Evaluation of a Scalable Decoupled
Microprocessor Design

By

GARY SCOTT TYSON
B.S. (California State University, Sacramento) 1986
M.S. (California State University, Sacramento) 1988

DISSERTATION
submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA

DAVIS

This is a reformated version of the dissertation to reduce the number of pages
required to print it from 238 to 104. It is unchanged from the original with the
following exceptions:

e Modification of title page.

e Removal of acknowledgements page.

e Line spacing changed from double spaced to single spaced.

e Appendix A condensed from 76 pages to 1 page.

Evaluation of a Scalable Decoupled
Microprocessor Design

Gary Scott Tyson

Doctor of Philosophy in Computer Science
University of California, Davis
Professor Matthew K. Farrens, Committee Chair

Abstract

In this dissertation a new architecture is described and analyzed to determine
its capability to extract instruction level parallelism from applications written in
the C programming language. The architecture is novel in its use of multiple
independent instructions streams to exploit the very fine grained parallelism found
in these applications.

The research consists of three parts: the development of the new architecture,
the development of a compiler model to translate the source program into machine
code for that architecture and the development of a new cache structure capable
of satisfying data requests at a sufficiently high rate to feed the processor without
performance degradation.

Keywords: decoupled architecture, instruction level parallelism, compiler design,
cache organization.

i

Contents

1 Introduction

1.1 Finding Parallelism in a Program

1.1.1 Imstruction Pipelining

1.1.2 Imstruction Level Parallelism

1.1.3 Data Parallelism
1.2 Exploiting parallelism using multiple instruction streams
1.3 A Multiple Instruction Stream Computer
1.4 The Compiler’s Role
1.5 Contribution of this Dissertation
1.6 Organization of this Dissertation

2 Instruction Level Parallelism
2.1 Extending Issue Widths in Current Architectures
2.2 Existing Machines L oo
2.2.1 Early ILP Architectures
2.2.2 VLIW Architectures
2.2.3 Superscalar Architectures L.
2.2.4 Decoupled Architectures
2.3 Previous Decoupled Compilers
2.3.1 The PIPE Compiler
2.3.2 The WM Compiler
2.3.3 The Briarcliff Compiler
2.4 Summary . o.o.o. .. e

3 Design of the MISC Processor

3.1 Design Goals
3.2 MISC Component Structure
3.3 MISC Internal Bus Structure
3.4 Processor Structure e e
3.5 Instruction Format
3.6 Vector Instructions

3.6.1 Vector Loop

il

U O R B W N N o e

e g et
=W W W N - = OO N

14

3.7 Sentinel Instructionso 25
3.7.1 Sentinel Loop 25
3.8 Predicate Instructions L. 26
3.9 Data Cache Structure 27
3.9.1 Design Goals Lo 27
3.9.2 Component Structure, 28
3.9.3 Initiating a Memory Operation 30
3.9.4 Address/Data Buffers. 31
3.9.5 Interleaved Cache Memory 33
3.9.6 External Memory Buffer 34
3.9.7 Return Buffer 0000 34
3.98 BusControl 35
3.10 Summary ... 36
Design of the MISC Compiler 37
4.1 The MISC Compiler Overview 37
4.2 Structure of the MISC Optimizer 42
4.3 Conventional Transformations 42
4.3.1 Register Allocation 42
4.3.2 IF-Conversion 44
4.4 Dependence Graph oL o 44
4.5 Code Separation 45
4.5.1 Code Partitioning 46
4.5.2 Load Balancing Lo 46
4.6 Separation Strategieso 48
4.6.1 Strategy 1: DAE Partitioning 48
4.6.2 Strategy 2: Control Partitioning 23
4.6.3 Strategy 3: Group Partitioning 25
4.6.4 Strategy 4: Memory Partitioning a7
4.7 Reducing Branch Duplication 59
4.7.1 Using Vector and Sentinel Operations 59
4.7.2 Induction Variable Calculation. 60
4.8 Instruction Scheduling o000 60
4.9 Summaryo 61
Performance of the MISC Architecture 63
5.1 Performance Results on Livermore Loop Kernels 63
5.2 Evaluating MI1SC, Performance on Complex Applications 67
5.2.1 Simulation Environment 67
5.2.2 Caveats 68
5.3 Hiding Memory Latency 69
5.4 Execution Performanceo 72

v

5.5 Summary . o.o.o. ..

6 Improving Memory Performance
6.1 Performance of the Cache
6.1.1 Experimental Configuration
6.1.2 Reordering Memory Requests
6.1.3 Combining Memory Requests
6.2 Summary

7 Conclusions
7.1 Future Directions
7.1.1 Hybrid Decoupled/Superscalar Design
7.1.2 Compiler Development
7.1.3 Incorporating Register Queues in Superscalar Designs
7.1.4 Prefetch Co-processor.
7.1.5 Epilog

A MISC Instruction Set

76
76
77
78
81
84

85
86
86
86
87
88
89

97

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

6.1
6.2
6.3
6.4

ILP Taxonomy: Division of responsibility between the compiler and

the hardware o oo 9
MISCy Component Design 17
MISC Processing Element 19
MISC Instruction Format 21
MISC Source Register Specifier Format 22
MISC Destination Register Specifier Format 22
MISC Instruction Type 23
MISC Cache: Component Design 28
MISC Cache: Address/Data Buffer 31
MISC Cache: Return Buffer Design 34
Structure of the Compiler 39
Example Code: InnerProduct() 42
Example Code: LinkedList() 42
Example Code: InnerProduct() RTL Form 48
Example Code: LinkedList() RTL Form 49
Example Code: Balanced InnerProduct() RTL Form 50
Example Code: DEA Partitioning of InnerProduct() 51
Example Code: DEA Partitioning of LinkedList() 52
Example Code: Control Partitioning of InnerProduct() 55
Example Code: Control Partitioning of LinkedList() 56
Example Code: Group Partitioning of LinkedList() 58
Example Code: Loop Transformation of InnerProduct() 61
Relative distribution of cache bank references 79
MISC Cache: Effects of Queue Length 80
Relative distribution of cache line/bank references 82
MISC Cache: Effects of Combining Requests 83

vi

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

An Example Expression for Memory References

Benchmark Application Descriptions
Reduction of Dynamic Branch Executions Due to IF-Conversion . .
DAE Partition Results (Dynamic)
Control Partition Results
Group Partition Results L.
Memory Partition Results

Operational Latency
LLL Comparison: MIPS vs MISCy
LLL Comparison: MISCy vs VLIW
LLL Comparison: MISC, vs VLIW of LLL6-11
Operational Latencies
Hiding latency using inter-PE queues for SPECint benchmarks . . .
Hiding latency via inter-PE queues for scientific benchmarks
Relative execution time for scalar, superscalar and MISC designs for
SPECint benchmarks
Relative execution time for scalar, superscalar and MISC designs for
scientific benchmarks L oL 0oL

Vil

Chapter 1. Introduction 1

Chapter 1

Introduction

In order to satisfy the ever-growing computational requirements of computer users,
computer manufacturers continue to strive for faster and faster designs. Over the
years, many different approaches have been used to improve processor performance.
For example, CRAY-class computers focus on driving up the clock frequency, while
Complez Instruction Set Computer (CISC) machines attempt to reduce the number
of instructions required to complete a task. Most current single-chip processors
try to both maximize the clock frequency and minimize the average clock cycles
required per instruction (CPI).

While increases in clock frequency continue to drive the improvement in pro-
cessor performance, chip designers have also looked to other techniques to improve
performance. For example, instruction throughput can be increased by locating in-
structions that have no dependent relationship and executing those instructions in
parallel. This parallelism comes in two forms: Instruction Level Parallelism (ILP)
and data parallelism. By exploiting this parallelism, the CPI term can be reduced
dramatically.

1.1 Finding Parallelism in a Program

1.1.1 Instruction Pipelining

Instruction pipelining is a processor implementation technique which separates the
execution of an instruction into distinct pipeline stages and allows one or more
instructions to be in each stage during any clock cycle. The ability to support
multiple instructions in the pipeline is possible because each pipeline stage requires
different processor resources The independence of pipeline stages makes it possible
to complete one instruction completion per cycle. As chip designers look to continue
the increase clock frequency, there is a corresponding increase in pressure to reduce
the number of gates traversed during each cycle, and thereby require more pipeline
stages to execute an instruction. Increasing the number of pipeline stages can exac-

Chapter 1. Introduction 2

erbate the difficulty in finding independent instructions to fill those pipeline slots.
This limits the ability to achieve improved performance through pipelining alone;
further mechanisms must be explored to identify and exploit additional parallelism
to obtain more performance.

1.1.2 Instruction Level Parallelism

Instruction level parallelism is a measure of the number of instructions that can
be issued during a single clock cycle '. These instructions must not compete for
the same resources and must not have a dependence (e.g. a value generated by
one instruction and used by another). Independent operations exist because of the
characteristics of the programming model, which separates a task into a number
of different subtasks (execution control flow, memory 1/O activity, data manipu-
lation, etc). In many cases these operations are completely independent (e.g. the
calculation of an address used to fetch data often has nothing to do with the even-
tual manipulation of that data) and are therefore prime candidates for executing
in parallel.

1.1.3 Data Parallelism

Data parallelism, in contrast to ILP, is a property of the task itself. Some tasks
contain data manipulations that are completely independent from one another.
These tasks can be thought of as containing explicit parallelism that can be ex-
ploited regardless of the programming model employed. Many architectures exist
which exploit data parallelism, including vector processors [1], Single Instruction
Multiple Data (SIMD) [2] designs, Multiple Instruction Multiple Data (MIMD) (3]
designs, and dataflow machines [4].

The key difference between instruction level parallelism and data parallelism is
the difference in locality of the dependencies between adjacent instructions; instruc-
tion level parallelism exists when instructions are independent from some adjacent
instructions but may have dependencies with others that are close in the execu-
tion stream. Allowing dependencies between close instructions requires the ability
to support frequent bi-directional communication between operational units. This
high level of communication is often unnecessary in data parallel applications where
the task can be decomposed into far more independent pieces.

nstruction issue refers to the act of assigning an instruction to a functional unit. A common
four stage pipeline design consists of instruction fetch, decode, execute and write-back stages with
instructions being issued to the ezecute stage.

