a comprehensive study, which demon-
strates in detail the points above. Finally, in section 5 we pro-
vide some concluding remarks.

2. PREVIOUS WORK
2.1. Reducing Aliasing

Aliasing is the phenomenon of two unrelated pieces of
information sharing the same entry in a table, usually as a result
of resource limitations. The lack of a tag in the table hides the
source of the information, and as a result this information is used

Hybrid Myths in Branch Prediction

A. N. Eden, J. Ringenberg, S. Sparrow, and T. Mudge
{ane, jringenb, ssparrow, tnm}@eecs.umich.edu

Dept. EECS, University of Michigan, Ann Arbor

regardless of its validity. This phenomenon usually degrades
prediction. Structures, which reduce aliasing, can be grouped by
the underlying method they use. We identified three such meth-
ods: reducing destructive aliasing [9][17][11], filtering [12][11],
and utilizing associativity [14][11].

While the different aliasing reducing structures have been
compared to one another in the literature, there has been no com-
parison with hybrid branch predictors.

2.2. Hybrid Predictors

The question whether the advantages of different schemes
can be combined has been discussed [6]. That author then pro-
poses the bimodal-gshare and local-gshare hybrid mechanisms.
The bimodal-gshare hybrid predictor outperforms gshare, and
the author hints that filtering may be the reason. The local-
gshare hybrid predictor predicts better than the bimodal-gshare
for predictors larger than 16KB.

Classifying branches into sets with similar bias behavior
was suggested in work on branch classification [9]. Different
sets of branches are predicted by different predictors. Specifi-
cally, highly biased branches are predicted with a short history,
while less biased branches are predicted with a long history.
Selecting the hybrid component is determined by profiling. In
[9], a static-local-global predictor was also presented. The selec-
tion of whether to use the static component was determined by
profiling, while a bimodal selection mechanism was used to
choose between the local and global components. This structure
improved on the prediction of the global-local hybrid structure.

Although filtering was explicitly mentioned in some of the
hybrid predictors, they were not presented as a method to reduce
aliasing. While most hybrid studies compared their results with
the gshare structure, they do not compare themselves to a more
sophisticated aliasing reducing structure.

2.3. Selection Mechanisms

The first hybrid structure [6] used an array of 2-bit saturat-
ing counters indexed by the branch address as the selection
mechanism. The counter is increment or decrement depending
on which one of the hybrid’s components gave the correct pre-
diction; it is not updated if both components gave the same pre-
diction (either correct or incorrect). It was proposed that using a
global two-level scheme as the selection mechanism might
improve prediction [10]. A static selection mechanism using
profiling was compared with a dynamic selection mechanism in
[15]. Although profiling for selection mechanisms was investi-
gated before in [9], the authors in [15] use an improved profiling
method to achieve better prediction for the local-gshare hybrid
predictor. Two reasons were credited for the improvement.
First, using a static selection mechanism doesn’t require hard-
ware resources for the selection mechanism, freeing hardware
for use in the hybrid components. Second, only one component
needs to be updated, because each branch uses only one compo-
nent. This reduces contention in the second level structures.

3. SIMULATION METHODOLOGY
Performance of each hybrid configuration was measured

by trace-driven simulations performed on the SPECint95 bench-
marks, the PowerPC and S390 benchmarks. The SPECint95
traces were obtained by running SimpleScalar’s bpred program
[18] and extracting the branch address, target address, and
branch outcome. The S390 and PowerPC traces were provided
by IBM. IBM provided no further information about the traces,
but their distinguishing characteristic is a large number of

branches. This promotes aliasing, which considerably degrade
prediction for these benchmarks. Table 1 displays the number of
static branches for the different benchmarks.

In all the simulations performed in our studies, the depth
of correlation (the size of the history register/s) follows directly
from the size of the PHT. For example, if the global component
in the hybrid predictor had 1K entries in its PHT, the history reg-
ister size will be 10 bits. We used the McFarling local-gshare
hybrid predictor because in preliminary simulations it exhibited
the best true hybrid behavior. The McFarling predictor was used
exactly as described in [6].

In simulations with a real structure (limited to different
sizes), we used a two way set associative BTB with 4K entries.
This is large enough to prevent it from being a performance bot-
tleneck and enables us to concentrate on the tradeoffs in the
PHTs.

