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Chapter 1. Introduction 1
Chapter 1IntroductionIn order to satisfy the ever-growing computational requirements of computer users,computer manufacturers continue to strive for faster and faster designs. Over theyears, many di�erent approaches have been used to improve processor performance.For example, CRAY-class computers focus on driving up the clock frequency, whileComplex Instruction Set Computer (CISC) machines attempt to reduce the numberof instructions required to complete a task. Most current single-chip processorstry to both maximize the clock frequency and minimize the average clock cyclesrequired per instruction (CPI).While increases in clock frequency continue to drive the improvement in pro-cessor performance, chip designers have also looked to other techniques to improveperformance. For example, instruction throughput can be increased by locating in-structions that have no dependent relationship and executing those instructions inparallel. This parallelism comes in two forms: Instruction Level Parallelism (ILP)and data parallelism. By exploiting this parallelism, the CPI term can be reduceddramatically.1.1 Finding Parallelism in a Program1.1.1 Instruction PipeliningInstruction pipelining is a processor implementation technique which separates theexecution of an instruction into distinct pipeline stages and allows one or moreinstructions to be in each stage during any clock cycle. The ability to supportmultiple instructions in the pipeline is possible because each pipeline stage requiresdi�erent processor resources The independence of pipeline stages makes it possibleto complete one instruction completion per cycle. As chip designers look to continuethe increase clock frequency, there is a corresponding increase in pressure to reducethe number of gates traversed during each cycle, and thereby require more pipelinestages to execute an instruction. Increasing the number of pipeline stages can exac-



Chapter 1. Introduction 2erbate the di�culty in �nding independent instructions to �ll those pipeline slots.This limits the ability to achieve improved performance through pipelining alone;further mechanisms must be explored to identify and exploit additional parallelismto obtain more performance.1.1.2 Instruction Level ParallelismInstruction level parallelism is a measure of the number of instructions that canbe issued during a single clock cycle 1. These instructions must not compete forthe same resources and must not have a dependence (e.g. a value generated byone instruction and used by another). Independent operations exist because of thecharacteristics of the programming model, which separates a task into a numberof di�erent subtasks (execution control 
ow, memory I/O activity, data manipu-lation, etc). In many cases these operations are completely independent (e.g. thecalculation of an address used to fetch data often has nothing to do with the even-tual manipulation of that data) and are therefore prime candidates for executingin parallel.1.1.3 Data ParallelismData parallelism, in contrast to ILP, is a property of the task itself. Some taskscontain data manipulations that are completely independent from one another.These tasks can be thought of as containing explicit parallelism that can be ex-ploited regardless of the programming model employed. Many architectures existwhich exploit data parallelism, including vector processors [1], Single InstructionMultiple Data (SIMD) [2] designs, Multiple Instruction Multiple Data (MIMD) [3]designs, and data
ow machines [4].The key di�erence between instruction level parallelism and data parallelism isthe di�erence in locality of the dependencies between adjacent instructions; instruc-tion level parallelism exists when instructions are independent from some adjacentinstructions but may have dependencies with others that are close in the execu-tion stream. Allowing dependencies between close instructions requires the abilityto support frequent bi-directional communication between operational units. Thishigh level of communication is often unnecessary in data parallel applications wherethe task can be decomposed into far more independent pieces.1Instruction issue refers to the act of assigning an instruction to a functional unit. A commonfour stage pipeline design consists of instruction fetch, decode, execute and write-back stages withinstructions being issued to the execute stage.



Chapter 1. Introduction 31.2 Exploiting parallelism using multiple instruc-tion streamsExtracting parallelism on a MIMD architecture has traditionally been accomplishedby partitioning a program into data independent portions and assigning them toseparate processing elements, ignoring any other parallelism that might exist. Ex-amples of this type of architecture include the MIT Alewife machine [6], the Stan-ford DASH architecture [7], and the Wisconsin Windtunnel design [8]. The sepa-ration of a program into multiple single issue instruction streams allows the decen-tralization of the hardware resources in these architectures by replacing a centralinstruction window with multiple windows from which instructions can be issued.Furthermore, each of these instruction windows can be less complex. The register�le can also be distributed among all processors in a MIMD design reducing registeraccess contention. This eliminates the need for complex multi-access memory cells(required by a centralized register �le) providing greater expandability.While a MIMD approach to code scheduling clearly possesses certain advan-tages, historically these architectures have su�ered from severe limitations. Datatransfer latencies have been high, and the bandwidth required to support high-throughput, low contention data transfer between processors has been unavailablebecause of pin and/or board-level interconnect limits. In addition, it is often nec-essary to synchronize the di�erent instruction streams in order to ensure programcorrectness. Including these synchronization points can cause unacceptable perfor-mance loss. Using main memory to handle data transfers between processors canalso lead to an unacceptable dependence on memory latency. These problems helpexplain why current MIMD designs do not attempt to exploit ILP.Both bandwidth and latency limitations in MIMD designs can be overcome ifsu�cient resources can be allocated to place all of the processors on the same chip.Increasing the number of transistors that can be fabricated per square centimeterprovides a means by which many of the interprocessor communication problems canbe eliminated. Placing several processing elements on the same die circumvents thepin limitations on bandwidth, and supports high on-chip data transfer rates. In ad-dition, using First-In-First-Out (FIFO) ordered queues in a manner similar to thatused by decoupled machines [9] provides a clean way to handle synchronization.As transistor densities have continued to increase, single chip MIMD designsare now becoming feasible. One study [10] indicates that as tens of millions oftransistors become available, something more than simply increasing on-chip cachesizes must be done. This observation led to the design of the Multiple Instruc-tion Stream Computer (MISC) architecture, a decoupled MIMD machine that isdesigned to support and exploit instruction level parallelism [11].



Chapter 1. Introduction 41.3 A Multiple Instruction Stream ComputerThe MISC architecture was designed to study a wide range of design points inexploiting all levels of parallel program execution. To enable this study, the MISCdesign incorporates many of the characteristics of shared memory and messagepassing architectures, as well as the capabilities of previous decoupled and otherILP designs. It was hoped that this approach would exploit both the instruction anddata parallelism available in a task by combining the capabilities of traditional dataparallel architectures with those found in machines designed to exploit instructionlevel parallelism. For example, MISC is designed to support multiple instructionissue without increasing the complexity of instruction issue logic or a�ecting clockfrequency. Furthermore, the regularity and simplicity of the MISC design shouldenable a shorter design cycle and increased scalability.1.4 The Compiler's RoleThe role of the compiler in an ILP processor di�ers widely depending on the typeof processor. A superscalar processor requires no special help from the compilerspecifying the parallelism available | the hardware is responsible for identifyingany independent operations that can be issued on the same clock cycle. At the otherextreme, a VLIW compiler is responsible for generating a complete speci�cation ofthe parallelism in the program | the hardware simply executes the instructions inthe order speci�ed in the schedule.There is a performance tradeo� (in both execution and design time) betweencompiler (static) and hardware (dynamic) scheduling; the more information thecompiler can convey to the hardware, the simpler the hardware design can be. Thisleads not only to shorter design time, but also to higher clock frequencies. However,requiring the compiler to completely specify the available parallelism can limit theportability of the generated code; even if alternate implementations can execute agiven binary, a severe performance degradation may result.A second problem with the current architectural model used during compilationis the extensive use of centralized mechanisms to distribute the results of compu-tations. For example, a centralized register �le is assumed which links dependentoperations from all processing resources. This limits the scalability of these designs.To eliminate these de�ciencies a more 
exible, decoupled architectural modelis proposed. The idea is to reduce the complexity of the implementation by in-creasing the ability of the programmer (or compiler) to specify the parameters ofexecution. This leads to a design which has di�erent goals than most current ILPmachines. These design goals include decentralizing the resource requirements foreach phase of the instruction pipeline, the ability to exploit the locality found inprogram execution, simple RISC-like implementation, and an object format that al-lows the compiler to convey more information about instruction order and resource



Chapter 1. Introduction 5allocation than current ILP designs convey.1.5 Contribution of this DissertationThis thesis contains a number of contributions to the �eld of computer architecture:� A new architecture is proposed which utilizes a more scalable decentralizedinstruction fetch mechanism than found in current processors, a simpli�eddecode pipeline stage, a decentralized register �le and a distributed internalprocessor clock.� The design and construction of a compiler capable of distributing general Ccode across multiple asynchronous processors in a manner that enables greatertolerance of high operational latencies.� Experimental analysis of the e�ectiveness of exploiting instruction level par-allelism by employing multiple program counters in a MIMD architecture.It will be demonstrated that the MISC system is capable of achieving highperformance execution comparable to that of current superscalar designs.� Memory system enhancements supporting out of order memory operationsand improved cache management. These enhancements are shown to improvecache hit rates beyond that of current approaches and are equally applicableto MISC and superscalar processor designs..1.6 Organization of this DissertationThe remainder of this dissertation is organized into six chapters as follows:� Chapter 2 provides a more detailed discussion of ILP and describes existingapproaches used to extract that parallelism.� Chapter 3 introduces a new multiple instruction stream architecture capableof exploiting ILP without the necessity of a centralized clock or centralizedresources.� Chapter 4 describes the compiler constructed to translate C source code tothe MISC architecture.� Chapter 5 analyzes the e�ectiveness of the MISC architecture in exploitingparallelism in two sets of benchmark applications traditionally used to mea-sure the performance of superscalar, VLIW and other high performance, ILParchitectures.



Chapter 1. Introduction 6� Chapter 6 examines the performance of the MISC memory interface, compar-ing an improved interleaved cache approach to that of a multi-ported cachedesign.� Chapter 7 concludes this dissertation and describes the future research po-tential of the MISC approach for improving processor performance.� Appendix A gives a description of the MISC instruction set, including a de-tailed description of each MISC instruction.



Chapter 2: Instruction Level Parallelism 7
Chapter 2Instruction Level ParallelismThe amount of instruction level parallelism in a program is a measure of the num-ber of instructions that can be issued during the same cycle and is a function ofthe dependencies and operational latencies of the program. Several di�erent typesof dependencies can exist in a program as implemented on a certain architecture:These can be broadly categorized as data and control dependencies. A data de-pendency exists when data which is generated by one instruction is used by asubsequent instruction; since the data use (read) occurs after the de�nition (write),this is referred to as a Read After Write (RAW) or true dependence. Additionaldependencies can also occur due to the reuse of processor resources, such as a reg-ister re-de�nition. For instance, if an instruction uses (reads) a register which isthen re-de�ned (overwritten) by a later instruction, a dependency exists prevent-ing the simultaneous execution of both instructions; this is referred to as a Writeafter Read (WAR) or anti-dependence. Similarly, a register de�nition followed bya second de�nition creates a resource dependency between the instructions and isreferred to as a Write after Write (WAW) or output dependence.Control dependencies exists at control 
ow points in the execution. When aconditional branch instruction is executed, for example, all instructions followingthe branch are dependent on the branch outcome. These dependencies can severelylimit the available parallelism in most applications because of the high frequencyof branch instructions.2.1 Extending Issue Widths in Current Architec-turesThe early 1980s saw an emergence of architectures designed to support multiple in-struction issue at each clock cycle. Several companies (Multi
ow, Cydrome, Culler)built multiple issue architectures that incorporated large instructions and multipleALU operations [12] [13]. These Very Large Instruction Word (VLIW) proces-



Chapter 2: Instruction Level Parallelism 8sors were capable of supporting much larger amounts of parallelism for scienti�cand engineering codes than previous, single issue architectures. While each of thesecompanies eventually failed as a business venture, the ideas and compiler techniquesthey developed have found acceptance in most of the high performance designs oftoday.Superscalar architectures appeared shortly after the original VLIW designs andstarted shipping in the mid 1980s. These systems combined the multiple-issueexecution pipeline used in VLIW designs with the sequential instruction set archi-tecture found in previous scalar processors, allowing superscalar implementationsto execute existing object code much faster. Some of the earliest superscalar pro-cessors came from Apollo Computers [14], IBM [15] and Intel [16].Decoupled processor designs also began to appear in the 1980's both in super-computer [9] and microprocessor [17] versions. These processors separate programexecution into distinct tasks, each of which executes instructions from an inde-pendent stream. For the most part decoupled designs have been relegated to auniversity research setting 1.Various taxonomies have been proposed that identify the important distinctionsbetween VLIW and superscalar architectures. The most useful of these are basedon the interaction between the compiler and hardware in scheduling the code. Todevelop their taxonomy, Rau and Fisher [18] examined the various ways in whichthe compiler and hardware can cooperate in locating the ILP available in an appli-cation.Figure 2.1 is a graphic representation of the relationship between the compilerand hardware in locating instruction level parallelism for VLIW, superscalar anddecoupled processor designs. The division in responsibility between the compilerand the hardware can be viewed in two stages:1. Determine whether a given operation is dependent or independent of thoseyet to be issued.2. Bind the resources necessary for independent operations to execute at someparticular time, on some functional unit with speci�c source and destinationlocations.Looking at Figure 2.1, we see that the program speci�cation for a Sequentialarchitecture requires no explicit information about dependencies; dependency in-formation is conveyed through the strict sequential ordering of instructions in theobject format. Each stage of extracting parallelism is the responsibility of thehardware. These architectures require complex instruction windows to reschedule1Both VLIW and decoupled architectures have only rarely been developed as commercialproducts because they lack the ability to execute existing executable programs. Superscalardesigns have been chosen by almost all processor manufacturers because of their ability to executeapplications previously compiled for scalar version of an architecture.
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Figure 2.1: ILP Taxonomy: Division of responsibility between the compiler and thehardwareinstructions in a manner more optimal to a particular con�guration. Unfortunately,this centralized instruction decode/window can a�ect the clock speed and limit scal-ability 2 of the design. It becomes very di�cult to design a large instruction window(required to locate a large number of independent operations) which is fast enoughto not a�ect the processor cycle time. Superscalar processors fall into this category.A second method of interaction between the compiler and architecture is re-quired for an Independence architecture. In this approach, the compiler is respon-sible for completely specifying how all resources will be allocated on the imple-mentation. Independence architectures, such as VLIW, require compiler supportfor determining all aspects of parallel execution. Unfortunately, by requiring thecompiler to completely specify the binding of instruction to functional units, codeportability is lost. Any new implementation of an architecture (e.g. increasing the2Scalability in the context of high performance ILP designs exists when more than 4-8 instruc-tions can be issued each cycle.



Chapter 2: Instruction Level Parallelism 10size of the cache or the latency to main memory) requires re-compilation of theprogram to account for the new resource constraints.A Dependence architecture, on the other hand, only requires the compiler toconvey information about both instruction dependencies and independencies in or-der to exploit parallelism; the actual binding of instructions to functional unitsis still performed dynamically. Decoupled architectures specify dependencies byassigning instructions to independent instruction streams and explicitly specifyingany dependent operations through a transfer via an architectural register queue.Dependence architectures avoid the requirement for a complex decode stage andinstruction window, while allowing dynamic control of instruction issue and func-tional unit allocation.2.2 Existing MachinesThe �rst commercially successful machines that provided a modicum of instruc-tion level parallelism appeared in the 1960s. They extended earlier architecturesby including multiple function units, allowing multiple computations to executesimultaneously.2.2.1 Early ILP ArchitecturesIn 1963 Control Data Corporation completed the CDC 6600 [19] which had 10functional units and could start execution on any unit independent of the exe-cution state of the other units. The hardware was responsible for determiningwhere and when an instruction should be executed, using a technique referred to asscoreboarding [20]. Scoreboarding is a centralized control technique that performsthe bookkeeping operations necessary to allow out-of-order execution 3. In thescoreboard, data requirements of an instruction are examined, identifying those in-structions which have all source operands available and the desired functional unitready. The scoreboard communicates with the functional units in order to controleach instruction's progress from the issue stage of the pipeline until completion.Unfortunately, by utilizing a central structure to control instruction 
ow throughthe pipeline, scoreboarding does not scale well.A later system, introduced by IBM, addressed some of the de�ciencies of theCDC 6600. The 360/91 machine, introduced in 1967, had fewer execution unitsthan the CDC 6600 but used a more aggressive instruction issue policy in order tomaximize the utilization of the execution units. The 360/91 used a decentralizedinstruction 
ow control algorithm developed by Tomasulo [21], which uses a number3Out-of-order execution describes the function of a pipeline implementation which allows in-struction to be executed in a di�erent order than the sequential program order speci�ed in theobject code.



Chapter 2: Instruction Level Parallelism 11of bu�ers associated with each functional unit and a structure called the commondata bus. These bu�ers, called reservation stations, serve to control instructionissue by holding an instruction until all of the source operand values are availableand the functional unit is ready.These early ILP architectures were limited to issuing at most one instructionper cycle. Most current ILP designs extend the capabilities of one of these systemsby increasing the size of the bu�ers and the overall width of the pipeline (i.e. thenumber of instructions that can be in any pipeline stage at one time).2.2.2 VLIW ArchitecturesSince the compiler has the most complete information about the entire program, it iswell suited to deal with the inclusion of additional resources (e.g. ALUs, FPUs andI/O units), and can often increase instruction execution bandwidth in areas of thecode that were previously performance limited by resource constraints. A Very LongInstruction Word (VLIW) machine can exploit more parallelism by increasing thecomputational resources (e.g. ALUs) and encoding the function for each of theseresources in a compound instruction word; this allows multiple operations to beinitiated when one of these compound instructions is issued. The instruction wordcontains an opcode �eld for each functional unit; this simpli�es the initial pipelinestages (fetch, decode and issue) because the compiler speci�es which operationscan be performed during any clock cycle. In a VLIW architecture, it is up to thecompiler to explicitly schedule the use of each operational unit in the processor,placing independent operations in the same compound instruction word. No-opoperations are assigned to functional units for which no independent instructioncan be located 4. The static placement of instructions required in a VLIW designdoes not support the dynamic reordering of operations by the hardware (i.e. it doesnot support out-of-order execution). Furthermore, any change of the hardwaredescription requires all code to be recompiled in order for the program to workcorrectly. Very recent work has attempted to remove this constraint by reschedulingthe machine language program directly.2.2.3 Superscalar ArchitecturesWhile VLIW architectures can e�ciently exploit parallelism found in many appli-cations, doing so requires the re-compilation of the original source representation ofthat application. Superscalar architectures, on the other hand, employ a hardwarescheduler that uses dynamic run-time information in order to e�ciently allocateresources to the list of instructions ready for execution. This allows superscalar im-plementations of existing architectures to execute previously compiled programs;4VLIW architectures derive their name from their need for a large instruction word to specifythe task of each functional unit.