Chapter 1. Introduction 3

1.2 Exploiting parallelism using multiple instruc-
tion streams

Extracting parallelism on a MIMD architecture has traditionally been accomplished
by partitioning a program into data independent portions and assigning them to
separate processing elements, ignoring any other parallelism that might exist. FEx-
amples of this type of architecture include the MIT Alewife machine [6], the Stan-
ford DASH architecture [7], and the Wisconsin Windtunnel design [8]. The sepa-
ration of a program into multiple single issue instruction streams allows the decen-
tralization of the hardware resources in these architectures by replacing a central
instruction window with multiple windows from which instructions can be issued.
Furthermore, each of these instruction windows can be less complex. The register
file can also be distributed among all processors in a MIMD design reducing register
access contention. This eliminates the need for complex multi-access memory cells
(required by a centralized register file) providing greater expandability.

While a MIMD approach to code scheduling clearly possesses certain advan-
tages, historically these architectures have suffered from severe limitations. Data
transfer latencies have been high, and the bandwidth required to support high-
throughput, low contention data transfer between processors has been unavailable
because of pin and/or board-level interconnect limits. In addition, it is often nec-
essary to synchronize the different instruction streams in order to ensure program
correctness. Including these synchronization points can cause unacceptable perfor-
mance loss. Using main memory to handle data transfers between processors can
also lead to an unacceptable dependence on memory latency. These problems help
explain why current MIMD designs do not attempt to exploit ILP.

Both bandwidth and latency limitations in MIMD designs can be overcome if
sufficient resources can be allocated to place all of the processors on the same chip.
Increasing the number of transistors that can be fabricated per square centimeter
provides a means by which many of the interprocessor communication problems can
be eliminated. Placing several processing elements on the same die circumvents the
pin limitations on bandwidth, and supports high on-chip data transfer rates. In ad-
dition, using First-In-First-Out (FIFO) ordered queues in a manner similar to that
used by decoupled machines [9] provides a clean way to handle synchronization.

As transistor densities have continued to increase, single chip MIMD designs
are now becoming feasible. One study [10] indicates that as tens of millions of
transistors become available, something more than simply increasing on-chip cache
sizes must be done. This observation led to the design of the Multiple Instruc-
tion Stream Computer (MISC) architecture, a decoupled MIMD machine that is
designed to support and exploit instruction level parallelism [11].

Chapter 1. Introduction 4

1.3 A Multiple Instruction Stream Computer

The MISC architecture was designed to study a wide range of design points in
exploiting all levels of parallel program execution. To enable this study, the MISC
design incorporates many of the characteristics of shared memory and message
passing architectures, as well as the capabilities of previous decoupled and other
ILP designs. It was hoped that this approach would exploit both the instruction and
data parallelism available in a task by combining the capabilities of traditional data
parallel architectures with those found in machines designed to exploit instruction
level parallelism. For example, MISC is designed to support multiple instruction
issue without increasing the complexity of instruction issue logic or affecting clock
frequency. Furthermore, the regularity and simplicity of the MISC design should
enable a shorter design cycle and increased scalability.

1.4 The Compiler’s Role

The role of the compiler in an ILP processor differs widely depending on the type
of processor. A superscalar processor requires no special help from the compiler
specifying the parallelism available — the hardware is responsible for identifying
any independent operations that can be issued on the same clock cycle. At the other
extreme, a VLIW compiler is responsible for generating a complete specification of
the parallelism in the program the hardware simply executes the instructions in
the order specified in the schedule.

There is a performance tradeoff (in both execution and design time) between
compiler (static) and hardware (dynamic) scheduling; the more information the
compiler can convey to the hardware, the simpler the hardware design can be. This
leads not only to shorter design time, but also to higher clock frequencies. However,
requiring the compiler to completely specify the available parallelism can limit the
portability of the generated code; even if alternate implementations can execute a
given binary, a severe performance degradation may result.

A second problem with the current architectural model used during compilation
is the extensive use of centralized mechanisms to distribute the results of compu-
tations. For example, a centralized register file is assumed which links dependent
operations from all processing resources. This limits the scalability of these designs.

To eliminate these deficiencies a more flexible, decoupled architectural model
is proposed. The idea is to reduce the complexity of the implementation by in-
creasing the ability of the programmer (or compiler) to specify the parameters of
execution. This leads to a design which has different goals than most current ILP
machines. These design goals include decentralizing the resource requirements for
each phase of the instruction pipeline, the ability to exploit the locality found in
program execution, simple RISC-like implementation, and an object format that al-
lows the compiler to convey more information about instruction order and resource

Chapter 1. Introduction 5)

allocation than current ILP designs convey.

1.5 Contribution of this Dissertation

This thesis contains a number of contributions to the field of computer architecture:

e A new architecture is proposed which utilizes a more scalable decentralized
instruction fetch mechanism than found in current processors, a simplified
decode pipeline stage, a decentralized register file and a distributed internal
processor clock.

e The design and construction of a compiler capable of distributing general C
code across multiple asynchronous processors in a manner that enables greater
tolerance of high operational latencies.

e Experimental analysis of the effectiveness of exploiting instruction level par-
allelism by employing multiple program counters in a MIMD architecture.
It will be demonstrated that the MISC system is capable of achieving high
performance execution comparable to that of current superscalar designs.

e Memory system enhancements supporting out of order memory operations
and improved cache management. These enhancements are shown to improve
cache hit rates beyond that of current approaches and are equally applicable
to MISC and superscalar processor designs..

1.6 Organization of this Dissertation
The remainder of this dissertation is organized into six chapters as follows:

e Chapter 2 provides a more detailed discussion of ILP and describes existing
approaches used to extract that parallelism.

e Chapter 3 introduces a new multiple instruction stream architecture capable
of exploiting ILP without the necessity of a centralized clock or centralized
resources.

e Chapter 4 describes the compiler constructed to translate C source code to
the MISC architecture.

e Chapter 5 analyzes the effectiveness of the MISC architecture in exploiting
parallelism in two sets of benchmark applications traditionally used to mea-
sure the performance of superscalar, VLIW and other high performance, ILP
architectures.

Chapter 1. Introduction 6

e Chapter 6 examines the performance of the MISC memory interface, compar-
ing an improved interleaved cache approach to that of a multi-ported cache
design.

e Chapter 7 concludes this dissertation and describes the future research po-
tential of the MISC approach for improving processor performance.

e Appendix A gives a description of the MISC instruction set, including a de-
tailed description of each MISC instruction.

Chapter 2: Instruction Level Parallelism 7

Chapter 2

Instruction Level Parallelism

The amount of instruction level parallelism in a program is a measure of the num-
ber of instructions that can be issued during the same cycle and is a function of
the dependencies and operational latencies of the program. Several different types
of dependencies can exist in a program as implemented on a certain architecture:
These can be broadly categorized as data and control dependencies. A data de-
pendency exists when data which is generated by one instruction is used by a
subsequent instruction; since the data use (read) occurs after the definition (write),
this is referred to as a Read After Write (RAW) or true dependence. Additional
dependencies can also occur due to the reuse of processor resources, such as a reg-
ister re-definition. For instance, if an instruction uses (reads) a register which is
then re-defined (overwritten) by a later instruction, a dependency exists prevent-
ing the simultaneous execution of both instructions; this is referred to as a Write
after Read (WAR) or anti-dependence. Similarly, a register definition followed by
a second definition creates a resource dependency between the instructions and is
referred to as a Write after Write (WAW) or output dependence.

Control dependencies exists at control flow points in the execution. When a
conditional branch instruction is executed, for example, all instructions following
the branch are dependent on the branch outcome. These dependencies can severely
limit the available parallelism in most applications because of the high frequency
of branch instructions.

2.1 Extending Issue Widths in Current Architec-
tures

The early 1980s saw an emergence of architectures designed to support multiple in-
struction issue at each clock cycle. Several companies (Multiflow, Cydrome, Culler)
built multiple issue architectures that incorporated large instructions and multiple
ALU operations [12] [13]. These Very Large Instruction Word (VLIW) proces-

Chapter 2: Instruction Level Parallelism 8

sors were capable of supporting much larger amounts of parallelism for scientific
and engineering codes than previous, single issue architectures. While each of these
companies eventually failed as a business venture, the ideas and compiler techniques
they developed have found acceptance in most of the high performance designs of
today.

Superscalar architectures appeared shortly after the original VLIW designs and
started shipping in the mid 1980s. These systems combined the multiple-issue
execution pipeline used in VLIW designs with the sequential instruction set archi-
tecture found in previous scalar processors, allowing superscalar implementations
to execute existing object code much faster. Some of the earliest superscalar pro-
cessors came from Apollo Computers [14], IBM [15] and Intel [16].

Decoupled processor designs also began to appear in the 1980’s both in super-
computer [9] and microprocessor [17] versions. These processors separate program
execution into distinct tasks, each of which executes instructions from an inde-
pendent stream. For the most part decoupled designs have been relegated to a
university research setting !.

Various taxonomies have been proposed that identify the important distinctions
between VLIW and superscalar architectures. The most useful of these are based
on the interaction between the compiler and hardware in scheduling the code. To
develop their taxonomy, Rau and Fisher [18] examined the various ways in which
the compiler and hardware can cooperate in locating the ILP available in an appli-
cation.

Figure 2.1 is a graphic representation of the relationship between the compiler
and hardware in locating instruction level parallelism for VLIW, superscalar and
decoupled processor designs. The division in responsibility between the compiler
and the hardware can be viewed in two stages:

1. Determine whether a given operation is dependent or independent of those
yet to be issued.

2. Bind the resources necessary for independent operations to execute at some
particular time, on some functional unit with specific source and destination
locations.

Looking at Figure 2.1, we see that the program specification for a Sequential
architecture requires no explicit information about dependencies; dependency in-
formation is conveyed through the strict sequential ordering of instructions in the
object format. FEach stage of extracting parallelism is the responsibility of the
hardware. These architectures require complex instruction windows to reschedule

!Both VLIW and decoupled architectures have only rarely been developed as commercial
products because they lack the ability to execute existing executable programs. Superscalar
designs have been chosen by almost all processor manufacturers because of their ability to execute
applications previously compiled for scalar version of an architecture.