All hybrid predictors simulated had two components, a
gshare structure implementing the global branch prediction
scheme, and a PAs structure implementing the local branch pre-
diction scheme. In cases where a dynamic selection mechanism
was employed, the bimodal structure was used.

Profiling was done on the same data sets that were used for
simulation, unless stated otherwise. This enabled us to obtain an
upper limit on the prediction accuracy. It is expected that using a
different data set (the more realistic situation) for profiling will
degrade the performance of the hybrid predictor with a static
selection mechanism, as one of the studies in the paper shows.

Throughout the discussion, we present only four graphs
due to lack of space: the arithmetic average of the SPECint95,
the gcc benchmark from the SPECint95 suite, the PowerPC
benchmark, and the S390 benchmark. The gcc benchmark is
presented because it is relatively hard to predict compared to the
other SPECint95 programs. The PowerPC and S390 are pre-
sented because of their large number of branches. When the
SPECint95 average is not applicable, we present the results of
the go benchmark instead. Simulations were conducted for all
other SPEC95 benchmarks, and the results were similar.

static branches

real train

SPECint95

gcc 13763 14085

compress 495 704

go 7401 7749

jpeg 2760 2854

li 1701 1457

m88ksim 1646 2199

perl 3443 2721

vortex 7581 11132

IBM Traces

s390 21727 N/A

powerPC 16710 N/A

Table 1: traces used in simulations

4. EXPERIMENTAL RESULTS
4.1. Static vs. Dynamic Selection Mechanism

We begin by examining the relative merits of using a static
versus a dynamic selection mechanism to choose between the
different components of a hybrid predictor. As noted earlier, a
static selection mechanism requires less information to be stored
in the predictor structure, because each branch utilizes only one
component. This reduces contention, which reduces aliasing and
helps the prediction rate. Moreover, hardware resources that
would have been used for the selection mechanism are now
available for increasing the size of the predictor’s components.
The main problem with static selection is the additional bits
needed in the ISA. Although some ISAs have this bit in place,
others will require that the ISA be altered. Dynamic selection
mechanisms are claimed to have an edge over static ones,
because it has been suggested that the best component for pre-
dicting a branch can change during the execution of a program.

It is unclear, however, whether there is an inherent benefit
in choosing the component used by a specific branch dynami-
cally. If the best component to predict a branch is dynamically
changing during the program run, it will be beneficial to dynam-
ically select the component used by a branch. However, if there
is no inherent benefit in choosing the component used by a
branch dynamically, it is beneficial to choose it statically and
avoid the extra cost of using both components for each branch,
and the cost of the selection mechanism.

Figure 1 shows the prediction accuracy for an unlimited
resources global-local hybrid predictor. The three plots repre-
sent three types of selection mechanisms: per-branch oracle, per-
instance oracle, and an implementation of a real selection mech-
anism – the bimodal. The per-branch oracle records the predic-
tion rate for both components and when the program terminates,

it chooses the best component as the predictor for each branch.
The per instance oracle get a prediction from both components,
and if any of them is correct, it records a correct prediction.
(Notice that the per-instance oracle is an overestimation and
even for a randomly generated prediction, probability dictates a
75% correct prediction.) Determining whether the best compo-
nent to predict a branch changes during program execution is
difficult. One approach is to slice the dynamic stream of a spe-
cific branch into n subsets of branch instances, and then to
choose the best component for each set [16]. The problem is that
a small n leads to an optimistic outcome, while a large n might
erase the benefit of having a dynamic selection mechanism.
Using either large n or small n can lead to the erroneous conclu-
sions. Clearly, it does not matter whether the best component for
each branch changes throughout the program run if a known
selection mechanism cannot identify the best component dynam-
ically. In our experiments we used an unbounded hybrid predic-
tor with an unbounded bimodal selection mechanism. This
eliminated the adverse effect of aliasing and allows a check on
whether the bimodal selection mechanism can capture the
changing best predictor throughout the program execution. Fig-
ure 1 shows that there is no inherent gain in using a dynamic
selection mechanism. In other words, if there is a gain to be
made in changing the component used for each branch during
the program execution, the bimodal selection mechanism does

not capture it1. This is made clear in the graphs where it can be
seen that the bimodal selection mechanism always under-per-
forms the per branch oracle. Moreover, it appears that the bimo-
dal selection mechanism makes mistakes in selecting the proper