Chapter 2: Instruction Level Parallelism 12a tremendous advantage when the software base of an existing architecture is dis-tributed in compiled (binary) form, as in the case of the x86 line of processors.When previously compiled (legacy) codes account for a majority of the applicationsexecuted, a superscalar approach becomes very attractive despite its inability toexploit as much parallelism as alternate approaches can.Superscalar implementations provide the 
exibility of separating implementa-tion details from the architectural speci�cation by incorporating a hardware sched-uler to dynamically reorder instructions. However, this scheduler, which selectsinstructions from a �xed-size window of available instructions, does not have accessto the breadth of information available to the compiler. This eliminates the abilityof these processors to exploit parallelism that is not located within the instructionwindow.2.2.4 Decoupled ArchitecturesA third approach to issuing multiple instructions per cycle takes advantage of thecharacteristics found in the Von Neumann computational model. Decoupled ar-chitectures attempt to exploit the independent nature of control 
ow, memoryaccess and data manipulation operations that comprise conventional computationsby splitting a program into distinct tasks and executing each task on separate piecesof hardware. These hardware units communicate data and control information viaFIFO queues so the instruction streams are not required to execute in lock-step.This means that the inability of one PE to execute instructions does not a�ect theability to execute instructions on the other PEs | thus providing dynamic supportfor out-of-order execution. This approach is designed to take advantage of the bestthat both VLIW and superscalar have to o�er; the compiler partitions the tasks ina manner similar to VLIW, and the queues provide the same dynamic schedulingbene�ts found in superscalar.Decoupled systems di�er from VLIW and superscalar designs in the mannerin which the independently issued instructions interact. VLIW and superscalarprocessors can be thought of as very tightly coupled shared memory systems; theyshare not only addressable memory but also register space. This shared registerapproach di�ers from the explicit message passing (via FIFO ordered queues) foundin decoupled machines. Furthermore, in order to transmit data among operationalunits by writing and then reading the contents of a register, the clocks on VLIWand superscalar processors must be synchronized. This requirement is relaxed withan explicit message passing approach.The greater 
exibility found in a decoupled design allows both single and mul-tiple instruction stream descriptions of a task. The ZS-1 [9] and WM [22] systemsoperate in a decoupled manner while receiving instructions from a single instruc-tion stream. Their architectural component descriptions are similar to those ofSplit Register superscalar designs [23].



Chapter 2: Instruction Level Parallelism 13The PIPE machine [24], in contrast, consists of two PIPE processors [25] whichrun asynchronously, each with their own instruction stream, and cooperate on theexecution of a single task. The PIPE processor uses branch queues and a BFQ,Branch From Queue, instruction to coordinate the outcome of branch decisions be-tween processors [26]. By using homogeneous processors the PIPE machine has theability to execute in either decoupled access/execute mode or in a single processor(SP) mode. In SP mode both processors are used, but they execute independentprocesses. PIPE was one of the �rst decoupled architectures to be implemented[27].2.3 Previous Decoupled CompilersSeveral compilers for decoupled machines have been developed. These include theoriginal PIPE compiler [28], the WM streams compiler [22], and the compiler forthe Briarcli� Multiprocessor [29]. These compilers di�er from those for conven-tional processor designs in the explicit use of architecturally visible register queues.In addition, the PIPE and Briarcli� compilers were responsible for partitioning theprogram into separate instruction streams to be executed on individual processingelements (connected via communication queues and a shared addressable memory).2.3.1 The PIPE CompilerThe PIPE compiler separates code into access and execute instruction streams. Thisis accomplished by assigning each branch and memory access operation to the accessprocessor, then examining a Program Dependence Graph (PDG) [30] to determinewhich additional branch control and address calculation operations should alsobe assigned to that processor. All remaining instructions, as well as duplicatebranch operations, are then given to the execute processor. Once this separationis accomplished, register allocation and other optimization transformations can beapplied to each instruction stream.2.3.2 The WM CompilerThe WM compiler is more conventional in its use of a single instruction stream.Data
ow analysis and many of the optimization transformations performed areunchanged from standard scalar designs, with additional restrictions placed on theregister allocation method to account for the nature of the memory queues foundin this decoupled architecture.



Chapter 2: Instruction Level Parallelism 142.3.3 The Briarcli� CompilerThe compiler used in the Briarcli� Multiprocessor performs in a much di�erentmanner than the previous two compilers. This compiler is far more aggressivein separating code into multiple instruction streams. Instructions are partitionedequally over the available processing elements (PEs) 5, with those data dependenciesthat exist between PEs being allocated a register channel [31]. Optimization isthen performed to reduce the number of channels required without degrading codeperformance. Memory operations can also be performed on register channels. Thismeans that memory accesses can originate in one PE (which calculates the e�ectiveaddress) with the data either coming from or destined for di�erent PE.The Briarcli� design bears more of a resemblance to a VLIW architecture than adecoupled architecture in its treatment of control 
ow operations. PEs synchronizeon branch operations by generating a global condition code used to determinewhether or not to branch. While each PE may reach the actual branch instructionon di�erent cycles, each branch point serves as a barrier synchronization point; noPE is allowed to process instructions past that branch until each PE has completedits branch decision. This fuzzy barrier [29] mechanism allows more 
exibility thana VLIW implementation but fails to provide the 
exibility found in true MIMDapproaches like PIPE and MISC.2.4 SummaryExploiting instruction level parallelism on MIMD architectures has the potentialto overcome both the complexity required by superscalar pipelines and the rigidexecution framework of VLIW processors. The instruction issue stage of each pro-cessor in a MIMD design can perform in a simple single-issue, in-order manner,avoiding much of the hardware complexity required to support out-of-order issuein a single instruction stream approach. Out-of-order issue is also supported on aMIMD because the processors are run independently; therefore, any independentinstructions executed on di�erent processors can issue in any order without neces-sitating extensive hardware support. This is fundamentally di�erent than multipleissue in a VLIW machine, because a strict ordering of instructions is not imposedby the compiler unless a dependence exists. Furthermore, by incorporating multipleprogram counters, a MIMD machine provides the architecture with more data
owinformation by enriching the speci�cation of the object language; taken to its ex-treme this would allow a data
ow machine description of the program.
5Throughout this dissertation a processing element is de�ned as an execution unit completewith a program counter (PC).
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Chapter 3Design of the MISC ProcessorThe Multiple Instruction Stream Computer (MISC) system is a new architecturethat has been developed at the University of California, Davis to study the char-acteristics of exploiting ILP on a MIMD processor design. MISC is composed ofmultiple Processing Elements (PEs) which cooperate in the execution of a task,coordinating through a message passing system allowing data to be transferredbetween PEs as easily as it can be placed in a register.This chapter will describe the design of the MISC architecture. The design goalsfor the MISC processor will be presented, followed by a detailed description of eachcomponent of the design. Those portions of the design that mirror conventionaluni-processor design (e.g. pipeline structure) will only be mentioned brie
y in orderto focus the discussion on the unique capabilities found in this architecture. Manyof these capabilities require compiler support and are described in further detail inlater chapters.3.1 Design GoalsThe MISC architecture is designed to study the feasibility of separating the execu-tion of an application into multiple instruction streams. There were several designgoals for the MISC processor:1. Decentralize most, if not all, processor resources. This is considered desirablebecause centralized resources (such as a heavily ported register �le) can a�ectthe maximum clock frequency attainable and reduce scalability.2. Support compiler directed out of order execution. This leads to a reductionin the complexity of the instruction issue mechanism by eliminating the needfor dynamic reconstruction of dependence information. An overly complexinstruction issue design can both slow clock frequency and increase processordevelopment time. In essence, the goal is to enable the compiler to convey



Chapter 3: Design of the MISC Processor 16information to the hardware about instruction dependence, eliminating theneed to re-construct these dependencies dynamically. This reduces the com-plexity of the implementation while providing a richer interface between thecompiler and the implementation of an instruction set architecture.3. Develop a high performance memory system capable of supporting multiplememory accesses during each clock cycle. Two desirable characteristics of amemory system are the ability to reorder non-con
icting memory operations(those referencing di�erent addresses) and the ability to handle multiple ref-erences per cycle. This is accomplished in MISC by allowing the compiler tospecify a partial ordering of memory operations instead of the complete orderimposed by conventional scalar (and superscalar) architectures.The following sections describe the MISC component structure, the design ofthe processing elements and the interface to the memory system through the cache.3.2 MISC Component StructureA MISC processor may contain any number of processing elements. In a singlePE con�guration, MISC di�ers from conventional architectures only in its use ofregister and memory queues. In a dual PE con�guration, MISC operates like aPIPE machine. Con�gurations with more PEs allow more 
exibility in assigningoperations to individual PEs.The MISC system described in this chapter consists of four PEs, a two-way in-terleaved, uni�ed cache (UCache) and a set of internal data paths used to transmitdata among PEs and the UCache 1. All PEs can send information to any otherelement or collection of elements, while the UCache can send data to any PE. Thiscon�guration will be identi�ed as MISC4 throughout the remainder of this disser-tation and will be used to illustrate characteristics of decoupled code partitioningdiscussed in the next chapter. The component design of MISC is illustrated inFigure 3.1. The three primary components in the MISC4 processor are:� The set of processing elements [PE1 through PE4].� a uni�ed cache which serves both as a high throughput cache and as theinterface with the memory system [UCache].1A four PE version was chosen to illustrate the features of the MISC design because it hasenough processing elements to make partitioning code across all elements a di�cult task, withoutbeing so large as to make the example codes too complex to convey information easily. Eachof the tools, e.g. the compiler and simulator, are capable of supporting both larger and smallercon�gurations. The compiler will be described in the next chapter and the simulator will bediscussed in chapter 5.



Chapter 3: Design of the MISC Processor 17� a set of internal data busses connecting each processing element as well asthe uni�ed cache [BUS1 through BUS4, CBUS1 and CBUS2]
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Figure 3.1: MISC4 Component Design3.3 MISC Internal Bus StructureIn MISC4 each PE employs an independent clock; communication between PEsor between a PE and the UCache utilizes the internal datapaths and proceeds inan asynchronous manner. Each data path is controlled by a single element; forinstance, the internal data path labeled PBUS1 is controlled (written to) solely byPE1. Each PE has its own bus (PBUS1-4), and the UCache controls two otherbusses (CBUS1 and CBUS2).Each internal bus consists of 32 data lines, 5 routing lines and 5 busy lines. Therouting lines are used to identify the destination of a given message; a routing lineexists for each possible destination (PE1-4 and UCache). Collectively, the routinglines specify which subset of destinations should receive a message. In order tobroadcast a message to all other processors, a PE or UCache asserts the routing



Chapter 3: Design of the MISC Processor 18line for each destination, enabling up to 5 data transfers in a single PBUS or CBUSoperation. The busy lines are asserted by each potential destination to indicate itsinability to accept more data at the present time.When a processing element wants to send a message, it determines the desiredroute and compares this with the appropriate busy lines. If all destinations arecapable of receiving the data, then the data and routing information is placed ontothe bus 2. Transmission of data does not require the communicating PEs to syn-chronize at the transfer of the message; instead, data bu�ers (queues) are providedto store messages that have been sent but not yet processed by the destination.This allows the PE that originates a transfer to continue with processing while thetransfer itself is delayed until all recipients are ready 3.3.4 Processor StructureMISC4 PEs each have their own independent instruction streams. Each PE main-tains all state information required to function as an independent processor. Infact, the MISC4 hardware is capable of running four completely unrelated tasks inparallel. However, this dissertation will focus on partitioning a single task acrossfour independent instruction streams.Homogeneous PEs are modeled in order to allow the compiler maximum 
ex-ibility in assigning operations. This also simpli�es the design of the system as awhole since only a single PE needs to be created 4. Figure 3.2 shows the structureof a processing element.Each PE employs a basic four-step execution pipeline, including single cycleInstruction Fetch, Instruction Decode, and Instruction Issue phases and a multi-cycle Execution phase. Each of the processing elements (PEs) contains the followingcomponents:� A set of General Purpose Registers (GPR's)� A set of Intra-PE Data Queues (PEQ's)� Two Memory Data Queues (MQ's)� An Integer Arithmetic/Logic Unit (ALU)2If any destination queue is busy, then transmission is delayed until all recipients are ready toreceive the data.3The size of each queue can be assigned independently. Generally a small queue size (2-5elements) is all that is necessary between PEs, while a a somewhat larger queue size is requiredto hide the larger latency of memory loads (5-20 elements).4Allowing a heterogeneous mix of PEs may allow for further PE optimization to be performedat the hardware and compiler level; this approach will be discussed in more detail in chapters 5and 7.
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Figure 3.2: MISC Processing Element� A Floating Point Arithmetic Unit (FPU)� A Program Counter (PC)� A Vector Register (VREG)� An Output Queue (OutQ)� A Delay Register (DREG)� An Instruction Cache (ICache)The GPRs are available to store data which persists over multiple references,as well as software controlled environment variables (e.g. stack pointer, argumentpointer, etc.). Each PE maintains its own set of GPRs, so a four processor con�g-uration with a 32 element GPR set contains 128 registers (4 * 32).Each PE also contains a FIFO queue (PEQ) for each PE in the system (in-cluding itself) to bu�er data transfers between PEs. In addition, each PE has 2memory queues (MQ's) which will bu�er data requested from memory. While asingle MQ would be su�cient (there is only 1 memory system), the frequency ofgenerating two independent memory streams is great enough that an additionalMQ has been allocated (as an architectural feature) to improved performance andsimplify code scheduling. Providing two separate MQs allows two load requests to



Chapter 3: Design of the MISC Processor 20execute asynchronously (on di�erent access PEs) and eliminates the need to readtwo data values o� the same MQ during a single clock cycle 5.The Output Queue (OutQ) bu�ers execution results that are scheduled to leavethe PE (heading for memory and/or other PEs). This queue may seem unnecessarysince there is no contention for the transmission bus (remember, each PE has adedicated write bus); however, its use simpli�es the issue logic of the PE by avoidinga pipeline stall at the end of the execution phase due to a busy line assertion. Theoperation of the Output Queue (OutQ) is not visible to the compiler.In addition to the general purpose registers, there are two additional architec-turally visible special purpose registers. The Program Counter, used to schedulethe instruction 
ow, is automatically incremented after each instruction, and canalso be modi�ed explicitly by the execution of a branch instruction 6. The vectorregister, VREG, is used to store the iteration count for vector instructions. Boththe PC and the VREG are available as source inputs to all instructions in the samemanner as the GPRs and the various queue elements.The Delay Register is used to determine the number of delay slots that will beunconditionally executed following a branch instruction, and works as follows: Avalue speci�ed by the �rst operand �eld in a branch instruction is placed in thedelay register. The value in the delay register is then examined to determine howmany instructions should be fetched after the branch instruction; as long as thevalue in the delay register is not zero, instruction fetch continues sequentially andthe value in the delay register is decremented for each instruction executed. Oncethe delay register value reaches zero, the PC is updated to contain the branch targetaddress (i.e. the branch is taken) 7. This approach is a further generalization of theapproach used in the PIPE processor, which is itself a generalization of the singledelay slot employed in the RISC I processor [32].Finally, each PE has an instruction cache to hold recently executed instructionsand to relieve the UCache from the need to process instruction fetch from fourseparate processing elements.3.5 Instruction FormatAll instructions in MISC are 32 bits in length, and consists of an 8-bit opcode andfour 6-bit operand �elds as shown in Figure 3.3. The opcode �eld is separatedinto an instruction type �eld and a 6-bit opcode speci�er. The operand �elds maycontain up to three source operand speci�ers and a destination speci�er.5The size of each queue (PEQ and MQ) is an architecturally visible component; the compilermust know the size of each queue in order to schedule code correctly and avoid deadlocks due toresource depletion.6This PC operates the same as the program counter in a scalar architecture.7Conditional branches operate in a similar manner, but do not jump to the branch target ifthe condition is false



Chapter 3: Design of the MISC Processor 21
0 1 2 7 8 3113 14 19 20 26 26

Destination

Source 1

Opcode

Source 2

Instruction type

Source 3 Figure 3.3: MISC Instruction FormatWith 32 GPRs, only 5 bits are required to uniquely identify each general purposeregister. Therefore, as shown in Figure 3.4, if the �rst bit is a 0, then the other 5bits are used to address one of these 32 GPRs.If the �rst bit is one, then the �eld speci�ers are treated di�erently. In the caseof a destination speci�er (reference Figure 3.5), the remaining 5 bits are used asrouting information for a data transfer onto the PE's PBUS 8.For a source speci�er, each operand can reference one of the input queues ina destructive or non-destructive manner. If the DQ bit is set, then the item readfrom the queue is de-queued; if the DQ bit is not set, then that item remains atthe head of the queue. The two special registers (PC and VREG) can also be readin this manner.At the instruction issue stage, if a queue is speci�ed as a source input and thatqueue is currently empty, instruction issue ceases until all required input operandsare available. This approach to handling empty queues simpli�es the control logicof each processor; since each PE is a scalar processor, which does not support out-of-order execution, stopping instruction issue on an empty queue does not limit theability to exploit any additional parallelism by the rest of the PEs.8In a four PE con�guration, 5 bits are su�cient to directly specify the route | one bit foreach PE and one for the UCache. For PE con�gurations incorporating more than four PEs the5-bit speci�er is used as an index into a table of route bit-�elds. The simulator places an arti�ciallimit of 64 on the number of bits supported for each route speci�er in the table; this means up to63 PEs can be supported.
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Figure 3.5: MISC Destination Register Speci�er FormatEach source operand can also specify a small constant value. The ability tosupport a small constant for each operand in a three operand instruction providesconsiderable 
exibility in code scheduling. Approximately 50% of all references toconstant values generated by the compiler can be placed in this constant �eld [20].Instruction TypesThere are four di�erent types of instructions shown in Figure 3.6: Scalar, vector,sentinel and predicate operations. 9Scalar instructions include ALU/FPU operations, load and store request in-structions, control 
ow operations and some special purpose instructions used tocontrol the execution model.9A description of each instruction in the MISC design is given in Appendix A.
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PredicateFigure 3.6: MISC Instruction TypeFor example, invoking a memory read operation involves providing the UCachewith the memory address of the data to be read, the set of destination PEs whichare to receive the data, and the CBUS (and therefore MQ) on which the data shouldbe placed. In a load request (LAQ) instruction, for instance, the dest �eld containsthe set of PEs that are to receive the data. The address is calculated as a sum ofthe src1 and src2 operands and the destination MQ is speci�ed in the opcode �eld;the LAQ instruction causes the MQ of the destination PEs to receive the data,while the LAQ2 instruction speci�es the MQ2 queue as the location in which thedata should be placed. The store request (SAQ) instruction operates in a similarmanner, except that the dest operand speci�es a single PE from which the UCacheshould receive data to be written to memory.Scalar branch instructions are also fairly conventional. The dest �eld is used asa constant that states the number of delayed branch slots which contain instructionsto be executed prior to starting instruction fetch at the branch target address. Theaddress of the branch target is calculated as the sum of the src1 and src2 operands.Each of the other instruction types | vector, sentinel and predicate | is lessconventional and will be discussed in greater detail in the next three sections.3.6 Vector InstructionsMISC includes a class of vector instructions which perform certain scalar func-tions a speci�ed number of times. There are three classes of vector operations:ALU/FPU, LAQ/SAQ, and a vector loop. Vector operations require an additionalsource operand speci�er (Count), which is used as a vector count. When a vector



Chapter 3: Design of the MISC Processor 24operation arrives at the issue stage of the instruction pipeline, the vector register(VREG) is set to zero and the vector count register (VCOUNT) is loaded fromCount. A single execution of the instruction is then performed and the VREG isincremented 10; this repeats while the value in VREG is not equal to VCOUNT.Once the value in VREG equals VCOUNT normal instruction sequencing continues.The semantics of this mechanism are:VCOUNT = Count;for (VREG = 0; VREG < VCOUNT ; VREG++) dest = src1 op src2;3.6.1 Vector LoopThe use of the vector register in conjunction with the delay register provide a meansof extending the use of vector instructions to iterate on sequences of instructions(whereas the vector ALU operations iterate only a single instruction). The use ofthe vector loop instruction can also eliminate the need for branch instructions tocontrol the iteration of simple (single basic block) loops. The vector loop, VLOOP,instruction can be used when the number of iterations that a loop should executeis known at the initial entry into the loop (either as a constant or register variable).When a VLOOP instruction is issued the following activities occur in parallel:� load the DCOUNT with the delay count �eld of the instruction (this is thesame as conventional MISC branch instructions)� set the value of DREG and VREG to zero� copy the value speci�ed by the Count �eld of the instruction to the VCOUNTregister� set the jump address (JUMPPC) to the �rst delayed instruction (i.e. PC +1)At this point instruction 
ow continues as in a branch instruction; instructionsare executed from the delay slots until DCOUNT instructions have been executed.Once all the instructions in the delay slots have been executed the VREG is in-cremented and compared to VCOUNT. If VCOUNT iterations have not yet beencompleted (i.e. VREG != VCOUNT) then the JUMPPC is placed in PC. Thisinitiates the next iteration of the loop. When all iterations have been executed(VREG = VCOUNT) execution continues with the instructions following the loop.10The VREG is incremented up to VCOUNT. An alternate approach would be to start VREGequal to VCOUNT and decrement until it reached zero. The �rst approach was used becauseit simpli�ed the application of compiler transformations dealing with induction variables (as de-scribed in chapter 4).