Chapter 2: Instruction Level Parallelism 9

e N e N
— Superscalar
Sequential P
Compiler Decode Stage
Dependence .)
Analysis Instruction Window
] Decoupled
Dependence P
Resource Bind Issue Stage
Functional Unit
Assignment
] VLIW
Independence
=) =)

Figure 2.1: ILP Taxonomy: Division of responsibility between the compiler and the
hardware

instructions in a manner more optimal to a particular configuration. Unfortunately,
this centralized instruction decode/window can affect the clock speed and limit scal-
ability ? of the design. It becomes very difficult to design a large instruction window
(required to locate a large number of independent operations) which is fast enough
to not affect the processor cycle time. Superscalar processors fall into this category.

A second method of interaction between the compiler and architecture is re-
quired for an Independence architecture. In this approach, the compiler is respon-
sible for completely specifying how all resources will be allocated on the imple-
mentation. Independence architectures, such as VLIW, require compiler support
for determining all aspects of parallel execution. Unfortunately, by requiring the
compiler to completely specify the binding of instruction to functional units, code
portability is lost. Any new implementation of an architecture (e.g. increasing the

2Scalability in the context of high performance ILP designs exists when more than 4-8 instruc-
tions can be issued each cycle.

Chapter 2: Instruction Level Parallelism 10

size of the cache or the latency to main memory) requires re-compilation of the
program to account for the new resource constraints.

A Dependence architecture, on the other hand, only requires the compiler to
convey information about both instruction dependencies and independencies in or-
der to exploit parallelism; the actual binding of instructions to functional units
is still performed dynamically. Decoupled architectures specify dependencies by
assigning instructions to independent instruction streams and explicitly specifying
any dependent operations through a transfer via an architectural register queue.
Dependence architectures avoid the requirement for a complex decode stage and
instruction window, while allowing dynamic control of instruction issue and func-
tional unit allocation.

2.2 Existing Machines

The first commercially successful machines that provided a modicum of instruc-
tion level parallelism appeared in the 1960s. They extended earlier architectures
by including multiple function units, allowing multiple computations to execute
simultaneously.

2.2.1 Early ILP Architectures

In 1963 Control Data Corporation completed the CDC 6600 [19] which had 10
functional units and could start execution on any unit independent of the exe-
cution state of the other units. The hardware was responsible for determining
where and when an instruction should be executed, using a technique referred to as
scoreboarding [20]. Scoreboarding is a centralized control technique that performs
the bookkeeping operations necessary to allow out-of-order execution . In the
scoreboard, data requirements of an instruction are examined, identifying those in-
structions which have all source operands available and the desired functional unit
ready. The scoreboard communicates with the functional units in order to control
each instruction’s progress from the issue stage of the pipeline until completion.
Unfortunately, by utilizing a central structure to control instruction flow through
the pipeline, scoreboarding does not scale well.

A later system, introduced by IBM, addressed some of the deficiencies of the
CDC 6600. The 360/91 machine, introduced in 1967, had fewer execution units
than the CDC 6600 but used a more aggressive instruction issue policy in order to
maximize the utilization of the execution units. The 360/91 used a decentralized
instruction flow control algorithm developed by Tomasulo [21], which uses a number

30ut-of-order execution describes the function of a pipeline implementation which allows in-
struction to be executed in a different order than the sequential program order specified in the
object code.

Chapter 2: Instruction Level Parallelism 11

of buffers associated with each functional unit and a structure called the common
data bus. These buffers, called reservation stations, serve to control instruction
issue by holding an instruction until all of the source operand values are available
and the functional unit is ready.

These early ILP architectures were limited to issuing at most one instruction
per cycle. Most current ILP designs extend the capabilities of one of these systems
by increasing the size of the buffers and the overall width of the pipeline (i.e. the
number of instructions that can be in any pipeline stage at one time).

2.2.2 VLIW Architectures

Since the compiler has the most complete information about the entire program, it is
well suited to deal with the inclusion of additional resources (e.g. ALUs, FPUs and
[/O units), and can often increase instruction execution bandwidth in areas of the
code that were previously performance limited by resource constraints. A Very Long
Instruction Word (VLIW) machine can exploit more parallelism by increasing the
computational resources (e.g. ALUs) and encoding the function for each of these
resources in a compound instruction word; this allows multiple operations to be
initiated when one of these compound instructions is issued. The instruction word
contains an opcode field for each functional unit; this simplifies the initial pipeline
stages (fetch, decode and issue) because the compiler specifies which operations
can be performed during any clock cycle. In a VLIW architecture, it is up to the
compiler to explicitly schedule the use of each operational unit in the processor,
placing independent operations in the same compound instruction word. No-op
operations are assigned to functional units for which no independent instruction
can be located *. The static placement of instructions required in a VLIW design
does not support the dynamic reordering of operations by the hardware (i.e. it does
not support out-of-order execution). Furthermore, any change of the hardware
description requires all code to be recompiled in order for the program to work
correctly. Very recent work has attempted to remove this constraint by rescheduling
the machine language program directly.

2.2.3 Superscalar Architectures

While VLIW architectures can efficiently exploit parallelism found in many appli-
cations, doing so requires the re-compilation of the original source representation of
that application. Superscalar architectures, on the other hand, employ a hardware
scheduler that uses dynamic run-time information in order to efficiently allocate
resources to the list of instructions ready for execution. This allows superscalar im-
plementations of existing architectures to execute previously compiled programs;

4VLIW architectures derive their name from their need for a large instruction word to specify
the task of each functional unit.

Chapter 2: Instruction Level Parallelism 12

a tremendous advantage when the software base of an existing architecture is dis-
tributed in compiled (binary) form, as in the case of the x86 line of processors.
When previously compiled (legacy) codes account for a majority of the applications
executed, a superscalar approach becomes very attractive despite its inability to
exploit as much parallelism as alternate approaches can.

Superscalar implementations provide the flexibility of separating implementa-
tion details from the architectural specification by incorporating a hardware sched-
uler to dynamically reorder instructions. However, this scheduler, which selects
instructions from a fixed-size window of available instructions, does not have access
to the breadth of information available to the compiler. This eliminates the ability
of these processors to exploit parallelism that is not located within the instruction
window.

2.2.4 Decoupled Architectures

A third approach to issuing multiple instructions per cycle takes advantage of the
characteristics found in the Von Neumann computational model. Decoupled ar-
chitectures attempt to exploit the independent nature of control flow, memory
access and data manipulation operations that comprise conventional computations
by splitting a program into distinct tasks and executing each task on separate pieces
of hardware. These hardware units communicate data and control information via
FIFO queues so the instruction streams are not required to execute in lock-step.
This means that the inability of one PE to execute instructions does not affect the
ability to execute instructions on the other PEs — thus providing dynamic support
for out-of-order execution. This approach is designed to take advantage of the best
that both VLIW and superscalar have to offer; the compiler partitions the tasks in
a manner similar to VLIW, and the queues provide the same dynamic scheduling
benefits found in superscalar.

Decoupled systems differ from VLIW and superscalar designs in the manner
in which the independently issued instructions interact. VLIW and superscalar
processors can be thought of as very tightly coupled shared memory systems; they
share not only addressable memory but also register space. This shared register
approach differs from the explicit message passing (via FIFO ordered queues) found
in decoupled machines. Furthermore, in order to transmit data among operational
units by writing and then reading the contents of a register, the clocks on VLIW
and superscalar processors must be synchronized. This requirement is relaxed with
an explicit message passing approach.

The greater flexibility found in a decoupled design allows both single and mul-
tiple instruction stream descriptions of a task. The Z5-1 [9] and WM [22] systems
operate in a decoupled manner while receiving instructions from a single instruc-
tion stream. Their architectural component descriptions are similar to those of
Split Register superscalar designs [23].

Chapter 2: Instruction Level Parallelism 13

The PIPE machine [24], in contrast, consists of two PIPE processors [25] which
run asynchronously, each with their own instruction stream, and cooperate on the
execution of a single task. The PIPE processor uses branch queues and a BFQ),
Branch From Queue, instruction to coordinate the outcome of branch decisions be-
tween processors [26]. By using homogeneous processors the PIPE machine has the
ability to execute in either decoupled access/execute mode or in a single processor
(SP) mode. In SP mode both processors are used, but they execute independent
processes. PIPE was one of the first decoupled architectures to be implemented
[27].

2.3 Previous Decoupled Compilers

Several compilers for decoupled machines have been developed. These include the
original PIPE compiler [28], the WM streams compiler [22], and the compiler for
the Briarcliff Multiprocessor [29]. These compilers differ from those for conven-
tional processor designs in the explicit use of architecturally visible register queues.
In addition, the PIPE and Briarcliff compilers were responsible for partitioning the
program into separate instruction streams to be executed on individual processing
elements (connected via communication queues and a shared addressable memory).

2.3.1 The PIPE Compiler

The PIPE compiler separates code into access and execute instruction streams. This

processor, then examining a Program Dependence Graph (PDG) [30] to determine
which additional branch control and address calculation operations should also
be assigned to that processor. All remaining instructions, as well as duplicate
branch operations, are then given to the execute processor. Once this separation
is accomplished, register allocation and other optimization transformations can be
applied to each instruction stream.

2.3.2 The WM Compiler

The WM compiler is more conventional in its use of a single instruction stream.
Dataflow analysis and many of the optimization transformations performed are
unchanged from standard scalar designs, with additional restrictions placed on the
register allocation method to account for the nature of the memory queues found
in this decoupled architecture.

Chapter 2: Instruction Level Parallelism 14

2.3.3 The Briarcliff Compiler

The compiler used in the Briarcliff Multiprocessor performs in a much different
manner than the previous two compilers. This compiler is far more aggressive
in separating code into multiple instruction streams. Instructions are partitioned
equally over the available processing elements (PEs) ®, with those data dependencies
that exist between PEs being allocated a register channel [31]. Optimization is
then performed to reduce the number of channels required without degrading code
performance. Memory operations can also be performed on register channels. This
means that memory accesses can originate in one PE (which calculates the effective
address) with the data either coming from or destined for different PE.

