
Appears in the 2000 International Symposium on Computer Architecture, Vancouver.HLS: Combining Statistical and Symbolic Simulationto Guide Microprocessor DesignsMark Oskin, Frederic T. Chong and Matthew FarrensDepartment of Computer ScienceUniversity of California at DavisAbstractAs microprocessors continue to evolve, many optimizationsreach a point of diminishing returns. We introduce HLS,a hybrid processor simulator which uses statistical modelsand symbolic execution to evaluate design alternatives. Thissimulation methodology allows for quick and accurate con-tour maps to be generated of the performance space spannedby design parameters. We validate the accuracy of HLSthrough correlation with existing cycle-by-cycle simulationtechniques and current generation hardware. We demon-strate the power of HLS by exploring design spaces de�nedby two parameters: code properties and value prediction.These examples motivate how HLS can be used to set de-sign goals and individual component performance targets.1 IntroductionIn this paper, we introduce a new methodology of study formicroprocessor design. This methodology involves statisti-cal pro�ling of benchmarks using a conventional simulator,followed by the execution of a hybrid simulator that com-bines statistical models and symbolic execution. Using thissimulation methodology, it is possible to explore changes inarchitectures and compilers that would be either impracti-cal or impossible using conventional simulation techniques.We demonstrate that a statistical model of instructionand data streams, coupled with a structural simulation ofinstruction issue and functional units, can produce resultsthat are within 5-7% of cycle-by-cycle simulation. Usingthis methodology, we are able to generate statistical con-tour maps of microprocessor design spaces. Many of thesemaps verify our intuitions. More signi�cantly, they allowus to more �rmly relate previously decoupled parameters,including: instruction fetch mechanisms, branch prediction,code generation, and value prediction.To demonstrate the power of this statistical simulationmodel, we present a study that relates program code char-acteristics, such as basic block size and dynamic dependencedistance, to various machine parameters. In addition, weexplore value prediction.

In the next section, we describe the HLS simulator. Nextin Section 3 we validate HLS against conventional simula-tion techniques. In Section 4, the HLS simulator is usedto explore various architectural parameters. Then in Sec-tion 5, we discuss our results and summarize some of thepotential pitfalls of this simulation technique. In Section 6,we discuss related work in this �eld. Finally, future work isdiscussed in Section 7, and Section 8 presents the conclu-sions.2 HLS: A Statistical SimulatorHLS is a hybrid simulator which uses statistical pro�les ofapplications to model instruction and data streams. HLStakes as input a statistical pro�le of an application, dynam-ically generates a code base from the pro�le, and symboli-cally executes this statistical code on a superscalar micro-processor core. The use of statistical pro�les greatly en-hances exibility and speed of simulation. For example, wecan smoothly vary dynamic instruction distance or valuepredictability. This exibility is only possible with a syn-thetic, rather than actual, code stream. Furthermore, HLSexecutes a statistical sample of instructions rather thanan entire program, which dramatically decreases simula-tion time and enables a broader design space explorationwhich is not practical with conventional simulators. In thissection, we describe the HLS simulator, focusing on thestatistical pro�les, method of simulated execution, and val-idation with conventional simulation techniques.2.1 ArchitectureThe key to the HLS approach lies in its mixture of statis-tical models and structural simulation. This mixture can beseen in Figure 1, where components of the simulator whichuse statistical models are shaded in gray. HLS does not sim-ulate the precise order of instructions or memory accessesin a particular program. Rather, it uses a statistical pro�leof an application to generate a synthetic instruction stream.Caches are also modeled as a statistical distribution.Once the instruction stream is generated, HLS symbol-ically issues and executes instructions much as a conven-tional simulator does. The structural model of the proces-sor closely follows that of the SimpleScalar tool set [BA97],a widely used processor simulator. This structure, however,is general and con�gurable enough to allow us to model andvalidate against a MIPS R10K processor in Section 3.2.The overall system consists of a superscalar micropro-cessor, split L1 caches, a uni�ed L2 cache, and a mainmemory. The processor supports out-of-order issue, dis-patch and completion. It has �ve major pipeline stages: in-struction fetch, dispatch, schedule, execute, and complete.The similarity to SimpleScalar is not a coincidence: the
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Figure 1: Simulated ArchitectureParameter ValueInstruction fetch bandwidth 4 inst.Instruction dispatch bandwidth 4 inst.Dispatch window size 16 inst.Integer functional units 4Floating point functional units 4Load/Store functional units 2Branch units 1Pipeline stages (integer) 1Pipeline stages (oating point) 4Pipeline stages (load/store) 2Pipeline stages (branch) 1L1 I-cache access time (hit) 1 cycleL1 D-cache access time (hit) 1 cycleL2 cache access time (hit) 6 cyclesMain memory access time (latency+transfer) 34 cyclesFetch unit stall penalty for branch mis-predict 3 cyclesFetch unit stall penalty for value mis-predict 3 cyclesTable 1: Simulated Architecture con�gurationSimpleScalar tools are used to gather the statistical pro�leneeded by HLS. We will also compare results from Sim-pleScalar and HLS to validate the hybrid approach. Thesimulator is fully programmable in terms of queue sizes andinter-pipeline stage bandwidth; however, the baseline archi-tecture was chosen to match the baseline SimpleScalar ar-chitecture. The various con�guration parameters are sum-marized in Table 1.2.2 Statistical pro�lesIn order to use the HLS simulator, an input pro�le of areal application must �rst be generated. Once the pro�le isgenerated, it is interpreted, a synthetic code sample is con-structed, and this code is executed by the HLS simulator.Since HLS is probability-based, the process of execution isusually repeated several times in order to reduce the stan-dard deviation of the result. This overall process ow isdepicted in Figure 2.