Chapter 3: Design of the MISC Processor 253.7 Sentinel InstructionsWhile vectors of speci�ed length are the most common organization for variablelength arrays, a signi�cant alternate mechanism is the use of a trailing sentinel(special) value to mark the termination of a string of data. This mechanism is ofparticular importance because it is the method used by the C libraries to manipulatecharacter string data. MISC can perform e�cient string manipulation through itsclass of sentinel instructions. These instructions use the Sentinel Speci�er �eldof the instruction to reference a register that is compared to the sentinel value(assumed to be zero in the initial design). If the value in the register identi�ed bythe Sentinel Speci�er does not equal the sentinel (zero), then the execution of thescalar version of the sentinel instruction is allowed to issue. The semantics of thismechanism are:while (R[Sentinel Speci�er] 6= 0) dest = src1 op src2;Conventional wisdom holds that implementing higher level semantics at the in-struction level seldom leads to performance improvements because of the complexityof implementation and the scarcity of application. We believe that the vector andsentinel instructions de�ned here can be implemented with minimal hardware mod-i�cation to the issue logic. Furthermore, the MISC approach of multiple instructionstreams leads to a greater potential for application of these instructions; often anapplication of the construct (a while loop in this instance) cannot be made becauseof the complexity of the test condition in the application for a normal machine. In asingle instruction stream design, a single processor must evaluate the test conditionand proceed with the loop or exit accordingly. The requirement to both evaluate anarbitrarily complex test condition and perform the control 
ow operation cannot bee�ciently reduced to a single instruction. However, in MISC one PE can evaluatethe complex test condition and broadcast a boolean result to all other PEs, whichare left with simple boolean tests.3.7.1 Sentinel LoopMuch like in the vector loop instruction, the delay register can be combined with thesentinel mechanism to provide another simple branch hiding instruction. Sentinelloops share much of the control logic that is used in vector loops; the manipulationof the PC, the use of the delay slots and the termination of the loop are essentiallythe same. These two loop instructions di�er only in the way the exit conditionis calculated; a simple register comparison is performed for sentinel loops while acounter is incremented and tested for vector loops. When a sentinel loop, SLOOP,instruction is issued the following activities occur in parallel:� load the DCOUNT with the delay count �eld of the instruction� set DREG = 0



Chapter 3: Design of the MISC Processor 26� save the sentinel register speci�er (from Sentinel Speci�er of the instruction)� set the jump address (JUMPPC) to the �rst delayed instruction (i.e. PC +1)At this point instruction 
ow continues as in a branch instruction; instructionsare executed from the delay slots until DCOUNT instructions have been executed.Once all instructions in the delay slots are executed the sentinel is retrieved andcompared to the terminating value (0). If the value is not equal to 0 then theJUMPPC is placed in PC, and the next iteration of the loop then proceeds. Oncethe sentinel value equals 0, instruction fetch continues sequentially from the end ofthe delayed branch instructions exiting the sentinel loop.3.8 Predicate InstructionsPredicate instructions conditionally execute code by controlling the writeback stageof the pipeline with a conditional value. If the condition is true (non-zero forMISC) then the writeback stage is allowed to modify the state of the machine; if thecondition is false then the writeback is prohibited. Instructions of this type allow theremoval of numerous branch instructions by replacing the conditional instructionissue (through the use of branches) with a conditional writeback (through the use ofpredicates); the results are the same, but a control 
ow operation can be eliminatedand the ability of the compiler to aggressively schedule code blocks can be improved.In the MISC architecture the Predicate operand is used to specify the conditionvalue. The semantics of the predicate operation is:dest = src1 op src2 if Predicate 6= 0The transformation of a conditionally executed code block to a predicate in-struction can be seen in the following fragement of C code:if (Predicate) dest = src1 + src2Without predicate instructions, that code would translate into the followingassembly code sequence:branch_zero Predicate, Label1add dest, src1, src2Label1:With predicate transformation the branch can be removed and a predicationform of the addition can take place, leaving the following assembly language in-struction: add_predicate dest, src1, src2, PredicateConditional branches themselves predicate instructions which operate in thesame manner as the scalar (unconditional) branches except that the Predicateoperand speci�es the register to be tested to determine whether the branch willbe taken or not.



Chapter 3: Design of the MISC Processor 273.9 Data Cache StructureThe Data Cache unit consists of one or more single access data caches of unspeci�edsize, a PBUS request and data interface, a cache manager, a memory interface, anda CBUS manager. The design goals for this component of MISC are somewhatdi�erent than those for on-chip data caches for other processors. While on-chipcaches are generally used to reduce memory access latency, this function is lessvital in a decoupled machine designed speci�cally to tolerate long memory latencies.However, with four processors on the same die, it becomes imperative to reduce theo� chip memory activity to avoid over-taxing the I/O capabilities of the chip. Amajority of this reduction is performed by the instruction caches located on eachprocessor; it is the responsibility of the data cache to further reduce o� chip tra�cto a minimal level.Memory operations are separated into two components: A memory request isinitiate by an access processor and the data is either generated or used by someother processor. When a memory load operation is initiated, for example, the accessPE sends the address of the desired memory location and a set of destination PEsto the UCache; the value at that memory location is then retrieved from the cache,in the event of a cache hit, or memory, for a cache miss, and returned to the PE orPEs speci�ed by the request.When a memory store operation is initiated two events occur in an unspeci�edorder; an access PE sends the address of the storage location to the cache andanother PE (possibly the same PE) transmits the data to the cache over its internalbus; these events can occur in any order. In either case, the address and data willeventually be placed into bu�ers and the cache operation will proceed when boththe address and the data have arrived.3.9.1 Design GoalsMuch of the hardware complexity found in the MISC design is located in the mem-ory interface. This is because the memory system is inherently a shared (global)resource, so it is responsible for managing the requests from asynchronous sources(PEs) and interleaving them in a consistent and e�cient manner. Furthermore, asmore instruction level parallelism is found, the memory system (and the cache) mustbe able to support multiple operations each cycle. The MISC cache organization isdesigned to maximize the ability to handle multiple, independent references.The goals of the MISC memory systems include:� The ability to handle both individual and group broadcast memory requests.� Allowing multiple memory requests to be satis�ed in each clock cycle fromone or more PEs.� Maximizing memory request throughput.



Chapter 3: Design of the MISC Processor 28� Combining inter-cache-line memory requests to improve cache performance.3.9.2 Component Structure
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Figure 3.7: MISC Cache: Component DesignThe memory system and cache organization is separated into �ve components shownin Figure 3.7. These components are:� Address/data bu�ers: These bu�ers receive the e�ective address for loadinstructions and both e�ective address and corresponding data for memorystore instructions.� Interleaved cache memory: A cache memory consisting of a number of singleaccess caches (e.g. four) using bits in the e�ective address to determine theappropriate cache bank 11.� External memory bu�er: An interface between the cache and the externalmemory system. The external memory bu�er maintains a list of outstanding11An interleaved cache is di�erent than a multi-ported cache, in which any four requests canbe performed from arbitrary locations. An interleaved approach trades a reduction in perfor-mance due to a more restrictive access mechanism (in which references to the same bank must beserialized) for a signi�cant simpli�cation in implementation.



Chapter 3: Design of the MISC Processor 29cache replacement requests, including those current cache lines marked forreplacement which have been modi�ed as well as the e�ective addresses ofrequested cache lines.� Return bu�er: Bu�ers load data destined for transfer to the processing ele-ments. The return bu�er is also responsible for reinstating the original orderof memory requests.� Bus control: Controls access to the internal buses used to transfer data fromthe cache unit to the processing elements.To help explain the function of the cache, the following example, consisting ofa simple expression involving four memory references, will be used:q = q + z[i] + x[i]; 12This example, shown in Table 3.1, will be referenced throughout the rest of thissection to demonstrate the operation of the UCache.Table 3.1: An Example Expression for Memory ReferencesOperation Dest In E�ective Cache Bank Line LinePE Cache? Address Tag Selector Selector O�set(32 bits) (18 bits) (1 bit) (7 bits) (6 bits)PE3: laq PE4 Hit q = 8878DH 22H 0 3EH 0DHPE1: laq PE3 Hit z[] = B48A2H 2DH 0 22H 22HPE2: laq2 PE3 Miss x[] = 4FFC4H 13H 1 7FH 04HPE3: saq PE4 Hit q = 8878DH 22H 0 3EH 0DHIn this example, the memory operations performed are the loads from each array(z[] and x[]) and a load followed by a store of variable q. The memory referencesare shown in Table 3.1. The table columns show:� Operation: the operation performed to initiate the memory request (in theform: \access PE: instruction type").� DEST PE: the PE which will receive the data from the cache unit.� E�ective Address: the variable name and its e�ective address.� In Cache?: whether or not the reference is in the cache.12The four references are q,q,x[],z[]; the variable i resides in a register in this example.



Chapter 3: Design of the MISC Processor 30� Cache Tag { Bank Selector { Line Selector { Line O�set:The e�ective address is broken down into four components for further pro-cessing by the cache. The Cache Tag is the most signi�cant 18 bits of the (32bit) e�ective address and is used to allow a bi-directional mapping of a cacheline to a memory location. The Bank selector is the next most signi�cantbit and is used to select the cache bank to search for the reference. The lineselector determines which cache line is referenced; a 128 line, direct-mappedcache con�guration (requiring a 7-bit line speci�er) is used. Finally, the lineo�set (6 bits for a 64-word cache line) speci�es which entry in the line containsthe value at that e�ective address.3.9.3 Initiating a Memory OperationWhen a memory reference is made (either a load or a store) a processing element(the access PE) initiates the request in the following manner:� The e�ective address of the memory request is placed on the data lines of theinternal bus associated with the access PE.� The memory operation control line is set to indicate that this communication(through the PE internal bus) is meant for the cache unit. This instructs allPEs to ignore the transfer and the cache unit to process the request.� The route lines of the access PE are set to identify the source or destinationof the memory operation 13.� The R/W control line is set or cleared to specify whether the request is for aload or a store operation.� A value is placed on the ReturnQueue control line to specify which memoryinput queue is to receive the requested data item.A data STORE operation is performed by specifying the UCache in the DESToperand �eld; the PE generating the data will place it on the internal data bus,specifying the cache unit as the destination and the UCache then enqueues the datainto the data bu�er associated with that PE. Storing data to the memory system isinitiated by the access PE executing an SAQ instructions. This �rst step is labeledwith a 1 near the PBUS inputs to the cache in Figure 3.7.13If the requested operation is a memory STORE, the route lines specify which PE will supplythe data to be stored. If the requested operation is a memory LOAD, the route lines specify whichPEs should receive the value read from memory. This information will later be used by the cacheunit to set the route lines for the return of the value.



Chapter 3: Design of the MISC Processor 31In the example, there are three LAQ and one SAQ instructions. These instruc-tions can be executed by one, two or three independent PEs. 143.9.4 Address/Data Bu�ersOnce a memory request is received by the cache, the e�ective address is placed inthe address bu�er associated with the access PE. If data is sent to the cache, thatdata will be placed in the data bu�er associated with the PE sending the data.It is the responsibility of the address and data bu�ers to store this informationin preparation for the cache read or write operation. The address bu�er will alsoreorder memory operations (if possible) to improve cache performance; this may alsorequire reordering the contents of the data bu�er to maintain consistency betweenthe two bu�ers. The structure of the address and data bu�ers are shown in Figure3.8.
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Chapter 3: Design of the MISC Processor 32needed by load operations, while store operations do not use the ReturnQueue�eld. Each entry in the data bu�er has only a single �eld containing the data valueto be written to the cache. This information will reside in the data bu�er untilpaired with a store request for further processing by the interleaved cache unit.The processing of requests depends on the request type (R/W). The write stateindicates that a memory store operation should be initiated; a read state initiatesa memory load operation. The next two sections will describe the operation ofmemory load and store instructions in more detail.MEMORY LOAD OPERATIONLoad requests are placed in the address bu�er of the access PE; since no data isassociated with the load request there is no need for corresponding entries in thedata bu�er. Processing requests in the address bu�er involves the selection of theentry to forward to the cache memory; in a simple implementation, requests canbe processed in the order in which they are received. However, in order to increasethe overall cache throughput, it is often useful to reorder requests. Therefore, oneach cycle the �rst N entries in the address bu�er are scanned for load requests thatare ready to be forwarded to the cache cell array. The requests which are ready toproceed will then be forwarded to the cache.As a load request is sent to the cache, the destination route is simultaneouslysent to the return bu�er. This will eventually match up with the data value readfrom the cache unit; even if a cache miss occurs, the data will eventually make itsway to the cache and through the cache to the return bu�er.The example code includes three load requests which are placed into the addressbu�ers of PE1 through PE3 (Figure 3.7 step 2). The array elements (z and x) aredestined for PE3 and the variable q is destined for PE4. When the load requestsare ready to be serviced by the cache, two events occur for each request. First, thee�ective address of the load operation is sent to the interleaved cache unit (Figure3.7 step 3). At the same time an entry in the return bu�er is allocated to store thedata once the cache has obtained the correct value (either directly or after a cachereplacement - reference Figure 3.7 step 3A).MEMORY STORE OPERATIONAs discussed earlier, a store request consists of an address speci�ed in the SAQinstruction and a speci�cation of the PE which will supply the data to be stored.The store request will stay in the address bu�er of the access PE until conditionsallow it to be forwarded to the interleaved cache unit. The route speci�er of thestore request is used to match address bu�er entries to data bu�er entries. Oncethe data is available, the store may proceed. If the data arrives �rst, it sits inthe data bu�er until matched to a memory store request. It is the responsibility



Chapter 3: Design of the MISC Processor 33of the compiler to schedule instructions such that no ambiguity can exist in theaddress/data matching process.The store operation in the example will be initiated when the SAQ requestarrives from the access processor. The e�ective address (q) is speci�ed, but nowthe route speci�er identi�es which data queue will contain the data to be stored inthe cache (PE4). The store request will remain in the address bu�er until data issent to the appropriate data bu�er. Once that data arrives (Figure 3.7 step 2A),the store request can be forwarded to the cache unit. It is also the responsibilityof the compiler to ensure that no race conditions exist with multiple store requeststargeting the same data queue.3.9.5 Interleaved Cache MemoryWhen all the components for a memory request arrive at the UCache, the requestcan be forwarded to the interleaved cache. Once a cache line is selected, the tagbits are compared to see if the current line in the cache matches the referenceaddress. If the tag bits match the request can be processed. A store will modifythe contents of the cache location, and the cache line will be marked dirty to signifythat the contents di�er from those found in the memory system; when this line isdeallocated, the line must be written to memory. A load will place the line into amulti-ported line bu�er and allow the line o�set (or multiple o�sets if combininghas occurred) to fetch the desired data and forward it to the Return Bu�er 15. Theprocessing of requests in the cache unit proceeds in a standard manner.If the reference tag does not match that of the cache line tag a cache missoccurs. Cache miss processing requires a line replacement request be forwarded tothe External Memory Bu�er. This request contains the address of the original cacherequest so that the data can be retrieved from memory and placed in the cache. Ifthe current cache line is dirty, then an additional external memory operation willbe initiated to write the modi�ed cache line (the one that will be replaced) outto memory. The cache then continues processing further requests until the data isavailable.Referring again to the example, assume that the z[] and q requests are presentin the �rst bank of the cache and the x[] request is absent (Figure 3.7 step 3). Inthis case, the data associated with requests z[] and q will be sent to the returnbu�er (Figure 3.7 step 4). Since the x[] request requires a cache line fetch frommemory, this modi�ed request will be forwarded to the external memory requestbu�er (Figure 3.7 step 5). In addition, if the replaced line (line y in the example)is dirty, a cache line store request will also be forwarded to the external memoryrequest bu�er.15In the MISC design this is implemented as an N-way (where N is a power of 2) interleavedcache, splitting cache accesses across N independent cache banks. Two references can con
ictwhen the bank selectors for the references match.