The Briarcliff design bears more of a resemblance to a VLIW architecture than a
decoupled architecture in its treatment of control flow operations. PEs synchronize
on branch operations by generating a global condition code used to determine
whether or not to branch. While each PE may reach the actual branch instruction
on different cycles, each branch point serves as a barrier synchronization point; no
PE is allowed to process instructions past that branch until each PE has completed
its branch decision. This fuzzy barrier [29] mechanism allows more flexibility than
a VLIW implementation but fails to provide the flexibility found in true MIMD
approaches like PIPE and MISC.

2.4 Summary

Exploiting instruction level parallelism on MIMD architectures has the potential
to overcome both the complexity required by superscalar pipelines and the rigid
execution framework of VLIW processors. The instruction issue stage of each pro-
cessor in a MIMD design can perform in a simple single-issue, in-order manner,
avoiding much of the hardware complexity required to support out-of-order issue
in a single instruction stream approach. Out-of-order issue is also supported on a
MIMD because the processors are run independently; therefore, any independent
instructions executed on different processors can issue in any order without neces-
sitating extensive hardware support. This is fundamentally different than multiple
issue in a VLIW machine, because a strict ordering of instructions is not imposed
by the compiler unless a dependence exists. Furthermore, by incorporating multiple
program counters, a MIMD machine provides the architecture with more dataflow
information by enriching the specification of the object language; taken to its ex-
treme this would allow a dataflow machine description of the program.

SThroughout this dissertation a processing element is defined as an execution unit complete
with a program counter (PC).

Chapter 3: Design of the MISC' Processor 15

Chapter 3

Design of the MISC Processor

The Multiple Instruction Stream Computer (MISC) system is a new architecture
that has been developed at the University of California, Davis to study the char-
acteristics of exploiting ILP on a MIMD processor design. MISC is composed of
multiple Processing Elements (PEs) which cooperate in the execution of a task,
coordinating through a message passing system allowing data to be transferred
between PEs as easily as it can be placed in a register.

This chapter will describe the design of the MISC architecture. The design goals
for the MISC processor will be presented, followed by a detailed description of each
component of the design. Those portions of the design that mirror conventional
uni-processor design (e.g. pipeline structure) will only be mentioned briefly in order
to focus the discussion on the unique capabilities found in this architecture. Many
of these capabilities require compiler support and are described in further detail in
later chapters.

3.1 Design Goals

The MISC architecture is designed to study the feasibility of separating the execu-
tion of an application into multiple instruction streams. There were several design
goals for the MISC processor:

1. Decentralize most, if not all, processor resources. This is considered desirable
because centralized resources (such as a heavily ported register file) can affect
the maximum clock frequency attainable and reduce scalability.

2. Support compiler directed out of order execution. This leads to a reduction
in the complexity of the instruction issue mechanism by eliminating the need
for dynamic reconstruction of dependence information. An overly complex
instruction issue design can both slow clock frequency and increase processor
development time. In essence, the goal is to enable the compiler to convey

Chapter 3: Design of the MISC' Processor 16

information to the hardware about instruction dependence, eliminating the
need to re-construct these dependencies dynamically. This reduces the com-
plexity of the implementation while providing a richer interface between the
compiler and the implementation of an instruction set architecture.

3. Develop a high performance memory system capable of supporting multiple
memory accesses during each clock cycle. Two desirable characteristics of a
memory system are the ability to reorder non-conflicting memory operations
(those referencing different addresses) and the ability to handle multiple ref-
erences per cycle. This is accomplished in MISC by allowing the compiler to
specify a partial ordering of memory operations instead of the complete order
imposed by conventional scalar (and superscalar) architectures.

The following sections describe the MISC component structure, the design of
the processing elements and the interface to the memory system through the cache.

3.2 MISC Component Structure

A MISC processor may contain any number of processing elements. In a single
PE configuration, MISC differs from conventional architectures only in its use of
register and memory queues. In a dual PE configuration, MISC operates like a
PIPE machine. Configurations with more PEs allow more flexibility in assigning
operations to individual PEs.

The MISC system described in this chapter consists of four PEs, a two-way in-
terleaved, unified cache (UCache) and a set of internal data paths used to transmit
data among PEs and the UCache '. All PEs can send information to any other
element or collection of elements, while the UCache can send data to any PE. This
configuration will be identified as M 1SC, throughout the remainder of this disser-
tation and will be used to illustrate characteristics of decoupled code partitioning
discussed in the next chapter. The component design of MISC is illustrated in
Figure 3.1. The three primary components in the M ISC) processor are:

e The set of processing elements [PE1 through PE4].

e a unified cache which serves both as a high throughput cache and as the
interface with the memory system [UCache].

LA four PE version was chosen to illustrate the features of the MISC design because it has
enough processing elements to make partitioning code across all elements a difficult task, without
being so large as to make the example codes too complex to convey information easily. Each
of the tools, e.g. the compiler and simulator, are capable of supporting both larger and smaller
configurations. The compiler will be described in the next chapter and the simulator will be
discussed in chapter 5.

Chapter 3: Design of the MISC' Processor 17

e a set of internal data busses connecting each processing element as well as
the unified cache [BUS1 through BUS4, CBUS1 and CBUS2]

Unified Cache
w External Memory
Interleaved | Interleaved = = Buffers
Bank#1 ' Bank#2 w
/?\ Return Buffers
Address/Data Buffers ‘ ‘ ‘
CBUS2
CBUSL
PBUHA
PBUS3
PBUSZ
PBUSI
PE| PE| PE| PE|
mwu‘\ mwu‘\ mwu‘\ mwu‘\&
PE1 PE 2 PE 3 PE4

Figure 3.1: MI15C4 Component Design

3.3 MISC Internal Bus Structure

In MI15C, each PE employs an independent clock; communication between PEs
or between a PE and the UCache utilizes the internal datapaths and proceeds in
an asynchronous manner. Each data path is controlled by a single element; for
instance, the internal data path labeled PBUSI is controlled (written to) solely by
PEl. Each PE has its own bus (PBUS1-4), and the UCache controls two other
busses (CBUS1 and CBUS2).

Each internal bus consists of 32 data lines, 5 routing lines and 5 busy lines. The
routing lines are used to identify the destination of a given message; a routing line
exists for each possible destination (PE1-4 and UCache). Collectively, the routing
lines specify which subset of destinations should receive a message. In order to
broadcast a message to all other processors, a PE or UCache asserts the routing

Chapter 3: Design of the MISC' Processor 18

line for each destination, enabling up to 5 data transfers in a single PBUS or CBUS
operation. The busy lines are asserted by each potential destination to indicate its
inability to accept more data at the present time.

When a processing element wants to send a message, it determines the desired
route and compares this with the appropriate busy lines. If all destinations are
capable of receiving the data, then the data and routing information is placed onto
the bus 2. Transmission of data does not require the communicating PEs to syn-
chronize at the transfer of the message; instead, data buffers (queues) are provided
to store messages that have been sent but not yet processed by the destination.
This allows the PE that originates a transfer to continue with processing while the
transfer itself is delayed until all recipients are ready 3.

3.4 Processor Structure

MIS5C, PEs each have their own independent instruction streams. Each PE main-
tains all state information required to function as an independent processor. In
fact, the M 1SCy hardware is capable of running four completely unrelated tasks in
parallel. However, this dissertation will focus on partitioning a single task across
four independent instruction streams.

Homogeneous PEs are modeled in order to allow the compiler maximum flex-
ibility in assigning operations. This also simplifies the design of the system as a
whole since only a single PE needs to be created *. Figure 3.2 shows the structure
of a processing element.

Each PE employs a basic four-step execution pipeline, including single cycle
Instruction Fetch, Instruction Decode, and Instruction Issue phases and a multi-
cycle Execution phase. Each of the processing elements (PEs) contains the following
components:

e A set of General Purpose Registers (GPR’s)
e A set of Intra-PE Data Queues (PEQ’s)
e Two Memory Data Queues (MQ’s)

e An Integer Arithmetic/Logic Unit (ALU)

21f any destination queue is busy, then transmission is delayed until all recipients are ready to
receive the data.

3The size of each queue can be assigned independently. Generally a small queue size (2-5
elements) is all that is necessary between PEs, while a a somewhat larger queue size is required
to hide the larger latency of memory loads (5-20 elements).

4 Allowing a heterogeneous mix of PEs may allow for further PE optimization to be performed
at the hardware and compiler level; this approach will be discussed in more detail in chapters 5
and 7.

Chapter 3: Design of the MISC' Processor 19

outQ

ALU

VREG DREG
Register File

PC IREG

}/

ICACHE

Figure 3.2: MISC Processing Element

A Floating Point Arithmetic Unit (FPU)

A Program Counter (PC)

A Vector Register (VREG)

An Output Queue (OutQ)

A Delay Register (DREG)
e An Instruction Cache (ICache)

The GPRs are available to store data which persists over multiple references,
as well as software controlled environment variables (e.g. stack pointer, argument
pointer, etc.). Each PE maintains its own set of GPRs, so a four processor config-
uration with a 32 element GPR set contains 128 registers (4 * 32).

Each PE also contains a FIFO queue (PEQ) for each PE in the system (in-
cluding itself) to buffer data transfers between PEs. In addition, each PE has 2
memory queues (MQ’s) which will buffer data requested from memory. While a
single MQ would be sufficient (there is only 1 memory system), the frequency of
generating two independent memory streams is great enough that an additional
MQ has been allocated (as an architectural feature) to improved performance and
simplify code scheduling. Providing two separate MQs allows two load requests to

Chapter 3: Design of the MISC' Processor 20

execute asynchronously (on different access PEs) and eliminates the need to read
two data values off the same MQ during a single clock cycle °.

The Output Queue (OutQ) buffers execution results that are scheduled to leave
the PE (heading for memory and/or other PEs). This queue may seem unnecessary
since there is no contention for the transmission bus (remember, each PE has a
dedicated write bus); however, its use simplifies the issue logic of the PE by avoiding
a pipeline stall at the end of the execution phase due to a busy line assertion. The
operation of the Output Queue (OutQ) is not visible to the compiler.

In addition to the general purpose registers, there are two additional architec-
turally visible special purpose registers. The Program Counter, used to schedule
the instruction flow, is automatically incremented after each instruction, and can
also be modified explicitly by the execution of a branch instruction 5. The vector
register, VREG, is used to store the iteration count for vector instructions. Both
the PC and the VREG are available as source inputs to all instructions in the same
manner as the GPRs and the various queue elements.