Statistical data collection of actual benchmarks is per-formed in the following manner:� The program code is compiled and a conventional bi-nary is produced. This binary is targeted for the Sim-pleScalar tool suite.� The binary is run on a modi�ed SimpleScalar sim-ulator. The statistical pro�le consists of the basicblock size and distribution and a histogram of thedynamic instruction distance between instructions foreach major instruction type (integer, oating-point,load, store, and branch). This dynamic instructiondistance forms a critical aspect of the statistical pro-�le and will be discussed further in this section.� The binary is also run on a standard SimpleScalarsimulator. Here, statistics about cache behavior andbranch prediction accuracy are collected.These steps were performed on the SPECint95 bench-mark suite. A summary of the results (less dynamic depen-dence information) is presented in Table 2. Note that theaverage basic block size is around 5 instructions, and thewide variability in each of these averages (as indicated bythe high standard deviation). This variability was modeledin the simulator.Across most benchmarks, we found a relatively highbranch predictability of 86-91%. This �gure is a combina-tion of both correctly predicted branches using the 2-levelbimodal branch predictor and those that were statically de-termined (such as jumps). The exception is the go bench-mark which has very poor predictor performance.Table 2 shows that two distinctive L1 I-cache behaviorsare occurring. The compress, ijpeg, and li benchmarks haveextremely good L1 I-cache hit rates, while gcc, m88ksim,perl and go have high but not extremely high I-cache hitrates.Dynamic instruction distance (DID), or the distance be-tween an instruction and the instructions that are depen-dent upon it within the dynamic instruction stream, is a
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Figure 2: Simulation processValue perl compress gcc go ijpeg li m88ksim vortexBasic block size (�) 5.21 4.69 4.93 5.96 6.26 4.39 6.25 5.78Basic block size (�) 3.63 4.91 4.57 5.16 12.65 3.04 5.33 5.54Integer Instructions 30% 42% 38% 51% 53% 34% 54% 31%FP Instructions 1% <1% 0% 0% 0% 0% 0% 0%Load Instructions 31% 22% 27% 23% 22% 26% 21% 26%Store Instructions 18% 12% 15% 8% 10% 17% 9% 25%Branch Instructions 19% 21% 20% 17% 16% 23% 16% 18%Branch Predictability 91.4% 86.3% 87.6% 81.8% 90.0% 87.9% 91.8% 97.4%L1 I-cache hit rate 96.4% 99.9% 93.7% 95.0% 99.1% 99.9% 94.1% 90.2%L1 D-cache hit rate 99.9% 84.6% 97.8% 96.6% 99.1% 98.4% 99.6% 97.8%L2 cache hit rate 99.9% 99.1% 97.3% 96.9% 94.5% 99.8% 99.1% 97.6%Table 2: Statistical baseline parameters for SPECint95 (ref input, �rst 1 billion instructions)
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Figure 3: Dynamic instruction distances (perl)signi�cant statistical component in the performance of anapplication. Intuitively, longer DID permits more overlapof instructions within the execution core of the processor.In Section 4, we demonstrate this intuitive result, but notethe limitations on performance of solely extending the DID.Here we note that overlap of instructions or instruction levelparallelism (ILP) is a contributor to performance. In orderto correctly model a superscalar microprocessor, HLS mustuse DID information from real programs.The DID information for the perl SPECint95 benchmarkis presented in Figure 3. (Although the DID is program de-pendent, space considerations permit us to only illustratethe consolidated DID information for a single benchmark.)While a parameterized model can be formulated to char-acterize the DID for a speci�c application, we found DIDto be a critical factor in the accuracy of HLS. Hence, wechose to directly extract a histogram from SimpleScalar ofDID information. Note that for each instruction type, two