1. The global selection mechanism was considered as
well, but provided similar results.

Figure 1 - Testing the potential of static vs. dynamic selection mechanisms in a unlimited resource
environment

s p e c I N T

9 4

9 5

9 6

9 7

9 8

9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n
c c 1

9 3

9 4

9 5

9 6

9 7

9 8

9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n

p o w e r P C

9 5

9 6

9 7

9 8

9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n

s 3 9 0

9 6

9 7

9 8

9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n

p e r b r a n c h o r a c le
p e r in s ta n c e o r a c le
b im o d a l s e le c t io n

component, which degrades the overall performance. This phe-
nomenon is accentuated in programs with a large number of
branches like the S390 and PowerPC. They display a significant
gap between the prediction of the oracle static selection mecha-
nism and the prediction when using the bimodal selection mech-
anism.

Figure 1 depicts the inability of the dynamic selection
mechanism to dynamically adapt to the changing behavior of
branches, even if such a transient behavior exists. Therefore,
there does not appear to be an advantage to employing dynamic
selection mechanisms instead of static ones. We would thus
expect that in a limited resource setting a static selection mecha-
nism will outperform a dynamic selection mechanism for the
reasons mentioned above (less aliasing and more resources dedi-
cated to the prediction components). Figure 2, however, shows
the exact opposite. In a limited resources setting, the hybrid pre-
dictor with a dynamic selection mechanism (dynamic) outper-
forms a hybrid with a perfect static selection mechanism (static).
The other plots (static limited and static unlimited) will be dis-
cussed later and can be ignored for moment.

Holding the heel of this observation a question is born:
What is it about the dynamic selection mechanism that boosts
the performance of a hybrid predictor with a dynamic selection
mechanism when working in a size-restricted structure? Alterna-
tively, what is it about the static selection mechanism that in a
limited-resource setting degrades the performance of a hybrid
predictor?

One possible hypothesis is that a dynamic selection mech-
anism reduces aliasing. For example, consider the case where
two branches A and B are both better predicted by the global
component of the hybrid predictor. In an unlimited resource set-
ting, a dynamic selection mechanism will choose the global
component to predict them. In a resource limited setting, branch
A will suffer from aliasing, which considerably degrades the pre-
diction of its global component. As a result, the dynamic selec-
tion mechanism chooses the local component to predict branch
A’s outcomes. Although both branches A and B are inherently
better predicted by a global component, branch A will be better
predicted by the local component in a limited resources environ-
ment. We next examine how much aliasing reduction helps a
hybrid predictor.

4.2. Aliasing Reduction in Hybrid Predictors
Figure 3 shows the extent to which reducing aliasing helps

boost the performance of hybrid prediction. It compares a
resource bound local-global hybrid predictor (hybrid), with a
resource bound local-global hybrid (aliasing hybrid), where the
selection mechanism doesn’t take into consideration the effect of
aliasing. To simulate this effect, a run of the local-global hybrid
predictor was made with no limits on resources. The selection
pattern for the entire run was logged and later served as the
selection mechanism in the limited hybrid version. The selec-
tion mechanism in this case is that for the true hybrid behavior
with no regards to aliasing, since it was recorded in an aliasing
free setting. From figure 3, we conclude that a large portion of
the benefits brought by hybrid predictors with dynamic selection
mechanism come from reducing aliasing. Moreover, comparing
the hybrid predictor to an unlimited version of the global scheme
(UL global), shows that the local-global hybrid predictor never
fulfils its promise of improving prediction beyond that of a sin-
gle scheme, even for generous resource allocation. Notice that
the different between UL Hybrid and UL global is the potential

difference between the hybrid predictor (global-local) and the
global scheme. This difference pales in comparison to the differ-
ence between UL global and hybrid that represents the remain-
ing aliasing after the bimodal selection mechanism was able to
reduce some of them (the difference between hybrid and alias-
ing-hybrid).