The Delay Register is used to determine the number of delay slots that will be
unconditionally executed following a branch instruction, and works as follows: A
value specified by the first operand field in a branch instruction is placed in the
delay register. The value in the delay register is then examined to determine how
many instructions should be fetched after the branch instruction; as long as the
value in the delay register is not zero, instruction fetch continues sequentially and
the value in the delay register is decremented for each instruction executed. Once
the delay register value reaches zero, the PC'is updated to contain the branch target
address (i.e. the branch is taken) 7. This approach is a further generalization of the
approach used in the PIPE processor, which is itself a generalization of the single
delay slot employed in the RISC I processor [32].

Finally, each PE has an instruction cache to hold recently executed instructions
and to relieve the UCache from the need to process instruction fetch from four
separate processing elements.

3.5 Instruction Format

All instructions in MISC are 32 bits in length, and consists of an 8-bit opcode and
four 6-bit operand fields as shown in Figure 3.3. The opcode field is separated
into an instruction type field and a 6-bit opcode specifier. The operand fields may
contain up to three source operand specifiers and a destination specifier.

5The size of each queue (PEQ and MQ) is an architecturally visible component; the compiler
must know the size of each queue in order to schedule code correctly and avoid deadlocks due to
resource depletion.

6This PC operates the same as the program counter in a scalar architecture.

"Conditional branches operate in a similar manner, but do not jump to the branch target if
the condition is false

Chapter 3: Design of the MISC' Processor 21

o 1 2 7 8 13 14 19 20 26 26 31

——— | Instruction type

- Opcode

Destination —

Source 1

Source 2

Source 3

Figure 3.3: MISC Instruction Format

With 32 GPRs, only 5 bits are required to uniquely identify each general purpose
register. Therefore, as shown in Figure 3.4, if the first bit is a 0, then the other 5
bits are used to address one of these 32 GPRs.

If the first bit is one, then the field specifiers are treated differently. In the case
of a destination specifier (reference Figure 3.5), the remaining 5 bits are used as
routing information for a data transfer onto the PE’s PBUS 8.

For a source specifier, each operand can reference one of the input queues in
a destructive or non-destructive manner. If the DQ bit is set, then the item read
from the queue is de-queued; if the DQ bit is not set, then that item remains at
the head of the queue. The two special registers (PC and VREG) can also be read
in this manner.

At the instruction issue stage, if a queue is specified as a source input and that
queue is currently empty, instruction issue ceases until all required input operands
are available. This approach to handling empty queues simplifies the control logic
of each processor; since each PE is a scalar processor, which does not support out-
of-order execution, stopping instruction issue on an empty queue does not limit the
ability to exploit any additional parallelism by the rest of the PEs.

8In a four PE configuration, 5 bits are sufficient to directly specify the route — one bit for
each PE and one for the UCache. For PE configurations incorporating more than four PEs the
5-bit specifier is used as an index into a table of route bit-fields. The simulator places an artificial
limit of 64 on the number of bits supported for each route specifier in the table; this means up to
63 PEs can be supported.

Chapter 3: Design of the MISC' Processor 22

0 GPR specifier (RO - R31)
1 0 DQ Queue specifier
1 1 Constant (0 - 15)

Figure 3.4: MISC Source Register Specifier Format

0 GPR specifier (RO - R31)
| | | |

1 Routing Specifier
| | | |

Figure 3.5: MISC Destination Register Specifier Format

Each source operand can also specify a small constant value. The ability to
support a small constant for each operand in a three operand instruction provides
considerable flexibility in code scheduling. Approximately 50% of all references to
constant values generated by the compiler can be placed in this constant field [20].

Instruction Types

There are four different types of instructions shown in Figure 3.6: Scalar, vector,
sentinel and predicate operations. *

Scalar instructions include ALU/FPU operations, load and store request in-
structions, control flow operations and some special purpose instructions used to
control the execution model.

9A description of each instruction in the MISC design is given in Appendix A.

Chapter 3: Design of the MISC' Processor 23

Scalar olo Opcode Destination Source 1 Source 2 Unused
Vector o1 Opcode Destination Source 1 Source 2 Count
Sentinel 1/0 Opcode Destination Source 1 Source 2 Sentinel Specifier
Predicate 11 Opcode Destination Source 1 Source 2 Predicate

Figure 3.6: MISC Instruction Type

For example, invoking a memory read operation involves providing the UCache
with the memory address of the data to be read, the set of destination PEs which
are to receive the data, and the CBUS (and therefore MQ) on which the data should
be placed. In a load request (LAQ) instruction, for instance, the dest field contains
the set of PEs that are to receive the data. The address is calculated as a sum of
the src1 and sre2 operands and the destination MQ is specified in the opcode field;
the LAQ instruction causes the MQ of the destination PEs to receive the data,
while the LAQ?2 instruction specifies the MQ2 queue as the location in which the
data should be placed. The store request (SAQ) instruction operates in a similar
manner, except that the dest operand specifies a single PE from which the UCache
should receive data to be written to memory.

Scalar branch instructions are also fairly conventional. The dest field is used as
a constant that states the number of delayed branch slots which contain instructions
to be executed prior to starting instruction fetch at the branch target address. The
address of the branch target is calculated as the sum of the srcl and src2 operands.
Each of the other instruction types — vector, sentinel and predicate — is less
conventional and will be discussed in greater detail in the next three sections.

3.6 Vector Instructions

MISC includes a class of vector instructions which perform certain scalar func-
tions a specified number of times. There are three classes of vector operations:
ALU/FPU, LAQ/SAQ), and a vector loop. Vector operations require an additional
source operand specifier (Count), which is used as a vector count. When a vector

Chapter 3: Design of the MISC' Processor 24

operation arrives at the issue stage of the instruction pipeline, the vector register
(VREG) is set to zero and the vector count register (VCOUNT) is loaded from
Count. A single execution of the instruction is then performed and the VREG is
incremented 1°; this repeats while the value in VREG is not equal to VCOUNT.
Once the value in VREG equals VCOUNT normal instruction sequencing continues.
The semantics of this mechanism are:

VCOUNT = Count;

for (VREG = 0; VREG < VCOUNT ; VREG++) dest = srcl op src2;

3.6.1 Vector Loop

The use of the vector register in conjunction with the delay register provide a means
of extending the use of vector instructions to iterate on sequences of instructions
(whereas the vector ALU operations iterate only a single instruction). The use of
the vector loop instruction can also eliminate the need for branch instructions to
control the iteration of simple (single basic block) loops. The vector loop, VLOOP,
instruction can be used when the number of iterations that a loop should execute
is known at the initial entry into the loop (either as a constant or register variable).
When a VLOOP instruction is issued the following activities occur in parallel:

e load the DCOUNT with the delay count field of the instruction (this is the
same as conventional MISC branch instructions)

e set the value of DREG and VREG to zero

e copy the value specified by the Count field of the instruction to the VCOUNT
register

e set the jump address (JUMPPC) to the first delayed instruction (i.e. PC +

1)

At this point instruction flow continues as in a branch instruction; instructions
are executed from the delay slots until DCOUNT instructions have been executed.
Once all the instructions in the delay slots have been executed the VREG is in-
cremented and compared to VCOUNT. If VCOUNT iterations have not yet been
completed (i.e. VREG != VCOUNT) then the JUMPPC is placed in PC. This
initiates the next iteration of the loop. When all iterations have been executed
(VREG = VCOUNT) execution continues with the instructions following the loop.

10The VREG is incremented up to VCOUNT. An alternate approach would be to start VREG
equal to VCOUNT and decrement until it reached zero. The first approach was used because
it simplified the application of compiler transformations dealing with induction variables (as de-
scribed in chapter 4).

Chapter 3: Design of the MISC' Processor 25

3.7 Sentinel Instructions

While vectors of specified length are the most common organization for variable
length arrays, a significant alternate mechanism is the use of a trailing sentinel
(special) value to mark the termination of a string of data. This mechanism is of
particular importance because it is the method used by the C libraries to manipulate
character string data. MISC can perform efficient string manipulation through its
class of sentinel instructions. These instructions use the Sentinel Specifier field
of the instruction to reference a register that is compared to the sentinel value
(assumed to be zero in the initial design). If the value in the register identified by
the Sentinel Specifier does not equal the sentinel (zero), then the execution of the
scalar version of the sentinel instruction is allowed to issue. The semantics of this
mechanism are:

while (R[Sentinel Specifier] # 0) dest = srcl op src2;

Conventional wisdom holds that implementing higher level semantics at the in-
struction level seldom leads to performance improvements because of the complexity
of implementation and the scarcity of application. We believe that the vector and
sentinel instructions defined here can be implemented with minimal hardware mod-
ification to the issue logic. Furthermore, the MISC approach of multiple instruction
streams leads to a greater potential for application of these instructions; often an
application of the construct (a while loop in this instance) cannot be made because
of the complexity of the test condition in the application for a normal machine. In a
single instruction stream design, a single processor must evaluate the test condition
and proceed with the loop or exit accordingly. The requirement to both evaluate an
arbitrarily complex test condition and perform the control flow operation cannot be
efficiently reduced to a single instruction. However, in MISC one PE can evaluate
the complex test condition and broadcast a boolean result to all other PEs, which
are left with simple boolean tests.

3.7.1 Sentinel Loop

Much like in the vector loop instruction, the delay register can be combined with the
sentinel mechanism to provide another simple branch hiding instruction. Sentinel
loops share much of the control logic that is used in vector loops; the manipulation
of the PC| the use of the delay slots and the termination of the loop are essentially
the same. These two loop instructions differ only in the way the exit condition
is calculated; a simple register comparison is performed for sentinel loops while a
counter is incremented and tested for vector loops. When a sentinel loop, SLOOP,
instruction is issued the following activities occur in parallel:

e load the DCOUNT with the delay count field of the instruction

e set DREG =0

Chapter 3: Design of the MISC' Processor 26

e save the sentinel register specifier (from Sentinel Specifier of the instruction)

e set the jump address (JUMPPC) to the first delayed instruction (i.e. PC +
1)

At this point instruction flow continues as in a branch instruction; instructions
are executed from the delay slots until DCOUNT instructions have been executed.
Once all instructions in the delay slots are executed the sentinel is retrieved and
compared to the terminating value (0). If the value is not equal to 0 then the
JUMPPC is placed in PC, and the next iteration of the loop then proceeds. Once
the sentinel value equals 0, instruction fetch continues sequentially from the end of
the delayed branch instructions exiting the sentinel loop.