histograms of DID are utilized (one for each possible de-pendence).2.3 Statistical Code GenerationOnce the statistical pro�le is generated, the �rst step in thesimulation process is to generate the symbolic code sample.This symbolic code consists of instructions contained in ba-sic blocks that are linked together into a static programow-control graph, very much like conventional code. Thedi�erence is in the instructions themselves. Instead of con-taining actual arguments, each \instruction" contains thefollowing set of statistical parameters:� Functional unit requirements are described by a sin-gle parameter that speci�es which functional unit isrequired inside the execution core of the processor tocomplete the instruction. This requirement is stati-cally assigned to each instruction at code generationtime and the distribution of functional unit require-ments follows the breakdown of instruction types asshown in Table 2. This is done on a program-by-program basis.� L1I-p, L1D-p, L2I-p, L2D-p: The L1 I-cache, L1 D-cache and L2 cache behavior is classi�ed into four nor-mal distributions with a mean centered around thehit rate gathered from direct program simulation us-ing SimpleScalar. Although the simulator permits theL2 cache to be split, for this study L2I-p and L2D-pare set equal. This corresponds to the baseline Sim-pleScalar con�guration.
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Figure 4: Simulation IPC convergence time (cycles)� Dynamic instruction distances: These parameters aredetermined from the histogram pro�le obtained fromsimulation with SimpleScalar. They determine whichinstructions the current instruction is dependent upon,in a dynamic sense. These are not linked statically,but rather only the distance is stored. As instruc-tions are fetched, the dependencies are �nally resolvedat execution-time. Care is taken in the code genera-tor to prevent the DID from pointing to a store or abranch, which would make an instruction dependentupon another instruction that in real code would notordinarily form the basis for a dependence.Finally, each basic block is of a size determined by thenormal distribution of code sizes gathered from simulationwith SimpleScalar. Each basic block terminates with abranch, and the predictability of that branch is assignedby the code generator. The predictability is assigned bythe branch prediction accuracy gathered from direct simu-lation. The various branch prediction accuracies and basicblock size parameters for each application are shown in Ta-ble 2.2.4 ExecutionExecution of the HLS simulator is similar to a conven-tional simulator. The instruction fetch stage interacts withthe branch predictor and I-cache system to fetch \instruc-tions" and send them to the dispatch stage. The dispatchstage interprets these instructions and sends them to thereservation stations. Once all input dependencies have beenresolved, the instruction moves from the reservation unit toan available functional unit pipeline. After executing in afunctional unit, the result is \posted" to the completionunit if a result bus is available.The observed IPC from HLS converges quickly duringexecution. Figure 4 depicts the IPC within HLS as in-structions ow through the processor core for the �rst ten-thousand simulated machine cycles. Note that IPC rapidlysettles down after the �rst one-thousand cycles, and aftersix-thousand cycles remains relatively constant.The structural resources within the statistical simulatorare sized to match the structural resources within the sim-outorder SimpleScalar simulator. This provides the basisfor the validation of HLS using SimpleScalar, as well asthe use of SimpleScalar as a source of program statisticalpro�les.
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Figure 5: Simulated code exampleBenchmark Simple- HLS HLS Errorscale IPC IPC IPC �perl 1.10 1.12 0.03 2.3%compress 1.70 1.76 0.05 3.2%gcc 0.89 0.93 0.04 4.4%go 0.87 0.86 0.02 0.1%ijpeg 1.67 1.74 0.04 3.7%li 1.40 1.38 0.07 1.8%m88ksim 1.32 1.30 0.04 1.7%vortex 0.87 0.83 0.02 4.8%Table 3: Correlation between SimpleScalar and HLS Simu-lators for SPECint95 (test input)3 Validation and LimitationsOnce a statistical pro�le is generated, that pro�le is ex-ecuted several times and an average instructions per cycle(IPC) is calculated. The IPC is then used to gauge the rel-ative performance di�erences between two experiments. Itis important, however, to validate this simulation techniqueand ensure that the IPC reported by HLS is relevant. Fur-thermore, the statistical model is not perfect. Clearly, weBenchmark Simple- HLS HLS Errorscale IPC IPC IPC �perl 1.27 1.32 0.05 4.2%compress 1.18 1.25 0.06 5.5%gcc 0.92 0.96 0.03 3.9%go 0.94 1.01 0.04 6.8%ijpeg 1.67 1.73 0.06 3.9%li 1.62 1.50 0.06 7.2%m88ksim 1.16 1.14 0.03 1.5%vortex 0.87 0.83 0.03 5.1%Table 4: Correlation between SimpleScalar and HLS Simu-lators for SPECint95 (ref input)