4.3. Prediction Potential of a Hybrid Structure

Next we investigated whether there is an inherent gain in
the local-global hybrid predictor over a single scheme, or
whether the gain realized by the hybrid predictor is limited to
reducing aliasing rather than to true hybrid behavior. Figure 4
shows the improvement of the program’s prediction for each
branch (x-axis) when using the local predictor versus the global
predictor with no limits on resources. Positive percentages indi-
cate the branch is better predicted by the local scheme, while
negative percentages indicate the branch is better predicted by
the global scheme. The branches are sorted on the x-axis
according to the percentage improvement. Figure 4 shows that
the number of branches that contribute to the true hybrid behav-
ior of the local-global hybrid predictor is small. Here and after,
these small number of branches will be reffered to as the hybrid
branches. For most branches the improvement obtained by
using the global component instead of the local component or
vice versa is insignificant. Only a few branches (the hybrid
branches) are responsible for the improvement of a local-global
hybrid predictor over a single scheme predictor. If the predictor
component for the other branches (the majority) changes dynam-
ically to reduce aliasing, it remains to make sure that the hybrid
branches are predicted by the component that does it best. This
will allow to take advantage of both alias reduction and true
hybrid behavior. When employing a static selection mechanism,
this can be done at profile time. In the case of a dynamic selec-
tion mechanism it seems that an explicit way of indicating the
appropriate component for the hybrid branches is needed. How-
ever, in a study we conducted, it was shown that the dynamic
selection mechanism is already performing that task of mapping
the hybrid branches into their respective best component.
Attempting to lock the hybrid branches into their respective best
component, while letting the rest of the branches’ component to
be chosen dynamically, resulted in degraded performance.

Despite the potential embedded in hybrid predictors, and
the ability to the selection mechanism to identify the hybrid
branches, this potential is not fulfilled. Performance degradation
due to aliasing dominates the hybrid potential that as a result is
never fulfilled.

4.4. Aliasing Aware Static Selection Mechanism
At this point we have shown that both static and dynamic

selection mechanisms reduce aliasing in hybrid branch predic-
tors. The former by reducing contention in the structure (updat-
ing only one component) and eliminating the hardware cost in
the selection mechanism, and the later by dynamically distribut-
ing the branch stream across the two components while alleviat-
ing contention in the PHT. Dynamic selection mechanism
performs much better than an ideal static selection mechanism.
In the ideal static selection mechanism, profiling was done with
no limitation on resources. This led to branches better predicted
by the global scheme to be mapped to the gshare component, and
branches better predicted by the local scheme, to be mapped to
the PAs component. Notice that the ideal static selection mecha-
nism does not take aliasing into consideration. One way of

Figure 3 – The role of Hybrid predictors in reducing aliasing

Figure 2 – Dynamic vs. perfect static selection mechanism in hybrid predictors

s p e c I N T

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la tio n d e p th

pr
ed

ic
tio

n
c c 1

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n

s ta tic
s ta tic lim ite d
s ta tic lim ite d te s t
d y n a m ic

p o w e r P C

0 .5 5

0 .6

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n

s 3 9 0

0 .6

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r r e la t io n d e p th

pr
ed

ic
tio

n

s ta t ic
s ta t ic lim ite d
d y n a m ic

p o w e r P C

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

10 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r re la t io n d e p th

pr
ed

ic
tio

n

s 3 9 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

10 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r re la tio n d e p th

pr
ed

ic
tio

n U L h yb rid
h yb rid
a lia s in g H yb r id
U L g lo b a l

c c 1

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

10 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r re la tio n d e p th

pr
ed

ic
tio

n

s p e c IN T

6 5

7 0

7 5

8 0

8 5

9 0

9 5

10 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c o r re la tio n d e p th

pr
ed

ic
tio

n

achieving this is to take the actual table size into consideration
while profiling. Figure 2 shows the importance of taking into
consideration the size of the predictor structure when profiling.
When taking size into consideration during profiling, the
branches are distributed not just by their true hybrid behavior,
but also by taking aliasing into consideration. Figure 2 shows
that while dynamic selection mechanism is better than a static
selection mechanism with perfect profiling, employing profiling
that takes the size of the structure into consideration (static lim-
ited) results in even better performance than dynamic selection.
The fact that the difference between the prediction percentages
diminishes with size indicates that the difference is mostly due to
better aliasing reduction. Using this profiling method combines
the advantage of static and dynamic selection mechanisms as we
explained before.

The advantages of using a static selection mechanism with
aliasing bound profiling are as follows: 1) The branches are dis-
tributed amongst the component according to contention in the
structure. 2) The selection hardware is eliminated. 3) Only one
component is used per branch, which further reduces contention.
The question arises whether such good prediction can be
achieved when profiling from a test data set. As figure 2 shows,
when using a different data set to profile the program the static
selection mechanism (static limited test) suffers degradation in
performance. For small predictors the static selection mecha-
nism still performs better than the dynamic selection mecha-
nism, but the dynamic selection mechanism eventually surpasses
it.