3.8 Predicate Instructions

Predicate instructions conditionally execute code by controlling the writeback stage
of the pipeline with a conditional value. If the condition is true (non-zero for
MISC) then the writeback stage is allowed to modify the state of the machine; if the
condition is false then the writeback is prohibited. Instructions of this type allow the
removal of numerous branch instructions by replacing the conditional instruction
issue (through the use of branches) with a conditional writeback (through the use of
predicates); the results are the same, but a control flow operation can be eliminated
and the ability of the compiler to aggressively schedule code blocks can be improved.

In the MISC architecture the Predicate operand is used to specify the condition
value. The semantics of the predicate operation is:

dest = srcl op src2 if Predicate # 0

The transformation of a conditionally executed code block to a predicate in-
struction can be seen in the following fragement of C code:

if (Predicate) dest = srcl + src2

Without predicate instructions, that code would translate into the following
assembly code sequence:

branch_zero Predicate, Labell
add dest, srcl, src2
Labell:

With predicate transformation the branch can be removed and a predication
form of the addition can take place, leaving the following assembly language in-
struction:

add_predicate dest, srcl, src2, Predicate

Conditional branches themselves predicate instructions which operate in the
same manner as the scalar (unconditional) branches except that the Predicate
operand specifies the register to be tested to determine whether the branch will
be taken or not.

Chapter 3: Design of the MISC' Processor 27

3.9 Data Cache Structure

The Data Cache unit consists of one or more single access data caches of unspecified
size, a PBUS request and data interface, a cache manager, a memory interface, and
a CBUS manager. The design goals for this component of MISC are somewhat
different than those for on-chip data caches for other processors. While on-chip
caches are generally used to reduce memory access latency, this function is less
vital in a decoupled machine designed specifically to tolerate long memory latencies.
However, with four processors on the same die, it becomes imperative to reduce the
off chip memory activity to avoid over-taxing the I/O capabilities of the chip. A
majority of this reduction is performed by the instruction caches located on each
processor; it is the responsibility of the data cache to further reduce off chip traffic
to a minimal level.

Memory operations are separated into two components: A memory request is
initiate by an access processor and the data is either generated or used by some
other processor. When a memory load operation is initiated, for example, the access
PE sends the address of the desired memory location and a set of destination PEs
to the UCache; the value at that memory location is then retrieved from the cache,
in the event of a cache hit, or memory, for a cache miss, and returned to the PE or
PEs specified by the request.

When a memory store operation is initiated two events occur in an unspecified
order; an access PE sends the address of the storage location to the cache and
another PE (possibly the same PE) transmits the data to the cache over its internal
bus; these events can occur in any order. In either case, the address and data will
eventually be placed into buffers and the cache operation will proceed when both
the address and the data have arrived.

3.9.1 Design Goals

Much of the hardware complexity found in the MISC design is located in the mem-
ory interface. This is because the memory system is inherently a shared (global)
resource, so it is responsible for managing the requests from asynchronous sources
(PEs) and interleaving them in a consistent and efficient manner. Furthermore, as
more instruction level parallelism is found, the memory system (and the cache) must
be able to support multiple operations each cycle. The MISC cache organization is
designed to maximize the ability to handle multiple, independent references.
The goals of the MISC memory systems include:

e The ability to handle both individual and group broadcast memory requests.

e Allowing multiple memory requests to be satisfied in each clock cycle from
one or more PEs.

e Maximizing memory request throughput.

Chapter 3: Design of the MISC' Processor 28

e Combining inter-cache-line memory requests to improve cache performance.

3.9.2 Component Structure

External Memory Buffers Interleaved Cache
7 Write Cache Line Y 6 Bank 1
Read Cache Line X 4 | z |
8 5
Bank 2
4A
Return Buffer [v]
9 SA ‘ 3
)Z(. Address/Data Buffers
z]x]q q
q
2] 2A
[Bus Control }
10 11 1
CBUSL CBUS2 PBUS{ 1-4}

Figure 3.7: MISC Cache: Component Design

The memory system and cache organization is separated into five components shown
in Figure 3.7. These components are:

e Address/data buffers: These buffers receive the effective address for load
instructions and both effective address and corresponding data for memory
store instructions.

e Interleaved cache memory: A cache memory consisting of a number of single
access caches (e.g. four) using bits in the effective address to determine the
appropriate cache bank '

e External memory buffer: An interface between the cache and the external
memory system. The external memory buffer maintains a list of outstanding

I An interleaved cache is different than a multi-ported cache, in which any four requests can
be performed from arbitrary locations. An interleaved approach trades a reduction in perfor-
mance due to a more restrictive access mechanism (in which references to the same bank must be
serialized) for a significant simplification in implementation.

Chapter 3: Design of the MISC' Processor 29

cache replacement requests, including those current cache lines marked for
replacement which have been modified as well as the effective addresses of
requested cache lines.

e Return buffer: Buffers load data destined for transfer to the processing ele-
ments. The return buffer is also responsible for reinstating the original order
of memory requests.

e Bus control: Controls access to the internal buses used to transfer data from
the cache unit to the processing elements.

To help explain the function of the cache, the following example, consisting of
a simple expression involving four memory references, will be used:
g =q+ 1] + afi]; ¥
This example, shown in Table 3.1, will be referenced throughout the rest of this
section to demonstrate the operation of the UCache.

Table 3.1: An Example Expression for Memory References

Operation | Dest In Effective Cache Bank Line Line
PE | Cache? Address Tag Selector Selector Offset
(32 bits) (18 bits) (1 bit) (7 bits) (6 bits)
PE3: laq | PE4 Hit q = 8878DH 22H 0 3EH 0DH
PE1l: laq | PE3 Hit z|[| = B48A2H 2DH 0 22H 22H
PE2: laq2 | PE3 | Miss | x[| = 4FFC4H 13H 1 7FH 04H
PE3: saq | PE4 Hit q = 8878DH 22H 0 3EH 0DH

In this example, the memory operations performed are the loads from each array
(z/] and z/]) and a load followed by a store of variable g. The memory references
are shown in Table 3.1. The table columns show:

e Operation: the operation performed to initiate the memory request (in the
form: “access PE: instruction type”).

e DEST PE: the PE which will receive the data from the cache unit.
e Effective Address: the variable name and its effective address.

e In Cache?: whether or not the reference is in the cache.

12The four references are ¢,q,z/],2[]; the variable i resides in a register in this example.

Chapter 3: Design of the MISC' Processor 30

e Cache Tag Bank Selector Line Selector Line Offset:

The effective address is broken down into four components for further pro-
cessing by the cache. The Cache Tag is the most significant 18 bits of the (32
bit) effective address and is used to allow a bi-directional mapping of a cache
line to a memory location. The Bank selector is the next most significant
bit and is used to select the cache bank to search for the reference. The line
selector determines which cache line is referenced; a 128 line, direct-mapped
cache configuration (requiring a 7-bit line specifier) is used. Finally, the line
offset (6 bits for a 64-word cache line) specifies which entry in the line contains
the value at that effective address.

3.9.3 Initiating a Memory Operation

When a memory reference is made (either a load or a store) a processing element
(the access PE) initiates the request in the following manner:

e The effective address of the memory request is placed on the data lines of the
internal bus associated with the access PE.

e The memory operation control line is set to indicate that this communication
(through the PE internal bus) is meant for the cache unit. This instructs all
PEs to ignore the transfer and the cache unit to process the request.

e The route lines of the access PE are set to identify the source or destination
of the memory operation 3.

e The R/W control line is set or cleared to specify whether the request is for a
load or a store operation.

e A value is placed on the ReturnQueue control line to specify which memory
input queue is to receive the requested data item.

A data STORE operation is performed by specifying the UCache in the DEST
operand field; the PE generating the data will place it on the internal data bus,
specifying the cache unit as the destination and the UCache then enqueues the data
into the data buffer associated with that PE. Storing data to the memory system is
initiated by the access PE executing an SAQ instructions. This first step is labeled
with a 1 near the PBUS inputs to the cache in Figure 3.7.

131f the requested operation is a memory STORE, the route lines specify which PE will supply
the data to be stored. If the requested operation is a memory LOAD, the route lines specify which
PEs should receive the value read from memory. This information will later be used by the cache
unit to set the route lines for the return of the value.

Chapter 3: Design of the MISC' Processor 31

In the example, there are three LAQ and one SAQ instructions. These instruc-
tions can be executed by one, two or three independent PEs. '

3.9.4 Address/Data Buffers

Once a memory request is received by the cache, the effective address is placed in
the address buffer associated with the access PE. If data is sent to the cache, that
data will be placed in the data buffer associated with the PE sending the data.
It is the responsibility of the address and data buffers to store this information
in preparation for the cache read or write operation. The address buffer will also
reorder memory operations (if possible) to improve cache performance; this may also
require reordering the contents of the data buffer to maintain consistency between
the two buffers. The structure of the address and data buffers are shown in Figure
3.8.

Address Buffer Format

Queue

Data Buffer Format

BitNo. 0 63

Figure 3.8: MISC Cache: Address/Data Buffer

Each entry in the address buffer has four fields: effective address, read/write
flag, ReturnQueue and route specifier. Each of these fields contains information

! References to variable ¢ (both the load and the store) must be initiated on the same access
PE to preserve correct ordering.

Chapter 3: Design of the MISC' Processor 32

needed by load operations, while store operations do not use the ReturnQueue
field. Fach entry in the data buffer has only a single field containing the data value
to be written to the cache. This information will reside in the data buffer until
paired with a store request for further processing by the interleaved cache unit.
The processing of requests depends on the request type (R/W). The write state
indicates that a memory store operation should be initiated; a read state initiates
a memory load operation. The next two sections will describe the operation of
memory load and store instructions in more detail.