Optimization Simple- HLS HLS ErrorLevel scalar IPC IPC IPC �none 1.23 1.35 0.09 9.9%-O 1.09 1.11 0.04 2.3%-O2 1.16 1.18 0.03 2.0%-O3 1.33 1.33 0.05 0.2%Full opt. 1.40 1.38 0.07 1.8%Table 5: Correlation between SimpleScalar and HLS Simu-lators for xlisp compiled with various optimization levelsBenchmark R10K HLS HLS ErrorIPC IPC IPC �perl 1.01 1.09 0.05 7.8%compress 0.70 0.69 0.04 2.6%gcc 0.93 0.96 0.05 3.8%go 0.99 0.98 0.06 0.9%ijpeg 1.45 1.40 0.09 4.0%li 0.85 0.90 0.07 6.0%m88ksim 1.15 1.15 0.08 0.1%vortex 0.83 0.82 0.06 1.0%Table 6: Correlation between MIPS R10k and HLS Simu-lators for SPECint95 (ref input)cannot utilize the model to predict with perfect accuracythe performance of a benchmark over all possible ranges ofprocessor con�gurations and component performances. Itis important to �nd where the model works and where itdoes not.3.1 Execution CorrelationsTables 3 and 4 list the experimental results from execut-ing the SPECint95 benchmarks on both the test and refer-ence inputs in SimpleScalar versus the statistical simulator.Across the board, we note that the error (the di�erence be-tween the two simulation techniques) is less than 4.8% and7.2% respectively. This is for benchmarks with signi�cantlydi�erent cache behaviors and code pro�les. This agreementwith such small error across eight di�erent benchmark ap-plications and two di�erent input sets is encouraging anda substantial correlation point for the hybrid statistical-symbolic execution model of study.3.2 Hardware CorrelationWhile HLS was designed to model the same architecture asSimpleScalar, it can be con�gured to model a MIPS R10Kprocessor. We validated against a 250 MHz MIPS R10Kprocessor in an SGI Octane system running IRIX V6.5. Toobtain the statistical pro�le required for HLS, we gatheredthe DID from SimpleScalar, and cache and branch predictorbehavior using the \Perfex" performance monitoring toolavailable on the IRIX operating system [ZLTI96].The correlations of HLS with this processor are shownin Table 6. Note that HLS correlates to within 7.7%, withan average error of 3.2% across all benchmarks.There is also one other statistical di�erence of note be-tween modeling SimpleScalar and modeling the R10K. Cachehit rates for SimpleScalar can be modeled accurately in HLSwith a uniform distribution. Hit rates for the R10K, how-ever, require a more complex model which uses a normal

0

0.2

0.4

0.6

0.8

1

1.2

0.73 0.78 0.83 0.88 0.93

Branch Prediction Accuracy

IP
C

SimpleScalar IPC HLS IPCFigure 6: Correlation between SimpleScalar and HLS forBranch Prediction Accuracy.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