4.5. Comparing Hybrid and Aliasing-Reducing Structure

Finally, after discovering that the main strength of hybrid
predictors is reducing aliasing, we made a direct comparison
between one of the most used aliasing reduction implementa-
tions, the bi-mode predictor, and the McFarling hybrid predictor
(figure 5). If the size of the local history registers is ignored
(McFarling), the McFarling predictor does better than the bi-
mode predictor for small size predictors, while the bi-mode pre-
dictor performance catch up for larger predictors and eventually
surpasses the McFarling predictor. This phenomenon is accentu-
ated for traces with a large branch signature like the S390 and
the PowerPC. For the PowerPC trace, predictors larger than 1K
bytes should use the bi-mode structure. This is also true for the
SPECFP traces (not shown). When taking the size of the local
history registers into account (McFarling adjusted), the McFar-
ling predictor performs poorly. However, it should be noted that
the BTB used in the simulations was large to prevent it from
being a bottleneck. We hypothesize that much smaller BTB (and
therefore smaller size local history registers) can be used without
compromising performance. However, factors like ease of
implementation and smaller access time further the favors a bi-
mode implementation.

It would be acceptable if the hybrid predictor produced
poor prediction compared to the bi-mode predictor for smaller
size predictors. The hybrid scheme produces more information
than the global scheme (since it implements both the global and
local scheme), and results in more aliasing, which degrades per-
formance. Conversely, the fact that for larger predictors the bi-

Figure 4 – per branch potential of a hybrid component

mode predictor outperforms the McFarling predictor further
proves that current implementation of the hybrid predictor are
not capable of taking advantage of the hybrid scheme’s potential.

Assuming that combining the two paths of research, and
reaping. the benefits of each, is easy, is partially to blame for the
misunderstanding of the hybrid path. In our pursuit of integra-
tion between hybrid structures and aliasing-reducing structures,
we experimented with a McFarling hybrid predictor where each
of its component is a bi-mode predictor. The expectation was
that this would gain from both true hybrid behavior and reduce
aliasing. In fact the oracle selection mechanism with these pre-
dictors failed to achieve this, and the best predictor was the ver-
sion with the profiling obtained by simulating the structure size.
Once again, the benefit of reducing aliasing overwhelms the
benefits of the hybrid scheme.

5. SUMMARY
We have shown that the major contribution of hybrid pre-

dictors to enhance prediction is their ability to reduce aliasing.
In a sense the true hybrid behavior is insignificant. Therefore,
studies that work on structures to reduce aliasing should be com-
pared to known hybrid predictors and vise versa. We also
refuted the belief that dynamic selection mechanisms can cap-
ture the branch’s changing behavior. Instead we showed that the
dynamic selection mechanism works well because of its ability
to serve as a load balancer to reduce aliasing. This can be
achieved with static selection mechanism as well if proper pro-
filing is done. Different data sets, however, degrade a static
selection mechanism’s performance. For smaller predictors the
static selection mechanism performed best, while for larger pre-
dictors the dynamic selection mechanism has an edge.

Since every aspect of improvement in prediction accuracy

we investigated turned out to be due to aliasing reduction2, we

urge future studies to consider that and perform appropriate limit
studies to confirm that this is not the case with new structures/
schemes. The consolidation of the different research paths and
the fact that aliasing still degrades performance, even for large
resource allocation, should lead to further study of predictors
that reduce aliasing. Current branch predictors are not able to
take advantage of the potential in the hybrid scheme. Future pre-
dictors, however, should investigate ways to do so.

6. ACKNOWLEDGEMENT
The authors would like to thank P. Emma, M. Charney and

T. Puzak of IBM T. J. Watson research center for the S390 and
PowerPC database traces. We also like to thank Amy Claire
Harfeld for help in editing this paper.

7. REFERENCES
[1] Parthasarathy Ranganathan and Norman Jouppi. “The rela-
tive impact of memory latency, bandwidth and branch limit to
micrprocessor performance.” Presented at 1st Workshop on
Mixing Logic and DRAM: Chips that Compute and Remember,
held in conjunction with the 1997 International Symposium on
Computer Architecture, Denver Colorado, June 1997.

[2] Yeh, T-Y. and Patt, Y. “Two-Level Adaptive Training Branch
Prediction,” Proceedings of the 24th International Symposium
on Microarchitecture, 51-61, Nov. 1991.