MEMORY LOAD OPERATION

Load requests are placed in the address buffer of the access PE; since no data is
associated with the load request there is no need for corresponding entries in the
data buffer. Processing requests in the address buffer involves the selection of the
entry to forward to the cache memory; in a simple implementation, requests can
be processed in the order in which they are received. However, in order to increase
the overall cache throughput, it is often useful to reorder requests. Therefore, on
each cycle the first N entries in the address buffer are scanned for load requests that
are ready to be forwarded to the cache cell array. The requests which are ready to
proceed will then be forwarded to the cache.

As a load request is sent to the cache, the destination route is simultaneously
sent to the return buffer. This will eventually match up with the data value read
from the cache unit; even if a cache miss occurs, the data will eventually make its
way to the cache and through the cache to the return buffer.

The example code includes three load requests which are placed into the address
buffers of PE1 through PE3 (Figure 3.7 step 2). The array elements (z and z) are
destined for PE3 and the variable ¢ is destined for PE4. When the load requests
are ready to be serviced by the cache, two events occur for each request. First, the
effective address of the load operation is sent to the interleaved cache unit (Figure
3.7 step 3). At the same time an entry in the return buffer is allocated to store the
data once the cache has obtained the correct value (either directly or after a cache
replacement - reference Figure 3.7 step 3A).

MEMORY STORE OPERATION

As discussed earlier, a store request consists of an address specified in the SAQ
instruction and a specification of the PE which will supply the data to be stored.
The store request will stay in the address buffer of the access PE until conditions
allow it to be forwarded to the interleaved cache unit. The route specifier of the
store request is used to match address buffer entries to data buffer entries. Once
the data is available, the store may proceed. If the data arrives first, it sits in
the data buffer until matched to a memory store request. It is the responsibility

Chapter 3: Design of the MISC' Processor 33

of the compiler to schedule instructions such that no ambiguity can exist in the
address/data matching process.

The store operation in the example will be initiated when the SAQ request
arrives from the access processor. The effective address (¢) is specified, but now
the route specifier identifies which data queue will contain the data to be stored in
the cache (PE4). The store request will remain in the address buffer until data is
sent to the appropriate data buffer. Once that data arrives (Figure 3.7 step 2A),
the store request can be forwarded to the cache unit. It is also the responsibility
of the compiler to ensure that no race conditions exist with multiple store requests
targeting the same data queue.

3.9.5 Interleaved Cache Memory

When all the components for a memory request arrive at the UCache, the request
can be forwarded to the interleaved cache. Once a cache line is selected, the tag
bits are compared to see if the current line in the cache matches the reference
address. If the tag bits match the request can be processed. A store will modify
the contents of the cache location, and the cache line will be marked dirty to signify
that the contents differ from those found in the memory system; when this line is
deallocated, the line must be written to memory. A load will place the line into a
multi-ported line buffer and allow the line offset (or multiple offsets if combining
has occurred) to fetch the desired data and forward it to the Return Buffer '°. The
processing of requests in the cache unit proceeds in a standard manner.

If the reference tag does not match that of the cache line tag a cache miss
occurs. Cache miss processing requires a line replacement request be forwarded to
the External Memory Buffer. This request contains the address of the original cache
request so that the data can be retrieved from memory and placed in the cache. If
the current cache line is dirty, then an additional external memory operation will
be initiated to write the modified cache line (the one that will be replaced) out
to memory. The cache then continues processing further requests until the data is
available.

Referring again to the example, assume that the z// and ¢ requests are present
in the first bank of the cache and the z/] request is absent (Figure 3.7 step 3). In
this case, the data associated with requests z// and ¢ will be sent to the return
buffer (Figure 3.7 step 4). Since the z/] request requires a cache line fetch from
memory, this modified request will be forwarded to the external memory request
buffer (Figure 3.7 step 5). In addition, if the replaced line (line y in the example)
is dirty, a cache line store request will also be forwarded to the external memory
request buffer.

15In the MISC design this is implemented as an N-way (where N is a power of 2) interleaved
cache, splitting cache accesses across N independent cache banks. Two references can conflict
when the bank selectors for the references match.

Chapter 3: Design of the MISC' Processor 34

3.9.6 External Memory Buffer

The external memory buffer accepts requests from the cache memory and provides
the interface between external memory and the interleaved cache. External requests
are for complete cache line loads and stores. Requests are enqueued in the buffer,
but may be reordered to allow loads of non-dirty lines to precede earlier requests.
The example stream requires two external memory operations: the store of the
dirty line (y) and the load of the cache line associated with request z// (Figure
3.7 step 6). To achieve optimal performance, the load request for the replacement
line should be processed before the contents of any dirty lines are written back
to memory. This requires an additional line buffer (associated with the external
memory buffer) to hold the data from the line(s) being replaced. Once this data
is copied from the cache to the external memory buffer, the load may precede. On
completion of the cache line fetch, the data will be placed into the cache line and
then forwarded to the return buffer. The store of the dirty line can then continue
without affecting the latency of the original load request (Figure 3.7 step 7).

3.9.7 Return Buffer

Memory references must be returned to the processing elements in program order
due to the FIFO semantics of the load queues (MQ1 and MQ2). Reinstating the
original order of references is the function of the return buffer.

Once a memory request has been sent to the interleaved cache an entry in the
return buffer must be allocated. Requests enter this buffer in the same order as
the originating load requests entered the address buffer. When the desired data is
retrieved from the cache (this could be much later in the event of a cache miss) it
is forwarded to the return buffer and marked as ready to return to the PE(s) via
the control bus. The data will not be sent to the PE(s) until all prior load values
destined for the same PE(s) have been sent. Figure 3.9 shows the structure of the
return buffer.

Return Buffer Format

Bit No.O 31 32 33 36 37 68

Figure 3.9: MISC Cache: Return Buffer Design

Chapter 3: Design of the MISC' Processor 35

Each entry in the return buffer contains:

e the route map specifying the destination PEs. This will be used to set the
route lines of the CBUS when the data is sent to the destination PE(s).

e a memory queue specifier used to determine which CBUS (and therefore which
PE memory queue) will receive the result of a load operation.

e the effective address of the request — needed to determine which data item
corresponds to each entry. When the data is retrieved from the cache bank,
the effective address is used to identify the entry in the return buffer.

e data field for one (32-bit) word of memory. This is required since a value may
reside in the return buffer for an arbitrary amount of time depending on the
reordering requirements of previous load operations.

A complete reinstatement of the original order is not always necessary; when
the intersection of the route map is empty (i.e. the destinations of two load requests
do not target the same PE) or the memory queue specifier is different, the requests
can precede in any order (relative to each other).

When the load requests in the example were forwarded to the cache unit, infor-
mation was also sent to the return buffer to reserve an entry (Figure 3.7, step 3A).
Once processing by the cache unit completed for references ¢ and z//, the data was
forwarded to the return buffer (Figure 3.7, step 5). The processing of reference z//
was delayed until the data could be retrieved from the external memory system;
upon its arrival, the data was forwarded to the return buffer (Figure 3.7, step 8).
In this example there is no re-ordering that must occur since no conflicts reside in
the destination specified between the three references; reference ¢ is destined for
PE 4 while reference z/] and z/] are assigned different memory queues (in PE 3),
so no ordering relationship has to be maintained. This allows the data items to
be sent to the PEs as soon as they arrive, assuming that the destination memory
queues are not full before the processing of this iteration of the loop (Figure 3.7,
step 9).

3.9.8 Bus Control

The bus control unit is responsible for transferring values from the return buffer to
the destination PEs. CBUS access for the cache is performed in the same manner
as PBUS access for each PE; when all destinations are ready to accept the transfer,
the data and routing information is placed on the bus. The correct return bus
(CBUSI or CBUS2) is determined by the bus specifier (originally specified by the
load request instruction). This action completes the processing of the load request.

The example includes three operations involving the cache Bus Control unit.
The load of reference ¢ and z// returns data on CBUS1 (Figure 3.7, step 10) while

Chapter 3: Design of the MISC' Processor 36

the data for z// is returned on CBUS2 (Figure 3.7, step 11). Busy lines are tested
first, and when the memory queues are available the route specifier and data is
placed on the bus completing the transaction.

3.10 Summary

This chapter described the architecture of the MISC processor. The MISC design
incorporates some unique features in order to achieve high performance processing.
These include:

e A separation of functional units into independent processing elements capable
of very close cooperation to help extract available parallelism.

e A more general approach to register addressing than previously found in su-
perscalar or decoupled architectures, which allows an arbitrary number of reg-
isters to be scheduled by the compiler without requiring additional operand
specifier bits.

e Flexible routing control to enable instruction level broadcast operations to
transmit data between PEs.

e A unified cache design which increases data throughput while supporting
multiple processing elements and a broadcast capability.

The design and interaction of these features was described, including a descrip-
tion of a complete instruction set architecture capable of specifying the interaction
of the processing elements through architecturally visible queues, the design of a
high throughput data (and instruction) cache, and a series of special purpose vector,
sentinel and predicate execution modes.

Chapter 4: Design of the MISC Compiler 37

Chapter 4

Design of the MISC Compiler

One open question with a distributed architecture like MISC is how well the trans-
lation process from high level to machine code can be incorporated into a compiler.
Is it possible to efficiently compile C programs into separate instruction streams?
Are the architectural choices that made decoupled designs useful in executing sci-
entific codes applicable to more general applications? These questions can only be
answered by constructing a compiler and testing various code separation models.

Two aspects of the translation must be addressed by the compiler in order to
obtain high performance execution:

1. Achieving a balanced partition of instructions.

2. Minimizing the impact of memory latency.

This chapter describes the structure and performance of the MISC compiler
including analysis of several code partitioning strategies to determine how well the
execution of the program instructions can be balanced across multiple processors.
The scheduling of register queues is examined to quantify their affect in reducing
the impact of memory latency.

4.1 The MISC Compiler Overview

The compiler and code scheduler for a high-performance architecture requires a
high degree of sophistication in order to realize the full potential of the hardware.
Independent instructions must be assigned to operational units in a manner that
minimizes the number of cycles in which no instructions can be issued. The task
of the scheduler in a multi-issue system is further complicated by the fact that
while the latency of operational units and memory may remain fixed, the number
of instructions that must be scheduled in a period is increased as the width of the
issue stage increases.