L1 I-cache hit rate

IP
C

SimpleScalar IPC HLS IPCFigure 7: Correlation between SimpleScalar and HLS forL1 I-cache hit rate.distribution with a variance corresponding to the R10K. Wesuspect that this is necessary to account for machine andoperating system e�ects, such as servicing program I/O andcontext switching, which alter cache behavior.3.3 Single-value CorrelationsAlthough several validation experiments are possible, inthis paper we focus on those that form the �rst-order ef-fects on performance: cache and branch prediction behav-ior. We will show that the HLS simulator behaves similarlyto SimpleScalar under varying branch prediction accuracy,L1 I-cache hit rate, L1 D-cache hit rate, and compiler op-timization levels.We will also show that there are ranges of statisticalparameters where the HLS simulator is not accurate. Al-though the HLS simulator precisely models the structure ofa superscalar microprocessor, several sources of statisticalerror can be introduced. It is important to identify wherethe HLS simulator will have unacceptable error, so that itis not used inappropriately.Figure 6 plots IPC versus branch prediction accuracy asreported from both SimpleScalar and HLS running the perl



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

L1 D-cache hit rate

IP
C

Simple Scalar IPC HLS IPCFigure 8: Correlation between SimpleScalar and the Statis-tical Simulator for L1 D-cache hit rate.SPECint95 benchmark application. SimpleScalar branchprediction accuracy was varied by modifying the branchprediction table size. For each SimpleScalar run, branchprediction accuracy was measured and input into HLS toproduce a corresponding data point. Note that, above 80%branch prediction accuracy, the HLS and SimpleScalar sim-ulators are within 6% of each other. At less than 80% ac-curacy, HLS and SimpleScalar begin to diverge. At 75%accuracy, the error between the HLS and SimpleScalar sim-ulators is 15%. From these results it is clear that the branchpredictor model within the HLS is usable with branch pre-diction accuracies greater than 80%.Figure 7 plots the reported IPC as we vary the L1 I-cache hit rate for perl. Using SimpleScalar, the hit rate isvaried by changing the cache size, while in HLS the hit rateis input directly. The �gure shows that for I-cache hit ratesabove 90%, HLS and SimpleScalar are within 5% of eachother. For hit rates in the 80-90% range, they agree within20%. The simulation model performs well on all of theSPECint95 benchmarks because they all exhibit L1 I-cachehit rates greater than 90% in the baseline con�guration.Future work may seek a more accurate L1 I-cache model tobring down the observed performance di�erences.Figure 8 is similar to �gure 7, except that the IPC isplotted for varying L1 D-cache hit rates. The HLS andSimpleScalar simulators can be seen to be within 7% ofeach other with L1 D-cache hit rates greater than 80%. Be-tween 70-80% hit rate, the error is 8%. The error climbsto 15-35% with cache hit rates from 50-70%. Thus, withcache hit rates greater than 80%, the HLS simulator pro-vides reasonable results. Similar to L1 I-cache behavior,more accurate statistical models will be required to modelpoorly performing data caches. For this study, the focuswill be on cache hit rates greater than 80%.Finally, Table 5 lists the reported IPC from SimpleScalarand HLS when executing the xlisp benchmark compiled un-der various degrees of compiler optimization. At any opti-mization level, the HLS simulator is very accurate, witherrors within the 3% range. When no optimization is used,the error climbs to 10%. This is attributable to the in-creased number of NOP instructions introduced by the com-piler. These instructions cause the statistical simulator toacquire too high of a non-dependence factor in the dynamicinstruction distance gathering phase. Unlike a conventionalsimulator, HLS will distribute these non-dependencies across
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Figure 11: Multi-value correlation between SimpleScalarand the Statistical Simulator for L1 I-cache hit rate vs. L1I-cache miss penalty. (Perl)
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Figure 12: Multi-value correlation between SimpleScalarand the Statistical Simulator for L1 I-cache hit rate vs. L1I-cache miss penalty. (XLisp)while the dotted lines were generated in SimpleScalar. Togenerate the SimpleScalar results we varied the branch pre-dictor table size and instruction cache size. Note that thesolid vertical line on each graph represents the limit of thebranch predictor accuracy attainable in SimpleScalar { it isthe point at which further increases in the branch predictortable size did not increase branch prediction accuracy. Asdepicted in the graph, HLS and SimpleScalar agree quiteaccurately for instruction cache hit rates greater than 90%.Below 90% a decreasing level of accuracy is observed.Figures 11 and 12 depict IPC as instruction cache hitrate is varied against cache miss penalty. Here we see asimilar level of accuracy to the previous instruction cachecorrelations. Instruction cache hit rates above 90% are veryaccurate, while cache hit rates below 90% are suitable fortrend analysis only. One interesting feature of Figure 12is the non-smooth contour map between 0.93 and 0.97 onthe cache hit ratio axis. This non-smooth behavior leadsto an interesting discussion about the use of HLS and thecaution a user should have about its results. If parametersare varied within a real superscalar processor other ma-chine parameters will not remain constant. While the HLSsimulator allows the user to �x all other machine param-eters, one must be aware that in reality they will change.