[3] S.-T. Pan. K. So, and J.T. Rahmeh, “Improving the Accuracy
of Dynamic Branch Prediction Using Branch Correlation.” In
Proceedings of the 5th International Conference on Architectural

2. In a set of studies not presented here, we discovered
that the ‘third-level of adaptivity’ research path improve pre-
diction accuracy for the mere reason that it filters informa-
tion, and consequently reduce aliasing.

Figure 5 – McFarling vs. Bimode predictor

specINT95

0. 65

0. 7

0. 75

0. 8

0. 85

0. 9

0. 95

1

1 10 100 1000 10000 100000 1000000

p r e d i c t o r s i z e (B y t e s)

McFar l ing

McFar l ing (adjust ed)

bimode

cc1

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1

1 10 10 0 10 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0 0 0

p r e d i c t o r s i z e (B y t e s)

M cFar l ing

M cFar l ing (adjust ed)

bimode

po w e rPC

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1

1 10 10 0 10 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0 0 0

p r e d i c t o r s i z e (B y t e s)

M c Far l ing

M c Far l ing (adjust ed)

bi mode

s 390

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1

1 10 10 0 10 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0 0 0

p r e d i c t o r s i z e (B y t e s)

M c Far l ing

M c Far l ing (ad just ed)

b im ode

Support for Programming Languages and Operating Systems,
pp. 76-84, 1992.

[4] Smith, J.E. “A Study of Branch Prediction Strategies,” Pro-
ceedings of the 8th International Symposium on Computer
Architecture, 135-148, May 1981.

[5] Nair, R. Optimal 2-bit branch predictors. IEEE Trans. on
Computers, Vol. 44, No. 5, May 1995.

[6] McFarling, S. “Combining Branch Predictors,” WRL Tech-
nical Note TN-36, Jun. 1993.

[7] Talcott, A.R., Nemirovsky, M., and Wood, R.C., “The Influ-
ence of Branch Prediction Table Interference on Branch Predic-
tion Scheme Performance,” Proceedings of the 3rd International
Conference on Parallel Architectures and Compilation Tech-
niques, Jun. 1995.

[8] Young, C., Gloy, N., and Smith, M. “A Comparative Analy-
sis of Schemes for Correlated Branch Prediction,” Proceedings
of the 22nd International Symposium on Computer Architec-
ture, Italy, Jun. 1995.

[9] Chang, P., Hao, E., Yeh, T., and Patt, Y., “Branch Classifica-
tion: a New Mechanism for Improving Branch Predictor Perfor-
mance,” IEEE Micro-27, Nov. 1994.

[10] Yeh, T-Y. and Patt, Y. “Alternative Implementations of two-
level adaptive branch predictions,” Proceedings of the 19th
International Symposium on Computer Architecture, 124-134,
May 1992.

[11] A. N. Eden and T. N. Mudge. “The YAGS branch predic-
tor.” In Proceedings of the 31st International Symposium on
Microarchitecture, December 1998.

[12] Chang, P., Evers, M., and Patt, Y., “Improving Branch Pre-
diction Accuracy by Reducing Pattern History Table Interfer-
ence,” International Conference on Parallel Architecture and
Compilation Techniques, Oct. 1995.

[13] Andre Seznec and Francois Bodin, “Skewed-associative
Caches.” In proceedings of the PARLE’93, May 1993

[14] Michaud, P., Seznec, A., and Uhlig, R., “Trading Conflict
and Capacity Aliasing in Conditional Branch Predictors,” Proc.
of the 24th Ann. Int. Symp. on Computer Architecture, May
1997.

[15] Grunwald D., Lindsay D, and Zorn B. “Static Methods in
Hybrid Branch Prediction” Proceedings of the International
Conference on Parallel Architecture and Compilation Tech-
niques, 1998.

[16] Evers, M. Improving Branch Prediction by Understanding
Branch Behavior. Ph.D. Thesis, The University of Michigan,
1999.

[17] C.C. Lee, I.C. K. Chen, and T. N. Mudge, ``The bi-mode
branch predictor,'' in Proceedings of the 30th Annual ACM/
IEEE International Symposium on Micro-architecture, pp. 4 --
13, 1997.

[18] D. Burger, T. Austin, “The SimpleScalar Tool Set, Version
2.0”, Technical Report TR 1342, University of Wisconsin, June
1997