Chapter 3: Design of the MISC Processor 343.9.6 External Memory Bu�erThe external memory bu�er accepts requests from the cache memory and providesthe interface between external memory and the interleaved cache. External requestsare for complete cache line loads and stores. Requests are enqueued in the bu�er,but may be reordered to allow loads of non-dirty lines to precede earlier requests.The example stream requires two external memory operations: the store of thedirty line (y) and the load of the cache line associated with request x[] (Figure3.7 step 6). To achieve optimal performance, the load request for the replacementline should be processed before the contents of any dirty lines are written backto memory. This requires an additional line bu�er (associated with the externalmemory bu�er) to hold the data from the line(s) being replaced. Once this datais copied from the cache to the external memory bu�er, the load may precede. Oncompletion of the cache line fetch, the data will be placed into the cache line andthen forwarded to the return bu�er. The store of the dirty line can then continuewithout a�ecting the latency of the original load request (Figure 3.7 step 7).3.9.7 Return Bu�erMemory references must be returned to the processing elements in program orderdue to the FIFO semantics of the load queues (MQ1 and MQ2). Reinstating theoriginal order of references is the function of the return bu�er.Once a memory request has been sent to the interleaved cache an entry in thereturn bu�er must be allocated. Requests enter this bu�er in the same order asthe originating load requests entered the address bu�er. When the desired data isretrieved from the cache (this could be much later in the event of a cache miss) itis forwarded to the return bu�er and marked as ready to return to the PE(s) viathe control bus. The data will not be sent to the PE(s) until all prior load valuesdestined for the same PE(s) have been sent. Figure 3.9 shows the structure of thereturn bu�er.
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Chapter 3: Design of the MISC Processor 35Each entry in the return bu�er contains:� the route map specifying the destination PEs. This will be used to set theroute lines of the CBUS when the data is sent to the destination PE(s).� a memory queue speci�er used to determine which CBUS (and therefore whichPE memory queue) will receive the result of a load operation.� the e�ective address of the request | needed to determine which data itemcorresponds to each entry. When the data is retrieved from the cache bank,the e�ective address is used to identify the entry in the return bu�er.� data �eld for one (32-bit) word of memory. This is required since a value mayreside in the return bu�er for an arbitrary amount of time depending on thereordering requirements of previous load operations.A complete reinstatement of the original order is not always necessary; whenthe intersection of the route map is empty (i.e. the destinations of two load requestsdo not target the same PE) or the memory queue speci�er is di�erent, the requestscan precede in any order (relative to each other).When the load requests in the example were forwarded to the cache unit, infor-mation was also sent to the return bu�er to reserve an entry (Figure 3.7, step 3A).Once processing by the cache unit completed for references q and z[], the data wasforwarded to the return bu�er (Figure 3.7, step 5). The processing of reference x[]was delayed until the data could be retrieved from the external memory system;upon its arrival, the data was forwarded to the return bu�er (Figure 3.7, step 8).In this example there is no re-ordering that must occur since no con
icts reside inthe destination speci�ed between the three references; reference q is destined forPE 4 while reference z[] and x[] are assigned di�erent memory queues (in PE 3),so no ordering relationship has to be maintained. This allows the data items tobe sent to the PEs as soon as they arrive, assuming that the destination memoryqueues are not full before the processing of this iteration of the loop (Figure 3.7,step 9).3.9.8 Bus ControlThe bus control unit is responsible for transferring values from the return bu�er tothe destination PEs. CBUS access for the cache is performed in the same manneras PBUS access for each PE; when all destinations are ready to accept the transfer,the data and routing information is placed on the bus. The correct return bus(CBUS1 or CBUS2) is determined by the bus speci�er (originally speci�ed by theload request instruction). This action completes the processing of the load request.The example includes three operations involving the cache Bus Control unit.The load of reference q and x[] returns data on CBUS1 (Figure 3.7, step 10) while



Chapter 3: Design of the MISC Processor 36the data for z[] is returned on CBUS2 (Figure 3.7, step 11). Busy lines are tested�rst, and when the memory queues are available the route speci�er and data isplaced on the bus completing the transaction.3.10 SummaryThis chapter described the architecture of the MISC processor. The MISC designincorporates some unique features in order to achieve high performance processing.These include:� A separation of functional units into independent processing elements capableof very close cooperation to help extract available parallelism.� A more general approach to register addressing than previously found in su-perscalar or decoupled architectures, which allows an arbitrary number of reg-isters to be scheduled by the compiler without requiring additional operandspeci�er bits.� Flexible routing control to enable instruction level broadcast operations totransmit data between PEs.� A uni�ed cache design which increases data throughput while supportingmultiple processing elements and a broadcast capability.The design and interaction of these features was described, including a descrip-tion of a complete instruction set architecture capable of specifying the interactionof the processing elements through architecturally visible queues, the design of ahigh throughput data (and instruction) cache, and a series of special purpose vector,sentinel and predicate execution modes.
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Chapter 4Design of the MISC CompilerOne open question with a distributed architecture like MISC is how well the trans-lation process from high level to machine code can be incorporated into a compiler.Is it possible to e�ciently compile C programs into separate instruction streams?Are the architectural choices that made decoupled designs useful in executing sci-enti�c codes applicable to more general applications? These questions can only beanswered by constructing a compiler and testing various code separation models.Two aspects of the translation must be addressed by the compiler in order toobtain high performance execution:1. Achieving a balanced partition of instructions.2. Minimizing the impact of memory latency.This chapter describes the structure and performance of the MISC compilerincluding analysis of several code partitioning strategies to determine how well theexecution of the program instructions can be balanced across multiple processors.The scheduling of register queues is examined to quantify their a�ect in reducingthe impact of memory latency.4.1 The MISC Compiler OverviewThe compiler and code scheduler for a high-performance architecture requires ahigh degree of sophistication in order to realize the full potential of the hardware.Independent instructions must be assigned to operational units in a manner thatminimizes the number of cycles in which no instructions can be issued. The taskof the scheduler in a multi-issue system is further complicated by the fact thatwhile the latency of operational units and memory may remain �xed, the numberof instructions that must be scheduled in a period is increased as the width of theissue stage increases.



Chapter 4: Design of the MISC Compiler 38Several studies [33] [34] [35] indicate that compilers using relatively simplescheduling techniques are capable of identifying 2-3 independent instructions percycle. Other studies [36] [37] [38] suggest that even more parallelism can befound if the compiler's scheduler is capable of performing extensive code motionand more sophisticated global scheduling, or if the hardware is capable of reorderingthe original schedule and speculatively executing instructions around basic blockboundaries.The MISC system was designed to allow out-of-order execution without the needfor complex reordering hardware. The MISC compiler is responsible for identifyinginstruction sequences which have no dependencies, or in which the dependenciesthat exist can be scheduled across PEs without requiring circular dependencieswithin groups of PEs. These code sequences are then scheduled on di�erent PEs.Each of these instruction sequences may containing code that contains tightly inter-connected dependencies; these interrelated instructions are placed on the same PEto allow the general purpose register �le to serve as the primary means to commu-nicate dependencies. The very portable C compiler (vpcc) [39] under developmentat the University of Virginia served as the base compiler for MISC 1.The �rst step in compiling an application is to translate the C code into anintermediate description. The MISC compiler uses a Register Transfer List (orRTL) form for the intermediate representation; this form is similar to that used bythe gcc compiler. This transformation is performed by the vpcc front end. Oncean application has been translated into RTL form many standard transformationscan be performed. The code generator then translates the RTL description of aprogram into parallel machine code for the MISC machine. An overview of theoptimization algorithm is presented in Figure 4.1.During the optimization phase of the compilation process, a number of codetransformations are applied, including many conventional transformations that donot require information speci�c to a particular architecture. These transformationsinclude common sub-expression elimination, dead code removal, strength reduction,and many others [30]. It is best to do these transformations at this point, before thecomplexity of inter-PE dependencies must be considered. Similarly, IF-conversion[40] can also be performed at this point in order to simplify the control 
ow. Globaldata
ow analysis can also be performed, and a Program Dependence Graph (PDG)constructed.Once the conventional optimization have been applied, the MISC compiler be-gins the process of partitioning instructions across the multiple processing elementsof the MISC architecture. The code partitioning phase separates the operationsrequired by the program into multiple (virtual) processing elements in a mannerthat maximizes the number of processing elements utilized. The processor loadbalancing phase of the compiler then re-partitions the schedule to evenly distribute1Other compilers were explored for this dissertation, but lacked the 
exibility and/or depend-ability of vpcc.



Chapter 4: Design of the MISC Compiler 39foreach functionload initial RTL description provided by front endconventional (single stream) transformationsinitial register allocationIF-conversionbuild program dependence graphpartition codebalance codeforeach PEbranch reductionsecondary register allocationschedule codeoutput MISC machine code for functionFigure 4.1: Structure of the Compilerthe operations onto the number of physical processing elements available on thetarget machine. Once the instructions have all been allocated to the PEs, morecode optimizations can be applied to each of the PE instruction streams. Many ofthe standard transformations described previously can be applied again to furtherimprove performance in each individual stream (with new restrictions to maintaininter-PE dependencies) 2. Finally, each instruction stream is scheduled and theMISC machine code is generated.The code scheduling method used by the MISC compiler exploits the asyn-chronous behavior of the processing elements to provide many of the characteristicsfound in software pipelining [41]. Software pipelining is a compiler transformationtechnique (�rst developed for VLIW architectures) that can be applied to simpleloops to eliminate the e�ects of high latency operations. Software pipelining canbe viewed as an improved form of loop unrolling, where multiple iterations of theloop can be scheduled as if they were part of a single basic block. This allowsinstructions from di�erent iterations of the same loop to be integrated into an op-timal schedule. Similarly, in MISC, individual PEs can be executing instructionsoriginating from di�erent iterations, while the PE queues perform a simpli�ed formof register renaming.The SPEC92 [42] integer benchmark applications will be used throughout this2Re-application of standard transformations (e.g. copy propagation) after code partitioningcan occasionally locate code sequences that were obscured by intervening instructions beforepartitioning.



Chapter 4: Design of the MISC Compiler 40chapter to measure the performance of code generated by the compiler after thevarious stages of optimization/translation 3. These applications are described inTable 4.1.In addition to the SPEC92 integer benchmarks, four additional applications willbe evaluated that have program characteristics more amenable to extracting ILP.These include one application, ear, from the SPEC89 [43] 
oating point benchmarkset; this is the only application in the SPEC89 or SPEC92 
oating point suite thatis written in C (the rest are written in Fortran). Two other benchmark programsare applications common to other areas of computer science: povray [44] is a popularcomputer graphics imaging program and sobel [45] is a program which implementsa widely used convolution �lter to enhance a bitmap image in the computer vision�eld. The �nal benchmark, KMP [46], is the classic sub-string matching algorithmdeveloped by Knuth, Morris and Pratt.To help illustrate each phase of the code generation process, two simple exampleswill be used. The InnerProduct() function is taken from Livermore Loop 3 [47] andis a highly parallelizable program, while the LinkedList() example demonstrateshow loops with more complicated control 
ow can be partitioned. The code forthese examples is shown in Figures 4.2 and 4.3. The following sections examine theoperation of the compilation phases in more detail.

3These include those benchmarks in the SPEC92 suite written in the C language that haveshown the greatest resistance to exploiting instruction level parallelism.



Chapter 4: Design of the MISC Compiler 41Table 4.1: Benchmark Application DescriptionsBenchmark Descriptioncompress A �le compression program, version 4.0, that uses adap-tive Lempel-Ziv coding.eqntott A translator from logic formula to a truth table.espresso A logic optimization program, version 2.3, that minimizesboolean functions.gcc A benchmark version of the GNU C Compiler, version1.35.xlisp A lisp interpreter that is an adaptation of XLISP 1.6.sc A spreadsheet program, version 6.1.povray A graphics ray tracing program, version 3.0.sobel A computer vision convolution �lter used to highlight theedges of a bitmap image, version 1.3.ear EAR simulates the propagation of sound in the humancochlea's (inner ear) and computes a picture of soundcalled a cochleagram, version 1.1.KMP A linear-time string-matching algorithm developed byKnuth, Morris and Pratt which locates substrings in atext array taken from [48]



Chapter 4: Design of the MISC Compiler 424.2 Structure of the MISC OptimizerThe MISC optimizer uses existing techniques and conventional transformationswhen possible; for those optimization that are unique to MISC, or where existingtechniques require modi�cation (e.g. register allocation incorporating queues), carehas been taken to maintain the same level of complexity found in most currentoptimizers. int inner_product() {int k, q=0;for (k=0; k<1024 ; k++)q = q + z[k] * x[k];} Figure 4.2: Example Code: InnerProduct()int linked_list_example() {int *list, value=0;for (list=head; list ; list = list->next)if (list->x != 0)value = value + list->z / list->x;} Figure 4.3: Example Code: LinkedList()4.3 Conventional TransformationsMany conventional optimizations can be applied to the intermediate code beforeapplying the algorithms speci�cally designed for MISC. Two standard optimizationsthat warrant special mention in their relationship to the MISC approach are registerallocation and IF-conversion.4.3.1 Register AllocationRegister allocation for a decoupled machine requires additional analysis by thecompiler because the extensive use of queues requires an ordering constraint onregister use that di�ers from conventional register allocation.



Chapter 4: Design of the MISC Compiler 43The vpcc compiler supports the speci�cation of these ordering constraints in theallocator; this greatly simpli�es the MISC translation process. Standard registerallocation methods can be used, with one exception: MISC has a large numberof register classes, unlike most architectures (which have only 2 register classes,integer and 
oating point). Since each PE has a general purpose register class, twoseparate memory input queues, and a complete interconnection of inter-PE transferqueues, a four processor MISC machine has 28 di�erent register classes (1 GP x 4+ 2 MQ x 4 + 4 PEQ x 4). In addition to the large number of register classes,all but the general purpose registers are FIFO queues. If the allocation of a newregister instance would violate the FIFO ordering of the queue, for example, theallocation is disallowed and the architectural register dependency remains.In order to provide a compact two byte representation of any machine register,the intermediate RTL format employed by the vpcc compiler reserves 4 bits toidentify one of 16 di�erent classes and 12 bits to identify the register within thatclass. Since this format is incapable of accurately representing a full MISC machine,the MISC register class model must be modi�ed 4. The modi�ed model supportsonly unidirectional communication between PEs through the PE transfer queues| PE1 can send data though queues to PE2-PE4, PE2 can send data the PE3and PE4, and PE3 can send data to PE4. The queues to send data back cannotbe represented in the existing RTL format. Fortunately, the code transformationstrategy employed in MISC rarely requires data to be transmitted back to PE1, andin those cases when it is necessary, a transfer through memory can be performed.Forcing uni-directional data 
ow through queues means that one half of the inter-PE queues will be unused. This may have a marginal bene�t in the scalability of thesystem when the code executed is required to meet these partitioning constraints.Function calls also pose an interesting problem within a tightly coupled MIMDarchitecture. When a function call is made, any variable may be passed as a param-eter to the function. One standard compiler technique to improve the performanceof function calls is to place the �rst few parameters in registers before executingthe call. However, in MISC variables are distributed among the PEs. How shouldparameters be passed in MISC during a function call? We chose to place all pa-rameters on the stack | while this does not provide the best performance, it worksand simpli�es a number of problems with incomplete data
ow analysis betweenfunctions. Furthermore, the highly localized reference patterns along with the useof the MISC UCache mitigate much of the potential performance degradation.4It is unfortunate that the designers of vpcc chose to implement such a restrictive registerrepresentation. They chose this representation to reduce the RTL size and obtain a very minorimprovement in parsing speed at the cost of generality. A better approach would be to encodethe register class and register identi�er as space delimited ASCII strings.



Chapter 4: Design of the MISC Compiler 444.3.2 IF-ConversionIF-conversion is an optimization technique that converts control 
ow operations(branches) into predicate operations in order to reduce the e�ect of control de-pendencies on program performance when possible. The MISC compiler uses thepredicate instructions, described in section 3.8, to replace short forward branches;instead of conditionally issuing those instructions by preceding them with a condi-tional branch, the branch condition is calculated and placed in a register used tocontrol the completion (writeback stage) of the instruction execution. This resultsin a reduction of the number of branches in the original code.The advantage of IF-conversion is more pronounced in MISC than in otherarchitectures because of the need for duplication of branch instructions across allPEs. In MISC, the IF-conversion algorithm removes not only the original branchinstruction but all the duplicates as well. Table 4.2 shows the resultant reductionin branches due to the use of IF-conversion on the set of applications chosen forthis study. The �rst column identi�es the benchmark application, the second givesa dynamic count of the instructions executed, the third column gives a dynamiccount of the number of conditional branches, and the fourth speci�es how many ofthose conditional branches can be eliminated using predication. This table showsthat on average approximately 8 percent of conditional branches can be eliminatedand replaced by short sequences of predicated code. In some cases, most notablyKMP, a much greater number of branches can be removed. This will reduce thebranch duplication problem and improve the performance of the code scheduler byincreasing basic block size [49].4.4 Dependence GraphFollowing the initial conventional optimizations, a dependence graph is generatedto support the code partitioning and load balancing phases of the compiler. Toconstruct the graph, instructions are associated with nodes in the graph and truedependencies are associated with directed edges. Control dependencies are alsorepresented as directed edges identifying a dependence between a branch instructionand each instruction in the basic blocks following the branch (both fall-throughor branch target blocks). Other dependencies are added in order to construct aprecedence ordering [50]. A precedence ordering augments the dependence graphwith additional dependencies required to identify possible memory con
icts; thesecon
icts can occur when the compiler can not guarantee that two distinct memoryoperations do not map to the same memory location. In this case, the originalorder of the operations must be maintained by including additional dependenciesin the precedence graph.



Chapter 4: Design of the MISC Compiler 45Table 4.2: Reduction of Dynamic Branch Executions Due to IF-ConversionTotal Conditional Removed UsingProgram Instructions Branches If Conversion(in thousands) (in thousands) (in thousands)compress 83,947 11,739 1,234eqntott 1,395,165 342,595 1,020espresso 521,130 76,466 5,306gcc 142,359 21,579 4,132xlisp 1,307,000 147,425 8,922sc 889,057 150,381 28,120povray 1,438,399 335,702 52,311sobel 342,676 58,122 0ear 17,010,166 1,311,243 71,025KMP 932,541 182,031 74,924InnerProduct 9 1 0LinkedList 10 2 14.5 Code SeparationA grasp of the concept of a leading (or lead) processing element is central to theunderstanding of code separation. In a MIMD architecture, each of the instructionstreams executes independently (ignoring for a moment any data dependencies).Therefore, if operations are scheduled carefully, some of the streams can be allowedto proceed farther ahead in the computation than others. Staggering the relativeentry cycle times for the execution of a section of code provides a perfect method forhiding the delay imposed by high latency operations. For example, if the instructionthat issues a high latency operation is scheduled on a processor that enters thatsection of code a su�cient number of cycles before the processor that uses the item,the e�ects of the latency will be hidden and parallelism can be exploited. In sucha case it is possible that the lead PE will be executing instructions in a new sectionof code while trailing PEs are still completing previous sections.The task of code separation is to separate the task across processing elements,with the goal of minimizing the e�ects of high memory latency and high functionalunit latency for operations like multiply and divide by decoupling the de�nitionof the data item from its use. Code separation is performed in two stages: codepartitioning and load balancing.