This e�ect can be seen as the uni�ed L2 cache hit rate andbranch prediction accuracy are indirectly altered by vary-ing the cache hit rate and miss penalty. This topic will bediscussed further in Section 5.3.5 Summary and DiscussionFrom these results, we conclude that HLS represents a vi-able method of simulation within the ranges of statisticalpro�les that we are interested in. Outside of these ranges,the accuracy of HLS is suitable only for general trend anal-ysis and not for discrimination of closely related points.There are three major sources of error in the HLS simula-tor:First, HLS generates random code based upon a statisti-cal pro�le of the original source. One source of error in thiscode generation process is that the relationship between in-structions is mostly lost. Dynamic dependence informationis maintained, but it is used imprecisely with dependenciesbetween instructions that do not correspond exactly to theoriginal source �le. Although the generated code and theoriginal code maintain the same statistical nature, they arein fact substantially di�erent.Second, the cache and branch predictor are modeled assimple normal distributions. Except where noted, thesenormal distributions are uniform distributions with a pre-scribed accuracy or hit rate. It is not a coincidence thatthe most accurate correlation between the SimpleScalar andHLS simulators occur when the rate approaches 100%. Witha perfect branch predictor or a perfect cache, the HLS andSimpleScalar cache models would be equivalent.Third, there is no load-value or instruction fetch miss-value correlation modeled in the simulator. We suspectthat not modeling these correlation e�ects contribute tothe cache model inaccuracies at hit rates below 90%.Despite these sources of error, if areas of study are con-�ned to where HLS is accurate, interesting experiments canbe performed that would otherwise be extremely hard orimpossible to do using conventional simulation techniques.We present the results from two of these experiments in thenext section.4 Application of HLSIn order to demonstrate the power of this methodology, wedecided to explore two aspects of processor performancethat are uniquely suited to study using this hybrid statisti-cal simulation approach: program characteristics and valueprediction. Our results indicate that HLS correlates wellwith the entire SPECint95 benchmark suite. The resultspresented in this section will be for the perl benchmark,chosen because it has an IPC (1.1) that is in the middle ofthe SPECint suite.Most of our results are presented using iso-instructions-per-cycle (iso-IPC) contour plots, which relate two parame-ters and plot a two-dimensional view of a three-dimensionalspace. Each contour line in the graph represents a constantIPC. An example of such a plot is depicted in Figure 13.Such iso-IPC plots graphically depict the design-space oftwo parameters. Each is generated utilizing over 400 in-dividual data-points collected from 8,000 runs of the HLSsimulator. Each contour map presented requires approxi-mately six hours to generate on a 450 Mhz Pentium-II. Bylowering the number and length of each iteration it is pos-sible to generate a contour map in 15 minutes. Such a mapdoes have higher standard deviation in the results, but is
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0.70.6Figure 14: Branch prediction accuracy versus basic blocksizeaccurate enough to provide quick insight to the processordesigner.4.1 Varying Code PropertiesThe HLS simulation methodology allows the user to sys-tematically vary the properties of the code being simulated.This is a very powerful capability and provides a way tostudy the e�ects of two code properties normally very hardto modify: the basic block size and the dynamic instructiondistance.Figure 14 depicts application performance as the branchprediction accuracy and basic block size change. This �g-ure shows that given the accuracy of current branch predic-tors, moderate increases in basic block size will bring aboutnoticeable performance improvements. As expected, thelargest performance gains occur as basic block sizes growfrom one to �fteen instructions. Performance gains quicklydiminish after this, with no signi�cant performance gainsobserved when the block size is greater than 35 instruc-tions.In Figure 15, the relationship between basic block sizeand L1 I-cache hit rate is presented. This �gure showsthat, for basic block sizes between 1 and 4 instructions,the basic block size has the largest e�ect on performance.Beyond 4 instructions, however, the L1 I-cache becomes thedominating factor.Similarly, in Figure 16, the basic block size versus dy-
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Figure 16: Basic block size versus dynamic instruction dis-tancenamic instruction distance is plotted. Two observationscan be made from studying this graph: First, moderatedynamic instruction distances are required for reasonableperformance. This is evident from the lower regions of thegraph, with DID values of four or less. Second, the basicblock size quickly becomes the dominating factor in perfor-mance.4.2 Value PredictionValue prediction is currently an active area of research. Sev-eral value prediction schemes have been proposed in theliterature, but these schemes have shown only moderateincreases in IPC [LS96] [TS99] [CRT99] [MGS99] [GM98][LWY00]. To simulate value prediction a value predictorand the ability to do speculative execution based on pre-dicted values was added to the basic HLS structural model.The value predictor is added to the dispatch stage. In-structions determined to be predictable by the predictorunit are sent speculatively to the completion stage. A copyof that instruction is also sent to the scheduling phase toperform a check. Within the scheduling phase, if an instruc-tion's operands are not directly available, but predictedoperand values are, then the instruction may execute spec-ulatively on the predicted operands. In this case, no checkof the instruction is performed, because if the instructionwas executing on incorrect data values a mis-speculation