Chapter 4: Design of the MISC Compiler 464.5.1 Code PartitioningThe function of code partitioning is to organize the instructions speci�ed in RTLform into a directed acyclic graph of groups. Much like initial register allocationstrategies, code partitioning initially assumes an in�nite number of processing el-ements. The actual partitioning algorithm begins by determining how individualinstructions are initially grouped together. Strongly connected components are se-quences of nodes in a directional graph which, for every pair of nodes v and w, thereis a path from v to w and a path from w to v 5.Each group consists of a sequence of mutually dependent RTL lines. The �rsttask of the partitioning phase is to process the dependence graph in order to toidentify instructions that are mutually dependent. Code partitioning examines theprogram dependence graph to �nd strongly coupled chains of instructions | thoseinstruction sequences that have circular dependence chains. These chains can thenbe used to partition RTLs into dependence groups. The primary grouping, referredto as the control group, contains all branch operations and the lines in the RTLrequired to calculate branch conditions and targets (i.e. branch instructions andthe instructions that they depend on). The branch instructions are duplicated foreach dependence group in order to maintain a consistent control 
ow through thecode (Alternate partitioning strategies can relax this condition if no data is beingmanipulated in a block by some PEs).4.5.2 Load BalancingOnce the primary groups are partitioned into an acyclic graph, the load balanc-ing phase determines how to partition the remaining groups. Load balancing isperformed in two distinct stages: Instruction Balancing and Group Fill.Instruction BalancingInstruction Balancing tries to balance the amount of work performed by each PE.Each group is given a weight representing the expected number of cycles it will taketo execute. This count is the product of the latency to execute the instructions ina group and the expected number of executions of the group. The set of all groupsexceeding a certain weight is then partitioned across the available PEs. The latencymeasure can be calculated by assigning a latency value to each instruction type.The frequency measure can be determined by using previous pro�le information, orby static heuristic measures (e.g. groups in loops are executed more than groupsoutside of loops). With the reduction in the number of groups caused by theelimination of any groups that do not exceed the threshold weight, it is feasible touse an exhaustive search to determine the optimal partitioning.5A standard graph algorithm for determining strongly connected components is used.



Chapter 4: Design of the MISC Compiler 47Once the optimal permutation is found for those groups that account for mostof the execution time, the remaining groups are allocated as close to the lead PE ascan be achieved without violating the uni-directional data 
ow restrictions betweenPEs. Later on, latency removal will be used to assign the remaining groups to thephysical PEs.Group FillThe �nal stage in balancing instructions, Group Fill, builds the program dependencegraph for the remaining (unallocated) groups and augments this graph with latencyinformation. The groups are then sorted by their dependence relationship and eachgroup is temporarily allocated to the latest (farthest from the lead) PE to whichit can be assigned without violating the uni-directional data 
ow restriction placedon the schedule.There are two aspects to group �lling: Placing the remaining instructions acrossPE in a manner that does not lengthen the execution time of the most burdenedPE and placing variables across PEs in a manner that does not overburden anyone register �le. In a machine with 128 general purpose registers (as a 4 processorMISC con�guration has), register pressure is not a signi�cant problem. In the initialregister allocation, prior to code partitioning, 128 registers are assumed availableto a single PE stream. During the code partitioning phase register limitations areignored, leaving the �nal task of register assignment to the load balancing phase.The goal is to minimize the need to spill register contents to memory, and when spillsare required, maintain the performance of the lead PE. This can be accomplishedby scheduling the instructions required to implement the spill code on trailing PEswhen possible.The algorithm to perform the instruction load balancing examines the DirectedAcyclic Graph (DAG) of dependence groups. A ready set of dependence groups isthen identi�ed and scheduled on the leading PE if the placement of this group doesnot overburden the execution resources of the lead PE (and thereby lengthen theinstruction schedule). All groups left unallocated are considered for each successivePE until a schedule is found. The last PE accepts all remaining (unscheduled)groups. This is a greedy heuristic, but has the advantage of placing high latencyoperations across processing elements.To illustrate the algorithms covered in the partitioning phase, the two exampleprograms, InnerProduct() and LinkedList(), will again be utilized. The RTL formfor these examples is shown in Figures 4.4 and 4.5.In the InnerProduct() example program (Figure 4.2) the two independent mem-ory operations (the vector loads for x and z) are split onto two processing elements.This leads to a schedule that utilizes the full capabilities of the target architecture.This schedule is shown in Figure 4.6.



Chapter 4: Design of the MISC Compiler 48[1] t1 = 0 ; q=0[2] t2 = 0 ; k=0[3] t3 = 1024 ; set register for test[4] t4 = LOC[_z] ; t4 = base of array z[5] t5 = LOC[_x] ; t5 = base of array x[6] L1:[7] t6 = (t2>=t3) ; calculate branch cond[8] PC = t6, L2 ; branch if true[9] t7 = M[ t4+t2 ] ; load t7= z[k][10] t8 = M[ t5+t2 ] ; load t8= x[k][11] t9 = t7 * t8 ; (z[k] * x[k])[12] t1 = t1 + t9 ; q = q + (z[k] * x[k])[13] t2 = t2 + 1 ; k++[14] PC = L1[15] L2: Figure 4.4: Example Code: InnerProduct() RTL Form4.6 Separation StrategiesThis section examines the e�ect of various partitioning heuristics on the ability toseparate the strongly connect groups across the available PEs in a particular MISCimplementation. Partitioning and instruction balance are performed for a four PEMISC architecture.4.6.1 Strategy 1: DAE PartitioningThe most restrictive form of separation partitions instructions in much the samemanner as originally performed on the PIPE processor [51]. Each group is char-acterized as a CONTROL group, containing control and memory instructions, orFREE groups, containing all other instructions.In the PIPE machine, the CONTROL group is executed on the access processorand the FREE groups are combined and assigned to the execute processor. Thisstrategy is implemented in MISC by assigning all instructions in the CONTROLgroup to the lead PE and distributing the elements of the FREE groups among theremaining (trailing) PEs.Figures 4.7 and 4.8 show the results of partitioning the intermediate code ofthe InnerProduct() and LinkedList() examples. Each line in the �gures contains anenumeration (e.g. [1]), a group placement identi�er and an RTL statement. Theenumeration is used in the text to specify a line, the group placement identi�er



Chapter 4: Design of the MISC Compiler 49[1] t1 = head ; list=head[2] t2 = 4 ; calc z offset from list[3] t3 = 8 ; calc x offset from list[4] t4 = 12 ; calc next offset from list[5] t5 = 0 ; set register for loop test[6] t6 = 0 ; value=0[7] L1:[8] t7 = (t1==t5) ; calc loop branch cond[9] PC = t7, L2 ; branch if true (list==0)[10] t8 = M[ t1+t3 ] ; load t8= list->x[11] t9 = (t8==t5) ; calc inverse if condition[12] PC = t9, L3 ; branch if true (list->x==0)[13] t10 = M[ t1+t2 ]; load t7= list->z[14] t11 = t10 / t8 ; (list->z / list->x)[15] t6 = t6 + t11 ; value = value + (z[k] / x[k])[16] L3:[17] t1 = M[ t1+t4 ] ; load list->next[18] PC = L1[19] L2: Figure 4.5: Example Code: LinkedList() RTL Formcontains the partition group to which the RTL has been assigned and the RTLstatement shows the intermediate form of the program. Each statement of theRTL description either de�nes a label or describes an operation to be performed inthe resulting code; comments are delimited by ';'. Virtual register labels (speci�edas t1, t2, t3, etc.) de�ne intermediate points in the calculation and may or maynot map to physical registers or queues (for the sake of clarity, the actual registermapping has been omitted).In the InnerProduct example (Figure 4.7, lines [8] and [14] are placed in theCONTROL group because they are branch instructions. Lines [9] and [10] are alsoplaced in the CONTROL group because they are memory access instructions. AnyRTLs that de�ne a value later used by a CONTROL group operation (lines [8],[9], [10] or [14]) will also be placed in the CONTROL group to avoid moving dataupstream (from a trailing PE to a leading PE); line [7] falls in this category becauseit de�nes the branch control value (register t6) used by the branch instruction inline [8]. Line [13] is also included because it calculates the loop iterator (k++).Finally, since no groups can be assigned to the FREE group that contain valuesused by the access group (no upstream communication allowed), lines [2] through [5],



Chapter 4: Design of the MISC Compiler 50PE1 Code PE2 Code PE3 Code PE4 Code[1] t1 = 0[2] t2 = 0[3] t3 = 1024[4] t4 = LOC[_z][5] t5 = LOC[_x][6] L1: L1: L1: L1:[7] t6 = (t2>=t3)[8] PC = t6, L2 PC = t6, L2 PC = t6, L2 PC = t6, L2[9] t7 = M[t4+t2][10] t8 = M[t5+t2][11] t9 = t7 * t8[12] t1 = t1 + t9[13] t2 = t2 + 1[14] PC = L1 PC = L1 PC = L1 PC = L1[15] L2: L2: L2: L2:Figure 4.6: Example Code: Balanced InnerProduct() RTL Formwhich initialize the registers used by instructions in the CONTROL group, mustalso be assigned to the CONTROL group. This leaves three lines ([1], [11] and[12]) available to allocate to the FREE group. During execution of this exampleon a DAE partitioned processor, the CONTROL processor would execute 6150instructions (accounting for 75 percent of all instructions), leaving 2049 instructions(25 percent) to be executed by the remaining PEs.The LinkedList example shows similar results in the partitioning of its code.Most lines are allocated to the CONTROL group, while relatively few lines ([6], [14]and [15]) remain to execute on the FREE PEs. Assuming the linked list contains1000 items, the dynamic count of instructions for the CONTROL processor is 8007instructions (80 percent) and the FREE PEs process 2001 instructions.At this point it is important to point out one of the limitations of this analysis.Clearly if 80 percent of all instruction executions are performed by a single PE (as inthe LinkedList() example), it will be di�cult to realize a high issue rate. However,it may be possible to achieve a substantial increase in performance if the originalscalar schedule had very poor performance due to a few high latency operations andthe partitioned code is able to schedule those high latency dependent operationsbetween PEs. This would allow those latencies to be subsumed by the partitioningprocess (and the slip [52] between the asynchronous PEs).Table 4.3 shows the results of DAE partitioning on the benchmark suite. The



Chapter 4: Design of the MISC Compiler 51[1] FREE t1 = 0 ; q=0[2] CONTROL t2 = 0 ; k=0[3] CONTROL t3 = 1024 ; set register for test[4] CONTROL t4 = LOC[_z] ; t4 = base of array z[5] CONTROL t5 = LOC[_x] ; t5 = base of array x[6] L1:[7] CONTROL t6 = (t2>=t3) ; calculate branch cond[8] CONTROL PC = t6, L2 ; branch if true[9] CONTROL t7 = M[ t4+t2 ] ; load t7= z[k][10] CONTROL t8 = M[ t5+t2 ] ; load t8= x[k][11] FREE t9 = t7 * t8 ; (z[k] * x[k])[12] FREE t1 = t1 + t9 ; q = q + (z[k] * x[k])[13] CONTROL t2 = t2 + 1 ; k++[14] CONTROL PC = L1[15] L2:Figure 4.7: Example Code: DEA Partitioning of InnerProduct()�rst column identi�es the application evaluated. Columns titled Control and Freeshow the partitioning of dynamic instruction executions into control and free groups(shown in thousands). The column titled virtual shows the maximum number ofvirtual PEs that are used in the partitioning algorithm: The Virtual PE entrygives a measure of how many PEs are required to partition the FREE groups (plusone for the CONTROL group) in a manner which minimizes the e�ects of highlatency operations. The column titled physical shows the minimum number ofPEs required to map the virtual PEs to a MISC implementation without degradingperformance 6. The Physical PE count shows the number of PEs required to achievethe highest performance; this will likely be less than the number of virtual PEsbecause scheduling can place some instructions in empty pipeline slots caused byhigh latency dependencies.The most notable fact drawn from DAE partitioning is the heavy skewing ofinstructions toward the lead PE. While some performance improvement is found bydecoupling the code in all but two benchmarks (eqntott and espresso), the bene�tsare marginal. In these applications very few instructions can be allocated to asecondary processor due to dependencies between control and access instructions.Each application examined su�ers from a poor partitioning of instructions usingthis strategy. None of the applications require more than two PEs because there are6Note that this is not an optimal schedule, but does provide the same level of performance asschedules involving more PEs using the algorithms described in this dissertation.



Chapter 4: Design of the MISC Compiler 52[1] CONTROL t1 = head ; list=head[2] CONTROL t2 = 4 ; calc z offset from list[3] CONTROL t3 = 8 ; calc x offset from list[4] CONTROL t4 = 12 ; calc next offset from list[5] CONTROL t5 = 0 ; set register for loop test[6] FREE t6 = 0 ; value=0[7] L1:[8] CONTROL t7 = (t1==t5) ; calc loop branch cond[9] CONTROL PC = t7, L2 ; branch if true (list==0)[10] CONTROL t8 = M[ t1+t3 ] ; load t8= list->x[11] CONTROL t9 = (t8==t5) ; calc inverse if condition[12] CONTROL PC = t9, L3 ; branch if true (list->x==0)[13] CONTROL t10 = M[ t1+t2 ]; load t7= list->z[14] FREE t11 = t10 / t8 ; (list->z / list->x)[15] FREE t6 = t6 + t11 ; value = value + (z[k] / x[k])[16] L3:[17] CONTROL t1 = M[ t1+t4 ] ; load list->next[18] CONTROL PC = L1[19] L2:Figure 4.8: Example Code: DEA Partitioning of LinkedList()plenty of excess cycles to hide latency in the second PE due to the heavy skewingof instructions. At this point, no load balancing strategy can achieve high levels ofinstruction level parallelism because the performance will always be dominated bythe lead PE executing the great majority of the instructions. By scheduling 69% to92% of all instructions on the lead PE, it will be impossible to obtain an executionrate greater than about 1.3 IPC (with a single issue lead PE).However, this does not directly show the performance improvement that canbe expected for an application. For instance, if a scalar implementation of an ap-plication has an execution rate of 0.3 IPC, then a MISC IPC of 1.2 is a greatimprovement even if it also has a relatively low IPC count. However, it is unlikelythat the MISC design can be competitive with more advanced multiple issue ar-chitectures, if 80% of all instructions are executed in a strictly sequential manner.To help alleviate this problem a second partitioning strategy was developed thatreduces the demands on the lead PE.



Chapter 4: Design of the MISC Compiler 53Table 4.3: DAE Partition Results (Dynamic)Program Control Free Virtual Physicalcompress 72 28 3 2eqntott 83 17 6 1espresso 92 8 3 1gcc 76 24 6 2xlisp 88 12 4 2sc 69 31 8 2povray 77 23 3 2sobel 69 31 5 2ear 76 24 8 2KMP 60 40 4 3InnerProduct 75 25 3 2LinkedList 80 20 3 24.6.2 Strategy 2: Control PartitioningThe second approach to load balancing, control partitioning, does not require mem-ory operations be placed on the lead processor unless they are required as part ofa control group (i.e. they generate condition values used by conditional branches),which reduces the burden placed on the lead PE. Table 4.4 shows the results ofthis partitioning strategy on the benchmark suite.Control partitioning shows improved results across all benchmarks. Four pro-grams (sc, sobel, KMP and InnerProduct) achieve the best results when three ormore PEs are available. Unfortunately, most of the integer benchmarks still showthat little parallelism is exploited, with eqntott and espresso showing no improve-ment. These applications often use the result of a memory reference to determinethe control 
ow; an example of this is traversing a linked-list, where the terminat-ing condition (NULL) value can only be determined by retrieving the contents ofmemory for each item in the list. The scienti�c applications show a much betterpartitioning using this technique because their simple array access patterns are moreeasily partitioned; the memory access operations are now allocated to the FREEPEs, and in many cases there is little address aliasing to restrict the compiler fromassigning references to more than one processor.Examining our two example programs, we see improvement in InnerProduct(),but no improvement in LinkedList(). In the InnerProduct() example 4.9, the mem-ory access operations (lines [9] and [10]) were successfully separated from the controlgroup; they have no impact on the control 
ow decisions, so the control processorcan continue processing independent of the execution of the load instructions. Lines



Chapter 4: Design of the MISC Compiler 54Table 4.4: Control Partition ResultsProgram Control Free Virtual Physicalcompress 63 39 4 2eqntott 82 18 6 1espresso 92 8 2 1gcc 56 44 9 2xlisp 81 19 4 2sc 52 48 8 3povray 74 26 4 2sobel 42 58 6 3ear 65 35 8 2KMP 47 53 6 3InnerProduct 50 50 5 4LinkedList 70 30 4 2[4] and [5] can also be relocated because they do not generate values required bythe CONTROL group. In fact, CONTROL partitioning is able to perform an op-timal partitioning in this particular example. For this reason, it will be omittedthroughout the remainder of the partitioning approaches.As mentioned earlier, the LinkedList() example (Figure 4.10) shows little im-provement in partitioning; only lines [2] and [13] could be relocated to the FREEgroup. The memory reference at line [10] returns data later used in a branch cal-culation, which forces the placement of that operation in the control group 7.Finally, the memory access in line [13] can only be placed into the CONTROLgroup if the compiler can determine that it does not reference the same address asfound in reference [10]. The vpcc compiler will make this decision (an unsafe one)because of the di�erent element names in the structure. If this assumption cannotbe made, no improvement over DAE partitioning will be found.Applying control partitioning provides a more even distribution in the scheduledcode, but the number of instructions placed in the CONTROL group still domi-nates. In addition, the instructions identi�ed in the CONTROL column must beallocated to a single (the lead) PE. The next logical step in improving the partition-ing is to relax the restriction on placement of control 
ow operations. By allowingindividual PEs to follow independent routes through the control 
ow, branch pointswhere very little computation is occurring can be assigned to a small number ofPEs, freeing the rest to perform later computations. IF statements often have this7It should be noted that the value read from memory by line [10] may be required by two PEs:The control PE to calculate the branch condition in line [11], and the division performed in line[14]. This is an example of a broadcast memory load operation.