would have occurred earlier on a predicted instruction sentto the completion stage speculatively by the dispatch stage.Our value prediction scheme implements two commonmechanisms. First, we introduce a con�dence thresholdand con�dence values associated with a prediction [CRT99].Speculative execution only occurs if the con�dence value ofthe predictor is greater than or equal to the threshold. Sec-ond, we use the same mechanism on mis-speculations thatthe branch predictor uses to roll-back from a mis-speculatedbranch [CRT99] [GM98]: The fetch, dispatch, schedule, ex-ecution and completion units are ushed of mis-speculatedvalues, and the fetch unit is directed to refetch from thestart of the mis-speculation.To control value prediction the following additional pa-rameters are introduced into the code stream:� Value prediction predictability (VPP-p) informs thesimulator of the inherent predictability [SS97] of theoutcome of the instruction. This parameter is mod-eled using a normal distribution. The simulator mod-els value prediction at a high level, not taking intoaccount how the hardware may achieve a certain pre-diction level. This parameter along with the next twoparameters determines the overall value prediction be-havior.� Value prediction knowledge (VPK-p) controls how wellthe value predictor inside the simulator will be ableto predict the instruction given the instruction's in-herent predictability. This parameter also is modeledusing a normal distribution. To understand the dif-ference between VPK-p and VPP-p, consider a last-value predictor versus a stride predictor on the sameinstruction stream. The VPP-p of that code remainsthe same, since there will be a certain intrinsic pre-dictability for the stream, but the VPK-p of the stridepredictor will be higher than the VPK-p of the last-value predictor.� Value prediction con�dence (VPC-p) speci�es how con-�dent the predictor is in the prediction. This param-eter is also modeled using a normal distribution. HLScompares this parameter to a cut-o� threshold to de-termine when the superscalar core should use a pre-dicted value. For example, an instruction with a lowVPK-p and high VPC-p will be predicted, but prob-ably incorrectly (if VPP-p is low). However, a valuewith a high VPK-p but low VPC-p may not be pre-dicted, even if the value predictor is likely to make acorrect prediction.The goal of value prediction is to break true data depen-dencies by predicting the data value instead of waiting forit to be generated. Another way to achieve a similar resultis by lengthening the dynamic instruction distance, ensur-ing that dependent instructions have completed by the timean instruction is ready to execute. This relationship is il-lustrated in Figure 17, which utilizes a fully knowledgeablepredictor and varies both the inherent value predictabil-ity and dynamic instruction distance within a code stream.The �gure shows the direct relationship between DID andvalue predictability, and suggests that perhaps any perfor-mance gains due to value prediction might also be achievedby optimizing compilers.Figure 18 explores the trade-o� between inherent valuepredictability and value prediction accuracy. Since the base-line IPC for this graph is 1.1, a substantial region within
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Value Prediction Knowledge (70% Predictability, Full Confidence)
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Value Predictability (Perfect Knowledge & Full Confidence)
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as these two parameters vary. Similarly, Figure 22 depictshow the branch prediction accuracy varies from 86.7% to90.0%. These two changes are most a�ected by the instruc-tion cache hit rate; however, slight variations are seen withchanges in the cache miss penalty.In summary, while HLS is a useful tool for quick explo-ration of the design space, it should be used judiciously.6 Related workSeveral research e�orts have approached the problem of ar-chitecture simulation by statistical means. Perhaps the ef-fort most similar to HLS is that under taken in [CS98] [JES].Their approach uses an actual execution trace as the start-ing point for symbolic execution. The program trace issystematically replaced with statistical parameters and thee�ects measured. Our approach is similar, but uses an exe-cution rather than trace driven model. E�orts are currentlyunderway to reconcile the two approaches.A di�erent approach to statistical performance