Chapter 4: Design of the MISC Compiler 55[1] FREE t1 = 0[2] CONTROL t2 = 0[3] CONTROL t3 = 1024[4] FREE t4 = LOC[_z][5] FREE t5 = LOC[_x][6] L1:[7] CONTROL t6 = (t2>=t3)[8] CONTROL PC = t6, L2[9] FREE t7 = M[ t4+t2 ][10] FREE t8 = M[ t5+t2 ][11] FREE t9 = t7 * t8[12] FREE t1 = t1 + t9[13] CONTROL t2 = t2 + 1[14] CONTROL PC = L1[15] L2:Figure 4.9: Example Code: Control Partitioning of InnerProduct()characteristic; it may be possible to have a trailing PE perform the entire computa-tion of an if statement while the leading PEs can continue on after the completionof the conditional. Any point in the control 
ow graph that joins after a fork is acandidate for this modi�ed partitioning scheme. This leads to the third partitioningstrategy studied.4.6.3 Strategy 3: Group PartitioningThe third approach requires only that those control groups containing CALL in-structions be allocated to the lead processor. This is the least restricted partitioningalgorithm examined that is completely supported by the current speci�cation of theMISC architecture. This approach operates much like a very tightly coupled mul-tiprocessor; not only are all PEs executing from a separate instruction stream, butthey do not necessarily follow the same 
ow of control through the basic blocks.Some PEs may skip a block or many blocks. A restriction is still placed on thepartitioning by requiring each PE to follow the same 
ow at function boundaries; ifone PE enters a function, all PEs will enter the function. The results of performinggroup partitioning on the benchmark applications are shown in Table 4.5.These results show that about half of the benchmarks are able to place enoughinstructions in the FREE groups to allow an even instruction distribution acrossa dual PE con�guration. Two scienti�c applications, KMP and sobel, show ex-cellent results using group partitioning. Group partitioning is also e�ective in the



Chapter 4: Design of the MISC Compiler 56[1] CONTROL t1 = head[2] CONTROL t2 = 4[3] CONTROL t3 = 8[4] CONTROL t4 = 12[5] CONTROL t5 = 0[6] FREE t6 = 0[7] L1:[8] CONTROL t7 = (t1==t5)[9] CONTROL PC = t7, L2[10] CONTROL t8 = M[ t1+t3 ][11] CONTROL t9 = (t8==t5)[12] CONTROL PC = t9, L3[13] FREE t10 = M[ t1+t2 ][14] FREE t11 = t10 / t12[15] FREE t6 = t6 + t11[16] L3:[17] CONTROL t1 = M[ t1+t4 ][18] CONTROL PC = L1[19] L2:Figure 4.10: Example Code: Control Partitioning of LinkedList()LinkedList() example, Figure 4.11. The conditional branch controlling execution ofthe expression could be o�-loaded from the control processor to another PE. Thisgenerates an improved partitioning which provides greater 
exibility in balancingthe load across four PEs. At this point, the linked list example has also been par-titioned as well as possible (since the control group contains only a single stronglyconnected component). Further partitioning by analyzing memory con
icts will notalter the partitioning. However, if vpcc did not make the assumption that di�eringelements of a structure could not con
ict, there would be no improvement possibleat this point, until those con
icts could be resolved.The majority of the integer applications still allow little opportunity to achievebalanced instruction issue. In these applications, much of the parallelism is in verytightly coupled groups of code that cannot be split across multiple PEs withoutviolating the restriction on unidirectional data 
ow between PEs. Since this is thefeature that allows decoupled processors to tolerate high memory latencies, relaxingthat restriction could signi�cantly reduce the advantages of decoupling.One additional problem remains with �nding enough groups to provide 
exiblepartitioning. The semantics of the C language make it di�cult to determine possible



Chapter 4: Design of the MISC Compiler 57Table 4.5: Group Partition ResultsProgram Control Free Virtual Physicalcompress 60 40 4 2eqntott 75 25 6 2espresso 69 31 5 2gcc 55 45 9 2xlisp 52 48 5 2sc 50 50 8 3povray 42 58 7 3sobel 30 70 7 4ear 52 48 9 2KMP 33 67 8 4InnerProduct 50 50 5 4LinkedList 40 60 5 3memory con
icts at compile time. The freedom to assign a pointer variable toan arbitrary memory location makes it di�cult to identify instructions that arelikely to be independent, but cannot be absolutely determined to be independent.This requires additional links in the dependence graph which restrict the abilityto allocate those memory operations to di�erent dependence groups. The e�ect ofthis possible, but unlikely, dependence is to require a majority of all memory accessoperations to be placed on a single (lead) PE. A �nal partitioning strategy wasstudied which removes this problem from the partitioning algorithm.4.6.4 Strategy 4: Memory PartitioningAll prior partitioning algorithms have had to schedule groups containing memoryoperations on a single PE unless it could be proved that no memory con
ict waspossible since function calls cross a barrier beyond which no analysis of memoryreferences can be performed. A conservative approach to partitioning that restrictsa balanced partitioning across PEs is therefore required.The �nal approach studied allows memory groups to be partitioned in any fash-ion. This increases the ability of the partitioning algorithm to generate more FREEgroups (and thereby improve later code balance). This strategy does require somesupport from the hardware and/or software to ensure correct memory ordering ofoperations in accordance with the speci�cations of the source program is main-tained. This is a di�cult task for the hardware to perform; however, it is vital torelease the compiler from the tremendous restriction of scheduling in the presenceof frequent function calls.



Chapter 4: Design of the MISC Compiler 58[1] CONTROL t1 = head[2] FREE t2 = 4[3] FREE t3 = 8[4] CONTROL t4 = 12[5] CONTROL t5 = 0[6] FREE t6 = 0[7] L1:[8] CONTROL t7 = (t1==t5)[9] CONTROL PC = t7, L2[10] FREE t8 = M[ t1+t3 ][11] FREE t9 = (t8==t5)[12] FREE PC = t9, L3[13] FREE t10 = M[ t1+t2 ][14] FREE t11 = t10 / t8[15] FREE t6 = t6 + t11[16] L3:[17] CONTROL t1 = M[ t1+t4 ][18] CONTROL PC = L1[19] L2:Figure 4.11: Example Code: Group Partitioning of LinkedList()An alternate approach would be to perform inter-procedural analysis to allowthe compiler to determine the actual dependencies between memory instructions.The MISC compiler algorithms described in this chapter are being ported to theSUIF [53] compiler which is capable of such inter-procedural analysis 8; this willprovide a better platform for analyzing the actual capabilities of this approach.Table 4.6 shows the e�ects of the Memory Partitioning approach assuming aperfect knowledge of memory con
icts can be determined during compilation. Thistechnique shows a much greater ability to partition code in a manner that allowsfor a good load balance and good overall performance improvement. These resultsimply that, in languages without the pointer aliasing problem, or in a compilerwith much better pointer analysis than vpcc, it is possible to achieve good codepartitioning results. Many of the benchmark applications show a marked improve-ment in the ability to assign instructions to the FREE group, and show optimal PEassignments greater than two. This demonstrates that decoupled processors withmore than two PEs are capable of providing improved performance.8The version of SUIF incorporating inter-procedural analysis is not currently released outsideof Stanford University. It should be included in a later release.



Chapter 4: Design of the MISC Compiler 59Table 4.6: Memory Partition ResultsProgram Control Free Virtual Physicalcompress 34 66 6 3eqntott 52 48 10 2espresso 44 56 5 2gcc 32 68 9 2xlisp 39 61 7 3sc 41 59 8 3povray 42 58 8 4sobel 30 70 7 4ear 34 66 9 3KMP 33 67 8 4InnerProduct 50 50 5 4LinkedList 40 60 5 34.7 Reducing Branch DuplicationOnce the code has been separated across processing elements, branch instructionsmust be duplicated to enable each PE to follow the control 
ow of (its portionof) the execution. However, executing this many additional branch operations canpotentially reduce the overall performance of the MISC architecture. Just as IF-conversion was used in section 4.2.2 to eliminate short forward branches, the MISCvector and sentinel instructions will be used to reduce the number of loop branchesrequired during execution. At the same time, the hardware registers inside of MISC(e.g. VREG) can be used to calculate the loop induction variables. The instructionsthat calculate the induction variable may also be eliminated by translating usingthe hardware register (VREG) directly.4.7.1 Using Vector and Sentinel OperationsTwo optimization techniques are applied to loops in this compiler | branch re-duction and induction variable calculation. These two optimizations attempt toeliminate instructions inside inner loops, which can lead to signi�cant performanceimprovements when these loop iterations account for a large portion of the execu-tion time.For loops with few or no data dependencies between iterations, loop unrolling[54] is a popular technique to increase the e�ciency of the list scheduler. Duringthis optimization, iterations of the loops are explicitly expanded, making an in-creased number of instructions available to the scheduler. By providing additional



Chapter 4: Design of the MISC Compiler 60(hopefully independent) instructions, the list scheduler is less likely to generatesparsely populated instruction streams.For loops that cannot be e�ciently unrolled, the MISC architecture providestwo mechanisms to reduce the need for branch duplication: VLOOP/SLOOP in-structions (sections 3.6 and 3.7) and predicated execution (section 3.8).4.7.2 Induction Variable CalculationAn induction variable is a variable whose value is consistently modi�ed (incrementedor decremented) by a constant value on each iteration of a loop. These variables areoften used to determine the number of iterations to be performed. Furthermore,induction variables are often used to index array data items or manipulate memorypointers, and can be de�ned in terms of an induction expression. While a numberof expressions are possible, a common induction expression is:IVi = ( dee if i = 1IVi�1 + cee if i > 1where i is the iteration count (value 1 on the �rst iteration), cee is the amount bywhich the induction variable is incremented during each iteration of the loop, anddee is the value of the induction variable at the start of the �rst iteration. Thedetection of induction variables is a well understood problem. The algorithm usedin this compiler is derived from [30] (Algorithm 10.9).Once the control state of the machine has been extended to support loop oper-ations, it is a simple modi�cation to handle the calculation of induction variablesused in the loop. The src1 and src2 �elds of the VLOOP instruction are free tocontain the cee and dee values; VREG will maintain the induction value and src3will control loop termination as described above.In the example of InnerProduct() in Figure 4.6 both array index calculationscan be performed by the hardware using this technique. Using this technique leadsto the RTL description after loop translation shown in Figure 4.12.4.8 Instruction SchedulingThe �nal stage of the compilation process schedules the instructions on each individ-ual PE. A least cost schedule is developed that attempts to schedule all instructionsto execute in the shortest time. List scheduling on MISC operates on each of theprocessing element individually, scheduling to avoid wasted cycles (due to latency).Simple list scheduling is complicated by the need to interpret queue register speci-�cations in the RTL and to avoid reordering queuing operations. Furthermore, allloop instructions (VLOOP and SLOOP) are examined to determine the numberof instructions in the delay slots; if only one instruction is iterated in the loop,



Chapter 4: Design of the MISC Compiler 61PE1 Code PE2 Code PE3 Code PE4 Code[1] t1 = 0[2][3] t3 = 1024 t3 = 1024 t3 = 1024 t3 = 1024[4] t4 = LOC[_z][5] t5 = LOC[_x][6][7] t6 = (t2>=t3)[8] VLOOP 1,0,t3 VLOOP 1,0,t3 VLOOP 1,0,t3 VLOOP 1,0,t3[9] t7 = M[t4+VREG][10] t8 = M[t5+VREG][11] t9 = t7 * t8[12] t1 = t1 + t9[13][14][15] L2: L2: L2: L2:Figure 4.12: Example Code: Loop Transformation of InnerProduct()then the loop instruction is removed and the scalar instruction residing in the delayslot is translated into vector (or sentinel) form. In the InnerProduct() example inFigure 4.12, the VLOOP operations for each of the processors can be replaced witha single vector instruction since each loop consist of only one instruction and thedefault induction calculation is used (or no induction variable is referenced in PE3and PE4).4.9 SummaryThis chapter has described the structure and important characteristics of the MISCcompilation process. The e�ects of various partitioning strategies were examinedto assess the feasibility of translating high-level application code to a decoupledimplementation.The partitioning results indicate that while some parallelism can be extractedusing a DAE model under these compilation techniques, dramatic improvements inILP are unlikely because of the large number of instructions executed by the leadPE. More aggressive partitioning techniques can improve performance, especially inthose applications using simple, non-pointer based data structures. Instruction levelparallelism exploited by a decoupled approach exploits di�erent types of parallelismas that of a superscalar design. This suggests that a hybrid solution in which each



Chapter 4: Design of the MISC Compiler 62MISC processing element implements a superscalar design could provide greaterissue widths and improved performance. Extending this analysis to evaluate totalexecution time and the ability to hide memory latency between processing elementswill be done in the next chapter.
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Chapter 5Performance of the MISCArchitectureThis chapter examines how well the MISC system performs executing a series ofbenchmark applications. The experiments are separated into three parts. First, theperformance of the MISC system is measured using kernels of scienti�c code andresults are compared to previous decoupled [55] and superscalar [56] designs. Thesekernels contain highly parallelizable loops whose ILP can be e�ciently exploitedby a variety of ILP models. The second set of experiments measures the ability ofthe MISC architecture and compiler to hide the high latency memory operationsusing the partitioning techniques introduced in chapter 4. Finally, execution timefor the MISC system is measured for both integer and scienti�c applications andcompared to a current superscalar design.5.1 Performance Results on Livermore Loop Ker-nelsThe Lawrence Livermore Loops were selected as the benchmarks for comparing codeseparation on a four PE MISC architecture with optimized compilation of MIPScode. The loops were extracted from large applications used at the LivermoreNational Laboratory. These loop kernels are best used to study the performancecapabilities of di�erent supercomputer designs in extracting parallelism for scienti�capplications. The �rst 12 loops were compiled for both the MIPS and MISC4architectures (the MIPS code was compiled using the cc compiler with optimizationsenabled).In order to compare the performance of the MISC4 and MIPS processors thetotal number of cycles required to complete a given loop was measured. This isan obvious method of evaluation when dealing with conventional architectures,but misses some of the capabilities that exist in the multiple instruction stream



Chapter 5: Performance of the MISC Architecture 64approach. Higher latencies were used for the MISC4 architecture because thedesign anticipates a higher clock speed.The performance of the MIPS architecture in executing these applications wascalculated by hand, while the MISC4 architecture was studied using a behaviorallevel simulator executing the binary (assembled) form of each loop. Both the MIPSand MISC4 simulations assumed a perfect ICache and an 8K-byte, 32-byte lineUCache con�guration. The operational latencies used in the simulations are shownin Table 5.1. Table 5.1: Operational LatencyOperation Unit MIPS MISC4memory load 2 10Integer Add 1 2Int Mult 2 4Branch 2 2Table 5.2 shows the results of executing the Livermore loops on MIPS andMISC4 architectures. The MIPS con�guration was capable of issuing only a singleinstruction each clock cycle, while the MISC4 system consisted of four PEs eachcapable of issuing a single instruction per cycle. The �rst column identi�es each ofthe 12 loops studied. The second column shows the number of clock cycles requiredto execute that loop on the MISC4 system. The third column shows the numberof execution cycles on a MIPS (scalar) processor. The fourth column shows theperformance improvement (calculated as MIPS cycles divided by MISC4 cycles)achieved by the MISC4 design.For a majority of the loops we see a three to four-fold decrease in MISC4 cyclecounts. This demonstrates that much of the parallelism available in these bench-marks is e�ectively being extracted by theMISC4 design. However, several of thesebenchmarks show less of a performance increase than others (most notably LLL6and LLL11). This is due to a recurrence constraint found in the data manipulatedby the loop | in these cases, adding more processors will not increase performanceregardless of the approach used, since the parallelism is simply not available in theloop.To provide a comparison with a similarly con�gured single instruction stream,multiple issue architecture these loops were hand compiled for a 4 issue VLIWarchitecture. The VLIW architecture chosen is based upon the most sophisticatedversion found in [57]. This VLIW machine allows four instructions to be issuedper clock cycle and there are no limitations on the type of instructions that can beissued. The register �le is capable of handling eight read and four write requestson each cycle, and perfect register renaming (using a rotating register �le [57]),



Chapter 5: Performance of the MISC Architecture 65Table 5.2: LLL Comparison: MIPS vs MISC4Benchmark MIPS MISC4 PerformanceLoop (cycles) (cycles) ImprovementLLL1 5611 1232 4.55LLL2 1112 256 4.34LLL3 6664 2063 3.23LLL4 3011 753 3.99LLL5 6979 1994 3.50LLL6 7726 4982 1.55LLL7 4338 859 5.05LLL8 3218 1476 2.18LLL9 4081 813 5.02LLL10 3107 1007 3.08LLL11 3049 2003 1.52LLL12 3759 1013 3.71predicated execution, and loop control operation are assumed. Furthermore, itis assumed that induction variable calculations can be included in any memoryreference operation (providing pre/post increment capability). The loops were handcompiled due to a lack of a VLIW compiler capable of supporting the hardwarespeci�cations above. Modulo Scheduling was used to provide software pipeliningto minimize latency delays, and to exploit the other hardware capabilities of thearchitecture.It should be noted that for these highly regular loops, and assuming �xed latencyoperations, this idealized VLIW architecture will perform as well as any other4-issue architecture (superscalar and decoupled included), excluding initializatione�ects. Comparing the four PE MISC4 system to this VLIW design shows howclose the MISC approach comes to an optimal design for these loop kernels.The results in Table 5.3 show that the MISC approach is capable of extractingvirtually the same level of parallelism in most of the loops as this idealized VLIWmachine. In addition, the MISC design has an additional bene�t unavailable tothe VLIW machine; since some of the lead PE(s) terminate a loop before trailingPEs, they are capable of starting the execution of the code following the loop exitearly. This demonstrates an important point in the evaluation of the performancecapabilities of a multiple instruction stream processor; where all functional units inthe VLIW processor are locked into the loop (even if they have nothing to do), theMISC4 processor requires only those PEs necessary to execute the loop code, whilethe remaining PEs can immediately start the execution of the next code block(s).The last two columns in the table show the code improvement of the MISC4



Chapter 5: Performance of the MISC Architecture 66machine over the VLIW. The �rst of these values indicates how soon each machinewas able to start execution of the instructions following the loop. The second valueshows the relative completion times of the loop.Table 5.3: LLL Comparison: MISC4 vs VLIWBench PE1 PE2 PE3 PE4 MISC4 VLIW Improve Improvein �rst PE in last PELLL1 1205 1215 1221 1232 1232 1236 1.35 1.00LLL2 201 201 211 256 256 228 1.13 0.89LLL3 1025 1025 1035 2063 2063 1065 1.01 1.00LLL4 385 395 404 753 753 771 2.00 1.02LLL5 997 999 1993 1994 1994 1994 2.00 1.00LLL6 0 997 1995 4982 4982 4984 1 1.00LLL7 727 846 736 859 859 863 1.18 1.01LLL8 586 720 1240 1476 1476 1456 2.48 0.99LLL9 609 707 712 813 813 708 1.16 0.87LLL10 506 506 1006 1007 1007 1014 2.00 1.01LLL11 0 999 1000 2003 2003 2004 1 1.00LLL12 1002 1012 1013 1013 1013 1013 0.99 1.00To demonstrate the e�ects of this let us examine two of the loops in more detail.An examination of the execution of LLL6 reveals that only the �nal processingelement is required to perform the majority of the loop calculation. This is due toa tight recurrence relation found in the loop equation. In the VLIW machine allfunctional units are forced to sit idle in the loop body until the aggregate machinecompletes calculation of the loop. In the MISC4 approach, the three processingelements not involved in the recurrence calculation are free to continue executingsubsequent code.If we now assume that LLL11 follows the execution of LLL6, we can determinethe di�erent stagger rates on exit from LLL6 and reschedule LLL11 to take advan-tage of the free processing elements. Table 5.4 shows the result of this rescheduling(done at compile time) and compares it to the idealized VLIW architecture. Asseen in the table, the ability to overlap execution of the loops allows the MISC4processor to perform both loops in the time required by the VLIW architecture toperform the �rst alone.This result demonstrates the advantage that the multiple instruction streamattains across basic blocks. Since each PE enters and leaves any block of code ina manner that is asynchronous with respect to the other PEs, it enables the leadPE to continue with later processing before the trailing PEs complete the earliercomputation. This means that the high latency communication originating from



Chapter 5: Performance of the MISC Architecture 67Table 5.4: LLL Comparison: MISC4 vs VLIW of LLL6-11Bench PE1 PE2 PE3 PE4 MIPS VLIW Improve ImproveLLL6 0 997 1995 4982 4982 4984 1 1.00LLL11 999 1000 2003 0 2003 2004 1 1.00LLL6-11 999 1997 3998 4982 4982 6988 6.99 1.40the lead PE and destined for trailing PEs is not only amortized within a block ofcode, but also throughout a function or program; once the lead PE gets ahead, itstays ahead even through arti�cial boundaries (like a basic block).5.2 Evaluating MISC4 Performance on ComplexApplicationsIn this section some performance characteristics of the MISC4 processor will becompared to both a scalar and a superscalar design. Various components will beevaluated, including the a�ects of various load balancing mechanisms, the a�ect ofload latency and the memory organization.The simulation environment used in this study di�ers slightly from that used inthe previous section in that complete runs of the SPECint and scienti�c applications(described in chapter 4, Table 4.1) are simulated, including all library routines.5.2.1 Simulation EnvironmentIn order to execute large applications on a new architecture, such as MISC, thestandard C library (as well as several others) must be compiled and system supportincluded in the simulator. This is a signi�cant task for a new architecture which hasonly a compiler and assembler and no operating system. An alternate approach isto perform a detailed simulation of the architectural features within the frameworkof an existing architecture. This second alternative was chosen for this study andthe Alpha processor [58] was selected as the simulation platform. The behavioralsimulation of MISC instructions has been incorporated into the ATOM [59] analysistool set; Alpha binaries are now executed, but behave as if they were running ona MISC4 system. Using this approach also requires that portions of the compiler(e.g. code partitioning) be incorporated into the ATOM simulator. This was doneas follows:1. Compile the benchmark applications for an Alpha system, generating an Al-pha object �le.



Chapter 5: Performance of the MISC Architecture 682. Link the object �le(s) with the standard library and any other required li-braries generating an executable version of the program.3. Translate the executable into an Intermediate Representation (IR) that canbe processed by those components of the MISC compiler responsible for codepartitioning and load balancing.4. Annotate the IR with information about theMISC4 schedule and the originalexecutable instructions.5. Simulate the execution of the program under ATOM simulating the data andcontrol 
ow for the MISC4 processor using the annotations. This entailsincorporating most of the MISC simulator into an ATOM application to de-termine the event timing during the execution.6. Gather the simulated performance measurements for analysis.5.2.2 CaveatsThere are a number of limitations to this method of analysis. Register allocationcannot be performed, so the large number of registers available in the MISC archi-tecture cannot be exploited. This will limit the aggressiveness of the optimizingtransformations (at least those that trade increased register use for a scheduledperformance gain).A second limitation is the inability of the simulator to provide accurate instruc-tion cache behavior. Therefore, for the purpose of this study the instruction cacheis assumed to contain all necessary instruction data (i.e. the ICache access alwayshits). This is unlikely to a�ect the results signi�cantly because a relative compari-son is being made, and each processor simulated will assume the same instructioncache con�guration.Finally, the data cache will process references in the order that would be seenin the original Alpha execution. While this will yield a valid MISC4 referencepermutation, it will not simulate the asynchronous behavior of the MISC memorydesign. However, the MISC4 UCache is modeled so references can be re-orderedduring simulation, resulting in reasonable cache performance even if the originalordering in the Alpha schedule is poor. ICache access time is 1 cycle for all MISCand Alpha con�gurations. UCache and Alpha Data Cache access times are assumedto be 3 cycles while memory latency is 100 cycles. The UCache and Alpha DataCache are con�gured as 64Kbyte 4way interleaved caches with 128 byte directmapped lines. The operational latencies used in the simulations are shown in Table5.5.



Chapter 5: Performance of the MISC Architecture 69Table 5.5: Operational LatenciesICache hit 1 cycleICache miss not simulatedUCache hit 3 cyclesMemory load 100 cyclesInteger Add 1Int Mult 4Branch 15.3 Hiding Memory LatencyThe latency of memory is increasing relative to CPU speed and will continue to do sofor the foreseeable future. Larger cache structures can help alleviate this problem tosome extent, but processor designs capable of tolerating high memory latencies willeventually be required. If we examine the latency tolerance of a superscalar designwithout a cache, we see that any performance gains due to increased instructionprocessing capability are overshadowed by memory stalls.Table 5.6 shows the ability of each of the four previously described partitioningstrategies to hide memory latency using inter-PE transfers in the integer SPECbenchmark applications. The percent of total memory latency is shown in eachcell; total memory latency is calculated by accumulating the latency for all memoryload operations (between the access request and the placement of the data into theMQ of one or more of the destination PEs). Latency �gures are shown for bothintra-PE and inter-PE memory requests. The third column shows the percent ofmemory latency comes from memory loads which originate and are destined for PE1. Intra-PE latency will slow the application down while the data is retrieved; ideally,inter-PE latency should not a�ect overall performance. Results are shown for eachbenchmark application (identi�ed in column one) using each of the partitioningstrategies discussed previously in chapter 4 (identi�ed in column two).
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Table 5.6: Hiding latency using inter-PE queues for SPECint benchmarksProgram Partition Latency Latency Latency Latency Inter-PEStrategy in PE1 in PE2 in PE3 in PE4 Latencycompress DAE 78 0 0 0 22Control 63 4 0 0 33Group 63 4 0 0 33Memory 41 8 2 0 49eqntott DAE 100 0 0 0 0Control 100 0 0 0 0Group 81 5 0 0 14Memory 67 3 0 0 30espresso DAE 100 0 0 0 0Control 100 0 0 0 0Group 43 12 0 0 45Memory 27 21 0 0 52gcc DAE 74 6 0 0 20Control 66 14 0 0 20Group 66 14 0 0 20Memory 35 22 0 0 43xlisp DAE 88 0 0 0 12Control 88 0 0 0 12Group 53 10 0 0 27Memory 42 6 8 0 44sc DAE 73 1 0 0 26Control 67 9 0 0 24Group 67 9 0 0 24Memory 50 2 10 0 38



Chapter 5: Performance of the MISC Architecture 71The table shows that much of the memory latency cannot be hidden betweenPEs (shown in �fth column) but resides in the lead PE for most strategies. The DAEstrategy has little opportunity to hide much of the latency since the vast majorityof instructions must be located on PE1. The Control strategy and Group strategyresults show some improvement by reducing the burden on PE1 | particularlythe ability to move the branch calculation of some short forward branches (usuallygenerated by IF-THEN-ELSE statements) from PE1 to other PEs. The abilityto hide the latency of memory operations is still limited by the inability of thecompiler to guarantee that di�erent memory operations (LAQ/SAQ instructions)do not con
ict. The Memory Partitioning Strategy shows that when memory accessrequests are allowed to be distributed between PEs, much of the latency can behidden in the inter-PE queues.Table 5.7 presents the memory latency results for the set of scienti�c applica-tions. These applications show that a much greater percentage of memory opera-tions can be subsumed in inter-PE queues. This is primarily due to the use of lessabstract data types; simple array references dominate as opposed to the trees andlinked-lists in the SPECint applications.Table 5.7: Hiding latency via inter-PE queues for scienti�c benchmarksProgram Partition Latency Latency Latency Latency Inter-PEStrategy in PE1 in PE2 in PE3 in PE4 Latencypovray DAE 75 0 0 0 25Control 75 0 0 0 25Group 35 19 0 0 46Memory 35 19 0 0 46sobel DAE 40 0 0 0 60Control 19 0 0 0 81Group 8 0 0 0 92Memory 8 0 0 0 92ear DAE 88 0 0 0 12Control 76 6 0 0 18Group 52 10 7 0 31Memory 40 9 7 0 44KMP DAE 62 0 0 0 38Control 32 0 0 0 68Group 8 9 3 0 80Memory 8 9 3 0 80Separating memory access operations improves the partitioning of the codeenough to allow a majority of the memory latency to be hidden in two of the



Chapter 5: Performance of the MISC Architecture 72applications. Another type of application, as seen in the espresso benchmark, ben-e�ts from removing the restriction on partitioning branch operations. Unlike theSPECint benchmarks, little additional improvement is found when employing theMemory partitioning strategy | these applications do not require sophisticatedpointer analysis to determine whether memory con
icts may occur between accessinstructions.The results for the scienti�c codes agree with those of the integer benchmarks,showing that the most restrictive partitioning strategies are only able to hide asmall percentage of high latency memory operations between processing elements;the exception to this is the sobel benchmark, in which execution time is dominatedby a simple loop with no intra-loop control 
ow.5.4 Execution PerformanceThe �nal test of MISC performance is to examine total execution time compared toexisting architectures. It should be noted that the SPECint benchmarks representsthe worst case for decoupled design with their heavy instruction interdependence.Three di�erent con�gurations of the Alpha architecture are compared to two andfour PE versions of the MISC processor, MISC2 and MISC4 respectively. TheAlpha was selected because it is a simple superscalar design that is available in twoand four issue implementations. Each Alpha implementation performs in-orderinstruction issue and can issue one, two or four instructions during each cycle aslong as all dependencies can be resolved at instruction issue. These con�guration arelabeled Alpha1, Alpha2 and Alpha4 respectively. This models several hypotheticalimplementations that are less restrictive than current Alpha 21064 [58] or 21164[60] implementations. Both the Alpha designs and the MISC design use a twolevel cache and a 50 cycle access time to main memory. Table 5.8 shows the totalexecution time of the MISC system relative to the scalar Alpha1 system.
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Table 5.8: Relative execution time for scalar, superscalar and MISC designs forSPECint benchmarksProgram Partition Alpha1 Alpha2 Alpha4 MISC2 MISC4Strategy Processor Processor Processor System Systemcompress DAE 1.11 1.11Control 1.29 1.29Group 1.31 1.31Memory 1.00 1.54 1.95 1.52 1.93eqntott DAE 1.00 1.00Control 1.00 1.00Group 1.13 1.13Memory 1.00 1.71 2.01 1.64 1.78espresso DAE 1.00 1.00Control 1.00 1.00Group 1.50 1.72Memory 1.00 1.34 2.43 1.89 2.12gcc DAE 1.21 1.21Control 1.28 1.31Group 1.28 1.31Memory 1.00 1.56 1.98 1.64 1.92xlisp DAE 1.16 1.16Control 1.20 1.20Group 1.45 1.67Memory 1.00 1.39 1.92 2.05 2.48sc DAE 1.23 1.23Control 1.34 1.34Group 1.37 1.45Memory 1.00 1.49 1.84 1.46 1.75



Chapter 5: Performance of the MISC Architecture 74The results show that with enough memory aliasing, the performance of a de-coupled machine is similar to the performance of a simple superscalar design withthe same issue width. In some cases, the ability to hide memory latency allowedfurther improvements.Table 5.9 shows the total execution time for each of the scienti�c applications.The results for these applications di�er signi�cantly from those of the SPECintbenchmarks. In three of the applications, both two-issue and four-issue versions ofthe MISC architecture are able to exploit more parallelism than the correspondingsuperscalar architectures. This is due to the ability of the ACCESS PEs in adecoupled design to continue initiating further requests to the cache when an in-order superscalar design would block soon after a cache miss. This is most clearlyseen in the KMP application where the MISC system achieves twice the ILP of thecorresponding superscalar approach.Table 5.9: Relative execution time for scalar, superscalar and MISC designs forscienti�c benchmarksProgram Partition Alpha1 Alpha2 Alpha4 MISC2 MISC4Strategy Processor Processor Processor System Systempovray DAE 1.21 1.21Control 1.21 1.21Group 1.83 2.54Memory 1.00 1.72 2.21 1.83 2.54sobel DAE 2.11 2.11Control 2.41 2.73Group 2.76 3.04Memory 1.00 1.72 2.20 2.76 3.04ear DAE 1.13 1.13Control 1.27 1.27Group 1.32 1.65Memory 1.00 1.75 2.07 1.62 1.92KMP DAE 1.42 1.42Control 1.73 1.73Group 3.14 3.91Memory 1.00 1.52 1.83 3.14 3.91
5.5 SummaryTwo distinct experiments were performed in this chapter: the evaluation of the lim-its of the MISC design in exploiting parallelism for highly parallelizable loop kernels,



Chapter 5: Performance of the MISC Architecture 75and an evaluation of the ability of both the architecture and the MISC compiler toidentify and exploit the parallelism available in a broader class of applications.The Livermore Loop kernels were used in the �rst experiment and showed thatthe MISC design is capable of extracting the same level of parallelism as an ideal-ized VLIW implementation, with the added bene�t of a more dynamic instructionexecution around loop boundaries. Overall the MISC design not only achievedthe same level of performance on individual kernels, but allowed for an overlap ofexecution when multiple kernels were scheduled to run in sequence.The second set of experiments involved more general applications comprisedof programs from the SPEC92 benchmark suite as well as a few additional appli-cations from a variety of scienti�c domains. These results show that the abilityof a decoupled design to identify and exploit the available parallelism depends onthe code partitioning strategy of the compiler; a restrictive partitioning algorithm,such as the DAE strategy, does not allow for su�cient 
exibility in the instruc-tion schedule to exploit the parallelism available in the application. More 
exiblepartitioning strategies do allow for e�cient exploitation of parallelism achievingbetter performance to that of comparable superscalar designs. We intend to extendthis analysis to compare a modi�ed version of MISC with the more aggressivelyscheduled superscalar designs that are becoming more common.The ability to hide memory latency between asynchronous processing elementswas also studied. Again, when the compiler implemented a su�ciently 
exiblepartitioning strategy, the architecture was capable of hiding much of the memorylatency.



Chapter 6: Improving Memory Performance 76
Chapter 6Improving Memory PerformanceIn the previous chapters, the MISC architecture and compiler model were describedand evaluated. The performance of the system has been shown to be quite goodwhen compared to similarly con�gured superscalar designs. However, in order forany application to be able to achieve a high level of performance, the memory systemmust be capable of supporting multiple references each cycle. The MISC designprovides unique opportunities for constructing a very high performance memorysystem; the use of decoupled memory access instructions and memory bu�ers per-mits more requests to be sent to the memory system per cycle. By providing moreoutstanding memory requests, the MISC cache can potentially improve the orderingof requests to maximize throughput.This chapter measures some performance characteristics of a cache design sup-porting several of the features present in the MISC UCache. While the MISCUCache is used throughout this analysis, the results are equally applicable toany high performance processor design capable of supporting multiple outstand-ing memory requests.6.1 Performance of the CacheAs described previously, the ability to handle multiple references during each cycleis necessary in order to expand the amount of instruction level parallelism that canbe exploited by a processor. However, the design of a cache capable of supportingmultiple references can pose a considerable challenge to the hardware engineers.Several alternative implementations are possible; one approach is to duplicate re-sources (as done in the register �le). A multi-ported register �le trades siliconarea for the ability to handle multiple references per cycle, and is used because ofthe relatively small number of registers that exist in most CPU implementations.However, using the same tradeo� for a cache design is problematic. The number ofelements assigned to the cache unit usually dwarfs that of the register �le to beginwith, so duplicating structures would result in a potentially unacceptable increase



Chapter 6: Improving Memory Performance 77in transistor requirements (or an equally unacceptable decrease in cache size). Thissection explores some of the features of the MISC UCache approach that allows itto maintain the level of performance of a true multi-ported design using a simpli�edcache implementation which removes the need to duplicate cache memory.While the design of the UCache is heavily in
uenced by the decoupled natureof the MISC architecture, some of the features found in this cache are equallyapplicable to many of the recent aggressive superscalar designs. The MIPS R10000[63], in particular, implements a two-way interleaved cache similar to the MISCinterleaved UCache and should bene�t from the reordering [61] and combining[62] capabilities in the MISC design. The remainder of this section analyzes theperformance of a MISC UCache-type design and compares it to a conventionalmulti-ported approach.6.1.1 Experimental Con�gurationTo analyze the performance potential of various multiple access cache organizations,six cache models were examined, ranging from an interleaved model which is easy toimplement to a fully multi-ported design capable of processing multiple referenceswithout restriction. The six con�gurations are:1. I: a four-way interleaved cache 1 consisting of four 16K byte direct mappedcaches. (I)2. IR: a four-way interleaved cache with a reorder bu�er on each address bu�er.Each bank consists of a 16K byte direct mapped cache. (I + reorder)3. IC: a four-way interleaved cache with combining support. Each bank consistsof a 16K byte direct mapped cache. (I + combining)4. IRC: a four-way interleaved cache with a reorder bu�er and combining sup-port. Each bank consists of a 16K byte direct mapped cache. (I + reorder+ combining)5. MP: a four-ported, 64K byte direct mapped cache. (MP)6. MPR: a four-ported, 64K byte direct mapped cache with a reorder bu�er.(MP + reorder)These con�gurations have been chosen to see how well reordering and combiningcan be incorporated into an interleaved and/or multi-ported con�guration, and howthe performance of these con�gurations matches that of a conventional multi-portedcache.1The bits of the e�ective address that are adjacent to those of the cache lines selector are usedto select the cache bank.