model-ing was used in [NS94]. A performance model was con-structed based on the interactions between machine andprogram parallelism. This work extended an earlier modelpresented in [Jou89]. With these models, benchmarks areanalyzed and performance is estimated directly by appli-cation of a formula relating program and machine paral-lelism. This same research group continued their statis-tical modeling work in [NS97]. A set of Markov modelswere constructed to represent machine behavior while ex-ecuting a speci�c benchmark. These models where thenlinked together and performance estimated. This approachis more abstract than the direct symbolic execution methodpresented here, and the authors focus on more ideal ma-chine models. However, extremely accurate performanceestimates are achieved.In some respects the goals of our approach are simi-lar to the goals of the creators of the synthetic Whetstone[CWW76] and Dhrystone [Wei94] benchmarks. However,we attempt to provide an automated approach to generat-ing a synthetic benchmark. Furthermore this automatedapproach is based upon analysis of real programs and isdemonstrably more representative of actual machine per-formance.7 Future workThis work can be extended in several directions. In thispaper we have focused on current generation microproces-sors. We also intend to explore future generation super-scalar processors. For instance, Figure 23 compares issuewidth versus dynamic dependence distance assuming a per-fect cache and a basic block size of 100 instructions. The �g-ure shows that as superscalar processors become wider, theDID must increase commensurately. This is not a surprise,but we do note that DID must increase slightly more com-pared to issue width to achieve comparable performance.Future work will also explore deeper pipeline depths, sinceas clock speeds increase pipeline depths will continue toincrease throughout the processor.Our current model focuses on aggregate performance forSPECint95. Clearly, the SPEC benchmarks are not theonly programs that are of interest to computer architects.We would like to pursue additional benchmarks, such asOLTP applications, and expect that the statistical collec-tion process may have to change to accurately model these
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0.75Figure 23: Super-scalar issue width versus dynamic instruc-tion distance assuming a perfect I-cache and basic block sizeof 100 instructionsdata-intensive applications.Finally, the current simulation technique does not useany information about correlation between load instruc-tions and misses in the caches. Future work will investi-gate integrating this knowledge from SimpleScalar back intoHLS, in the hopes of further improving the correlations atextreme cache behaviors.8 ConclusionIn this paper, we have presented a new simulation technol-ogy. This simulation method combines statistical pro�leswith symbolic execution. The simulator allows several ma-chine parameters to be varied and their relationship stud-ied in far �ner and more accurate detail than previouslypossible. Furthermore, by using synthetic code streams,we can easily and systematically vary parameters such asbasic block size, dynamic instruction distance, branch pre-dictability and cache behavior. We expect this simulationmethodology to be bene�cial in the study of both conven-tional and novel architectures. The simulation techniqueallows the processor designer to peer into the design space,study how parameters interact, and set performance tar-gets for individual components of an architecture. This canhelp re�ne ideas more quickly by providing empirical datato evaluate design decisions.AcknowledgmentsThanks to Jim Smith for pointing us to prior work andsuggesting the convergence graph in Figure 4. Additional,thanks to Dan Sorin, David Woods, Shubhendu Mukher-jee, Tim Sherwood, Deborah Wallach, Diana Keen, andour anonymous referees. This work is supported in partby an NSF CAREER award to Fred Chong, by NSF grantCCR-9812415, by grants from Mitsubishi and Altera, andby grants from the UC Davis Academic Senate. More in-formation is available at http://arch.cs.ucdavis.edu.References[BA97] D. Burger and T. Austin. The SimpleScalar tool set, v2.0.Comp Arch News, 25(3), June 1997.[CRT99] Brad Calder, Glenn Reinman, and Dean M. Tullsen. Se-lective value prediction. In International Symposium onComputer Architecture ISCA99, Atlanta, Georgia, June1999. ACM.
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