Chapter 6: Improving Memory Performance 78An external memory access cost of 50 clock cycles (on a cache miss) is sim-ulated. It is further assumed that su�cient bandwidth between the cache andexternal memory is available to guarantee that delays due to insu�cient band-width will not occur. True dependencies in the application program may still limitthe number of memory operations which may be outstanding at any cycle, sincesome of these applications simply do not have su�cient parallelism to fully exercisea high performance cache. An extreme example of this is found in the linked listexample in chapter 4, in which it was impossible to perform memory fetch opera-tions from di�erent iterations due to the dependency between the value loaded inone iteration and the e�ective address calculation in the next iteration.6.1.2 Reordering Memory RequestsReordering of memory operations is possible when the order of the requests doesnot a�ect the values calculated during execution. This is easily determined in asequential application by examining the e�ective addresses of the requests; if tworeferences do not refer to the same location, then the order in which the cacheprocesses these requests is not important to the correct execution of the program.Reordering memory requests allows memory load operations to bypass stores al-lowing the latency of the load operation (critical to the system performance) tobe reduced. It is also often advantageous to allow loads to bypass each other, andsince no memory state modi�cation occurs with a load operation, no con
ict test isnecessary. Finally, it may be useful to allow stores to bypass each other; this occurswhen the interleaved cache cannot process the �rst store because of a bank con
ictwith an earlier reference, but a later store maps to a free cache bank. By allowingthe store operations to be reordered, multiple cache accesses can be supported.Reordering of requests can also improve the performance of an interleaved cacheby reducing the likelihood of bank con
icts. This is particularly important becauselocality in the reference pattern increases the probability that consecutive referenceswill map to the same cache bank. Figure 6.1 shows the probability of a bank con
ictbetween consecutive cache references in a four-way interleaved cache design. Eachcolumn in the �gure shows the probabilities for a di�erent SPEC application. Thecolumns are separated into four segments, corresponding to the four banks in thecache. The lowest segment (same bank entry) shows the probability that for anyreference the immediate successor will map to the same bank (causing a con
ict).The other three segments show the probability that the immediate successor mapsto each of the other banks in the cache.If the reference steam contains independent (and random) references, the prob-ability for each of the four segments should be evenly distributed (25 percent each).However, most applications show a skewed probability towards bank con
icts |averaging 38 percent across all applications and as much as 50 percent in the com-press benchmark. This clearly limits the e�ectiveness of an interleaved approach
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Figure 6.1: Relative distribution of cache bank referenceswhen no reordering logic is provided.The technique of reordering memory operations has been explored by Smith [9]and has more recently been implemented in the R10000 processor. These designsshow a signi�cant improvement in cache performance, especially when cache missescan be bypassed (a technique referred to as a NON-blocking cache design [64]).The performance impact of reordering references is a function of the number ofoutstanding requests, the restrictions on cache access (bank selection policy) andthe nature of memory requests in the application. The e�ectiveness of reorderinglogic is improved when there are more outstanding memory requests. Decoupledarchitectures are designed to maximize the number of outstanding memory requestby placing the requests on an ACCESS processor that runs ahead of the use of thedata. This improves the e�ectiveness of the reorder bu�er.Figure 6.2 shows the e�ects of reordering on a bank selected cache for the integerbenchmark applications described in Table 4.1. Four of the previously describedcon�gurations are included (I, IR, MP, MPR); the con�gurations employing com-bining logic will be examined in the next section. The average access rate for each



Chapter 6: Improving Memory Performance 80con�guration was measured across all benchmark applications 2. The vertical axisshows the average number of references that can be processed by the cache in eachcycle. The horizontal axis shows the a�ect of scaling the size of the reorder bu�eron the access rate. Reorder bu�er size ranges from 4 to 16 entries.
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Figure 6.2: MISC Cache: E�ects of Queue LengthIt can be seen from the �gure that no con�guration initially approaches the max-imum possible reference per cycle rating of the cache (4 references per cycle). Twoe�ects limit the ability to locate additional independent references; miss processingand interdependence between load instructions. When several cache misses occur,the reorder queue �lls up with those requests that are being processed through ex-ternal memory. This limits the number of available outstanding memory requests2Each benchmark application was weighed equally in determining the average so that bench-marks with a longer reference stream did not dominate the average.



Chapter 6: Improving Memory Performance 81to those that can �t in the remaining (free) queue entries. With a 50 cycle latencyto retrieve data on a cache miss, it is likely that most (and occasionally all) of thereorder slots will be �lled with unprocessed cache misses. The �gure shows that areorder bu�er of length four provides a 60% improvement in cache throughput forboth interleaved and multi-ported con�gurations.As the queue size is increased, su�cient queue entries exist to store numerouscache misses while retaining enough free entries to processes later requests. Thisallows the throughput of an interleaved cache with a reorder bu�er to approachthat of a multi-ported design with reordering. When the queue size reaches sixteenentries, both the multi-ported and interleaved approach (with reordering logic)achieve an average throughput of three references per cycle. These results showthat very little performance penalty is paid for switching from a true multi-porteddesign to an interleaved design when aggressive reordering is performed and queuesizes are su�ciently large.6.1.3 Combining Memory RequestsIn addition to reordering, the cache access rate can be increased by using a techniquecalled reference combining. Combining is a technique concurrently developed byWilson, Olokotun and Rosenblum [62] and Austin and Sohi [65], which attemptsto combine references to the same cache line into a single request.Combining focuses cache resources on areas in the design that can bene�t fromspatial locality and works as follows: Accessing a storage element in a conventionalcache can be thought of as indexing into a two dimensional matrix using the lineselector and line o�set �elds of the e�ective address. Combining incorporates ad-ditional logic in the request bu�er (reorder bu�er), along with limited cache linemulti-porting, to improve access throughput 3. However, combining logic appliedto an interleaved approach enables multiple references to the same cache line to betranslated into a single cache line request with multiple line o�sets. This allowsmultiple references to the same line while requiring only a single multi-ported linebe included in the implementation.This can be accomplished by placing the cache line into a temporary storagebu�er (associated with each cache bank) which is capable of supporting multipleline o�set requests. Duplicating memory cells in a single line bu�er per cache bankdoes not increase the circuit size signi�cantly and if enough spatial locality existsin the application, the performance of a single ported line access with a multi-ported line o�set calculation should approach the performance of a true multi-ported cache design. Furthermore, when combining is implemented in each bankof an interleaved cache, the optimal throughput can be increased signi�cantly; ina four-way interleaved cache with two-ported combining logic on each bank, up to3Recall that a multi-ported cache allows more than one request to be processed regardless ofthe relationship between the addresses involved.



Chapter 6: Improving Memory Performance 82eight references can be processed by the cache during each cycle.For combining to be e�ective, spatial locality must exist in the applications.Figure 6.3 shows the same probabilities of bank allocation shown in Figure 6.1,but with the same bank component split into two sub-components, same line and amodi�ed di� line entry. The same line components indicates the percent of consec-utive references that access not only the same bank, but also the same line; theseare amenable to combining. The new di� line component indicates the percentof consecutive references that access the same bank, but a di�erent line. Thesereference cannot be combined, and must be processed sequentially due to the re-strictions of the interleaved model. The spatial locality inherent in the applicationsis revealed in the �gure; more than half of the consecutive references that map tothe same bank also map to the same line. This means that improvement should beseen in an interleaved cache containing combining logic.
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Figure 6.3: Relative distribution of cache line/bank referencesThe e�ects of combining on cache performance can be seen with and with-out reordering in Figure 6.4. Combining without reordering provides a small im-provement over the interleaved cache with neither reordering nor combining. Thisimprovement comes from the capture of those same line references that exhibit



Chapter 6: Improving Memory Performance 83spatial locality. When the reorder bu�er is included, combining does not need tobe restricted to consecutive references, but can be applied to any reference in there-order bu�er. Very little additional complexity is required to perform combiningthroughout the re-order bu�er | the comparison circuit already exists to determinewhether a memory con
ict occurs. Figure 6.4 shows the result of incorporating re-ordering and combining with an interleaved cache design. When a reorder bu�eris included the throughput immediately increases, and then as bu�er queue sizeincreases throughput approaches that of a similarly con�gured multi-ported cache.Adding combining to the reorder bu�er makes the performance curve of the inter-leaved cache design match that of a multi-ported design even for relatively smallreorder bu�ers.
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Figure 6.4: MISC Cache: E�ects of Combining Requests



Chapter 6: Improving Memory Performance 846.2 SummaryThe MISC cache is a high throughput cache capable of supporting memory accessrequests from a set of cooperating processing elements. This design combines an ef-�cient pipelined, interleaved cache with an aggressive reorder and combining bu�erto achieve cache throughput performance approximating that of a high-performancemulti-ported con�guration.This new cache structure combines the scalability of an interleaved cache witha mechanism to overcome the limitations of utilizing an interleaved approach. Thisstudy showed that when memory operations can be reordered, the performanceof an interleaved design can approach that of a multi-ported design once the sizeof the bu�er exceeds some threshold. Including combining logic enables multiplereferences to the same cache line to be merged into a single request, which hasthe a�ect of further improving the performance of the more restrictive interleavedapproach. With the inclusion of a small reorder bu�er, a simple interleaved cachedesign can match the performance of the more complex multi-ported cache. Bothreorder bu�ers and combining logic can be incorporated into the cache design in-dependent of the processor model; this design applies equally well to superscalar orVLIW architectures as it does to MISC.
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Chapter 7ConclusionsThis research was originally motivated by the desire to examine the feasibility ofexploiting instruction level parallelism in a scalable decoupled design. At the startof the project it was not clear whether a multiple instruction stream architecturewould be capable of executing very tightly coupled applications without requiringcomplex architectural and compiler support. Previous approaches using a decoupledmechanism showed great promise in reducing the e�ects of high memory latency in aset of well structured scienti�c applications; however, general purpose, integer basedapplications were not studied. This dissertation explored the use of a decoupledprocessor design in executing a more general set of applications.Contributions of this dissertation include:� Development of a scalable decoupled processor capable of partitioning a taskacross multiple processing elements and exploiting instruction level paral-lelism. The results showed that near optimal performance can be achievedfor the class of applications that were originally targeted by decoupled designs.� Development of a Compiler Model to Support the Architecture to study theability to partition more general applications across processing elements. Thisstudy showed that when modest levels of parallelism exist and can be exploitedwith a decoupled design, the unrestricted use of pointer variables severelylimits the performance gains that can be made while guaranteeing programcorrectness. This study was limited by the unidirectional dependence 
owdesigned into the compiler and the methods used to measure it. Furtherstudy of compilation techniques is warranted.� Development of a Unique Cache System to Improve Memory Performance.The structure of the MISC cache incorporates several unique features to im-prove the ability of the cache to process a high rate of memory requests percycle. A decoupled reorder bu�er enables better utilization of simple inter-leaved cache design by reducing the e�ects of bank con
icts through a dy-namic scheduling of memory requests.. Combining is also included to further



Chapter 7: Conclusions 86improve the performance of the cache by exploiting cache line locality in asingle multi-ported lines associated with each cache bank. These two featuresenable a simple interleaved cache design to achieve performance comparableto high performance multi-ported cache designs.7.1 Future DirectionsThe research performed in this dissertation can be extended in a variety of ways.Improvements can be made to both the hardware and compiler aspects of the workdiscussed in the previous chapters. In this section, I propose modi�cations that canbe made to the MISC design to better exploit instruction level parallelism. At thesame time, capabilities inherent in the MISC design that can be incorporated intomore conventional, single instruction stream architectures are discussed.7.1.1 Hybrid Decoupled/Superscalar DesignThe MISC architecture is capable of exploiting instruction level parallelism byseparating the code into multiple, single-issue instruction streams; however, eachof these instruction streams may contain additional ILP. An obvious extension tothe MISC design is to implement each MISC processing element as a multiple issueprocessor. This allows the very tightly coupled execution characteristics found insuperscalar design to be exploited, while at the same time allowing better scalabilitybecause of the more distributed resource allocation used in the decoupled design.Using this approach, for example, it is possible to construct a 16 issue architectureby incorporating four processing elements, each capable of issuing four instructionsper cycle.The partitioning results described in chapter 4 suggest that a non-homogeneousapproach to designing the processing elements could potentially achieve even greaterlevels of ILP by matching the resources of each PE with the expected computa-tional demand. The lead PE often executes the greatest number of instructions.This suggests that resources should be allocated to increasing the scalarity of thelead processor 1. Future research should focus on the relationship between the parti-tioning strategy in the compiler and the resource partitioning among the processingelements; however, design time bene�ts may favor a homogeneous approach.7.1.2 Compiler DevelopmentThe MISC compiler was implemented by modifying the vpcc compiler to supportthe code partitioning strategies (and other components) described in this disserta-1The term scalarity has recently been adopted to identify the width of a superscalar design;a superscalar processor capable of executing up to three instructions per cycle is said to have ascalarity of three.



Chapter 7: Conclusions 87tion. The vpcc compiler was the best choice at the start of the project and providedadequate functionality to demonstrate the capabilities of the partitioning requiredto generate code for the MISC design. However, vpcc lacks certain features whichwould provide more optimal results. First, vpcc lacks the capability to performthe memory alias analysis necessary to achieve the improved partitioning shown inthe Memory Partitioning strategy. Another de�ciency (in terms of this research)is that vpcc is not in the public domain; this severely limits the ability to freelydistribute the MISC compiler.Since the initiation of the MISC compiler project, Stanford University has madea public release of the SUIF compiler. This compiler can be freely modi�ed andre-distributed, requiring only the retention of the copyright notice. Furthermore,the SUIF compiler is designed to exploit both instruction level and data parallelismby performing sophisticated pointer analysis. These features make it a better basecompiler for further development of the ideas presented in chapter 4. Changingcompiler platforms is a di�cult task for an architecture as complex as MISC, butnecessary to continue the investigation of the limits to the MISC design and toenable the compiler to be released to other researchers.7.1.3 Incorporating Register Queues in Superscalar DesignsOne aspect of the MISC design that can be directly incorporated in standard archi-tectures is the use of register queues. The use of register queues allow the compilerto schedule more registers than are available using the relatively few operand spec-i�cation bits allocated to operand addressing, enabling the compiler to trade highregister pressure for better instruction schedules.In order to incorporate the ideas in this dissertation in existing designs it isnecessary to make any modi�cations of the instruction set architecture as non-invasive as possible. Complete transparency is the obvious goal, but where thatcannot be achieved, the simplicity of translating existing binaries is needed. Muchthe same problem was faced by Intel when it added 
oating point operations to thex86 line of microprocessors.When the 8086 processor was originally developed to replace the 8080, 
oatingpoint support was not included in the instruction set. As the processor gained inpopularity, 
oating point capability had to be added to the ISA. Unfortunatelythere were not enough bits left in the format to support a conventional registeroperand addressing mode, so a mechanism had to be developed to specify thesource and destination of an operation in fewer bits. This lead to the developmentof the 
oating point register stack. Most x86 
oating point operations take thetop two values o� the register stack and place the result back on the stack. Thesuccessful inclusion of the 
oating point stack in the x86 demonstrates the circuitdesign does not pose signi�cant implementation di�culties in the processor design.Fundamentally there is no di�erence between the design of a register �le supporting



Chapter 7: Conclusions 88stack access and one supporting queue access.This demonstrates a way to incorporate a queuing discipline on top of a singleregister speci�er (e.g. R1) without requiring drastic changes in the instructionset or the circuit design. For example, the implementation of the queue registersemantics on an existing instruction set can be achieved without e�ecting previouscode by overloading the semantics of an existing register and using a mode bit (asused in the real/segmented x86 address calculations) to activate the queue featureor by modifying the operating system to perform load time register reallocation forthose existing binaries.7.1.4 Prefetch Co-processorDecoupled architectures o�er a complementary approach to cache structures inreducing the e�ects of slow main memory. These architectures work well for ap-plications with a well structured access pattern, whereas caches work well withapplications that display locality of reference. Currently, researchers are exploringmethods to achieve better cache performance by prefetching those items with littlelocality, but with a pattern of reference that can be captured by the insertion ofspecialized instructions by the compiler. This is exactly what decoupled designs dowell. It is di�cult to balance the load of instructions across multiple processing el-ements in applications with complex, intertwined data dependencies; this preventsa large speedup in execution. By changing the function of the access processor tothat of a prefetch co-processor for a conventional superscalar architecture, the needto incorporate every dependence that a�ects memory access is removed. Because ofthe transparent nature of the cache, incorrect prefetches will result in slower (butstill correct) program execution. Recent studies have shown that a variety of hard-ware feedback mechanisms can provide information allowing speculative prefetchhardware to improve overall cache performance [66]. The inclusion of an equallytransparent prefetch co-processor decoupled from the execution of the main pro-cessor, yet with the assistance of hardware feedback, opens a new area of research.This approach has a number of advantages. The transparent nature of the cacheallows the inclusion of a co-processor to help in cache management regardless ofthe architectural speci�cation of the system. Old programs can run without mod-i�cation, yet statistics can be gathered and the prefetch co-processor code can begenerated in order to improve performance. The decision on whether to incorporatethe prefetch code can be made at any time for any set of applications. There isno need to modify the architecture of the existing processor to improve cache per-formance. Why make a modi�cation which is visible to the processor architectureto improve performance of a cache unit that is supposed to be transparent? It isbetter to incorporate a transparent controller (a decoupled processor) to managethat resource.



Chapter 7: Conclusions 897.1.5 EpilogThe MISC architecture presented in this dissertation demonstrates the feasibilityof using a decentralized processor design to exploit a level of parallelism previ-ously relegated to highly centralized processor designs. Furthermore, some featuresinherent in the MISC design can be easily incorporated into more conventionalsingle-instruction stream approaches. This work suggests a number of new areasfor research in �nding scalable methods to exploit instruction level parallelism. Theextensions to the MISC design discussed in the future work section highlight a fewof these new research areas.
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Appendix A: MISC Instruction Set 97
Appendix AMISC Instruction SetAppendix A has been removed in this condensed version of the dissertation. MISCinstructions fall into seven categories:Scalar Instructions:add and fadd fmul fsub mulor sll sra srl sub xorCompare and Branch Instructions:ba bnz bz ceq cgecgt fceq fcge fcgtPredicate Instructions:addp andp faddp fmulp fsubp mulporp sllp srap srlp subp xorpVector Instructions:addv andv faddv fmulv fsubv mulvorv sllv srav srlv subv vloopxorvSentinel Instructions:adds ands fadds fmuls fsubs mulsors slls sloop sras srls subsxorsMemory Instructions:laq laq2 saq laqv laq2v saqvSpecial Instructions:cvtif cvtfi qempty qoff qon