Chapter 4: Design of the MISC Compiler 38

Several studies [33] [34] [35] indicate that compilers using relatively simple
scheduling techniques are capable of identifying 2-3 independent instructions per
cycle. Other studies [36] [37] [38] suggest that even more parallelism can be
found if the compiler’s scheduler is capable of performing extensive code motion
and more sophisticated global scheduling, or if the hardware is capable of reordering
the original schedule and speculatively executing instructions around basic block
boundaries.

The MISC system was designed to allow out-of-order execution without the need
for complex reordering hardware. The MISC compiler is responsible for identifying
instruction sequences which have no dependencies, or in which the dependencies
that exist can be scheduled across PEs without requiring circular dependencies
within groups of PEs. These code sequences are then scheduled on different PEs.
Each of these instruction sequences may containing code that contains tightly inter-
connected dependencies; these interrelated instructions are placed on the same PE
to allow the general purpose register file to serve as the primary means to commu-
nicate dependencies. The very portable C compiler (vpee) [39] under development
at the University of Virginia served as the base compiler for MISC .

The first step in compiling an application is to translate the C code into an
intermediate description. The MISC compiler uses a Register Transfer List (or
RTL) form for the intermediate representation; this form is similar to that used by
the gce compiler. This transformation is performed by the vpce front end. Once
an application has been translated into RTL form many standard transformations
can be performed. The code generator then translates the RTL description of a
program into parallel machine code for the MISC machine. An overview of the
optimization algorithm is presented in Figure 4.1.

During the optimization phase of the compilation process, a number of code
transformations are applied, including many conventional transformations that do
not require information specific to a particular architecture. These transformations
include common sub-expression elimination, dead code removal, strength reduction,
and many others [30]. It is best to do these transformations at this point, before the
complexity of inter-PE dependencies must be considered. Similarly, IF-conversion
[40] can also be performed at this point in order to simplify the control flow. Global
dataflow analysis can also be performed, and a Program Dependence Graph (PDQG)
constructed.

Once the conventional optimization have been applied, the MISC compiler be-
gins the process of partitioning instructions across the multiple processing elements
of the MISC architecture. The code partitioning phase separates the operations
required by the program into multiple (virtual) processing elements in a manner
that maximizes the number of processing elements utilized. The processor load
balancing phase of the compiler then re-partitions the schedule to evenly distribute

LOther compilers were explored for this dissertation, but lacked the flexibility and/or depend-
ability of vpcc.

Chapter 4: Design of the MISC Compiler 39

foreach function
load initial RTL description provided by front end
conventional (single stream) transformations
initial register allocation
IF-conversion
build program dependence graph

partition code
balance code

foreach PE
branch reduction
secondary register allocation
schedule code

output MISC machine code for function

Figure 4.1: Structure of the Compiler

the operations onto the number of physical processing elements available on the
target machine. Once the instructions have all been allocated to the PEs, more
code optimizations can be applied to each of the PE instruction streams. Many of
the standard transformations described previously can be applied again to further
improve performance in each individual stream (with new restrictions to maintain
inter-PE dependencies) 2. Finally, each instruction stream is scheduled and the
MISC machine code is generated.

The code scheduling method used by the MISC compiler exploits the asyn-
chronous behavior of the processing elements to provide many of the characteristics
found in software pipelining [41]. Software pipelining is a compiler transformation
technique (first developed for VLIW architectures) that can be applied to simple
loops to eliminate the effects of high latency operations. Software pipelining can
be viewed as an improved form of loop unrolling, where multiple iterations of the
loop can be scheduled as if they were part of a single basic block. This allows
instructions from different iterations of the same loop to be integrated into an op-
timal schedule. Similarly, in MISC, individual PEs can be executing instructions
originating from different iterations, while the PE queues perform a simplified form
of register renaming.

The SPEC92 [42] integer benchmark applications will be used throughout this

2Re-application of standard transformations (e.g. copy propagation) after code partitioning
can occasionally locate code sequences that were obscured by intervening instructions before
partitioning.

Chapter 4: Design of the MISC Compiler 40

chapter to measure the performance of code generated by the compiler after the
various stages of optimization/translation 3. These applications are described in
Table 4.1.

In addition to the SPEC92 integer benchmarks, four additional applications will
be evaluated that have program characteristics more amenable to extracting ILP.
These include one application, ear, from the SPEC89 [43] floating point benchmark
set; this is the only application in the SPEC89 or SPEC92 floating point suite that
is written in C (the rest are written in Fortran). Two other benchmark programs
are applications common to other areas of computer science: povray [44] is a popular
computer graphics imaging program and sobel [45] is a program which implements
a widely used convolution filter to enhance a bitmap image in the computer vision
field. The final benchmark, KMP [46], is the classic sub-string matching algorithm
developed by Knuth, Morris and Pratt.

To help illustrate each phase of the code generation process, two simple examples
will be used. The InnerProduct() function is taken from Livermore Loop 3 [47] and
is a highly parallelizable program, while the LinkedList() example demonstrates
how loops with more complicated control flow can be partitioned. The code for
these examples is shown in Figures 4.2 and 4.3. The following sections examine the
operation of the compilation phases in more detail.

3These include those benchmarks in the SPEC92 suite written in the C language that have
shown the greatest resistance to exploiting instruction level parallelism.

Chapter 4: Design of the MISC Compiler

Table 4.1: Benchmark Application Descriptions

Benchmark Description
A file compression program, version 4.0, that uses adap-
compress : . .
tive Lempel-Ziv coding.
eqntott A translator from logic formula to a truth table.
A logic optimization program, version 2.3, that minimizes
espresso ;
boolean functions.
ace A benchmark version of the GNU C Compiler, version
N 1.35.
xlisp A lisp interpreter that is an adaptation of XLISP 1.6.
sc A spreadsheet program, version 6.1.
povray A graphics ray tracing program, version 3.0.
sobel A computer vision convolution filter used to highlight the
edges of a bitmap image, version 1.3.
EAR simulates the propagation of sound in the human
ear cochlea’s (inner ear) and computes a picture of sound
called a cochleagram, version 1.1.
A linear-time string-matching algorithm developed by
KMP Knuth, Morris and Pratt which locates substrings in a
text array taken from [48]

41

Chapter 4: Design of the MISC Compiler 42

4.2 Structure of the MISC Optimizer

The MISC optimizer uses existing techniques and conventional transformations
when possible; for those optimization that are unique to MISC, or where existing
techniques require modification (e.g. register allocation incorporating queues), care
has been taken to maintain the same level of complexity found in most current
optimizers.

int inner_product() {
int k, q=0;
for (k=0; k<1024 ; k++)
q=q + z[k] * x[k];

Figure 4.2: Example Code: InnerProduct()

int linked_list_example() {
int *list, value=0;
for (list=head; list ; list = list->next)
if (list->x != 0)
value = value + list->z / list->x;

Figure 4.3: Example Code: LinkedList()

4.3 Conventional Transformations

Many conventional optimizations can be applied to the intermediate code before
applying the algorithms specifically designed for MISC. Two standard optimizations
that warrant special mention in their relationship to the MISC approach are register
allocation and IF-conversion.

4.3.1 Register Allocation

Register allocation for a decoupled machine requires additional analysis by the
compiler because the extensive use of queues requires an ordering constraint on
register use that differs from conventional register allocation.

Chapter 4: Design of the MISC Compiler 43

The vpce compiler supports the specification of these ordering constraints in the
allocator; this greatly simplifies the MISC translation process. Standard register
allocation methods can be used, with one exception: MISC has a large number
of register classes, unlike most architectures (which have only 2 register classes,
integer and floating point). Since each PE has a general purpose register class, two
separate memory input queues, and a complete interconnection of inter-PE transfer
queues, a four processor MISC machine has 28 different register classes (1 GP x 4
+ 2 MQ x 4 + 4 PEQ x 4). In addition to the large number of register classes,
all but the general purpose registers are FIFO queues. If the allocation of a new
register instance would violate the FIFO ordering of the queue, for example, the
allocation is disallowed and the architectural register dependency remains.

In order to provide a compact two byte representation of any machine register,
the intermediate RTL format employed by the vpcc compiler reserves 4 bits to
identify one of 16 different classes and 12 bits to identify the register within that
class. Since this format is incapable of accurately representing a full MISC machine,
the MISC register class model must be modified *. The modified model supports
only unidirectional communication between PEs through the PE transfer queues

PE1 can send data though queues to PE2-PE4, PE2 can send data the PE3
and PE4, and PE3 can send data to PE4. The queues to send data back cannot
be represented in the existing RTL format. Fortunately, the code transformation
strategy employed in MISC rarely requires data to be transmitted back to PE1, and
in those cases when it is necessary, a transfer through memory can be performed.
Forcing uni-directional data flow through queues means that one half of the inter-
PE queues will be unused. This may have a marginal benefit in the scalability of the
system when the code executed is required to meet these partitioning constraints.

Function calls also pose an interesting problem within a tightly coupled MIMD
architecture. When a function call is made, any variable may be passed as a param-
eter to the function. One standard compiler technique to improve the performance
of function calls is to place the first few parameters in registers before executing
the call. However, in MISC variables are distributed among the PEs. How should
parameters be passed in MISC during a function call? We chose to place all pa-
rameters on the stack while this does not provide the best performance, it works
and simplifies a number of problems with incomplete dataflow analysis between
functions. Furthermore, the highly localized reference patterns along with the use
of the MISC UCache mitigate much of the potential performance degradation.

4Tt is unfortunate that the designers of vpcc chose to implement such a restrictive register
representation. They chose this representation to reduce the RTL size and obtain a very minor
improvement in parsing speed at the cost of generality. A better approach would be to encode
the register class and register identifier as space delimited ASCII strings.

Chapter 4: Design of the MISC Compiler 44

4.3.2 IF-Conversion

IF-conversion is an optimization technique that converts control flow operations
(branches) into predicate operations in order to reduce the effect of control de-
pendencies on program performance when possible. The MISC compiler uses the
predicate instructions, described in section 3.8, to replace short forward branches;
instead of conditionally issuing those instructions by preceding them with a condi-
tional branch, the branch condition is calculated and placed in a register used to
control the completion (writeback stage) of the instruction execution. This results
in a reduction of the number of branches in the original code.

The advantage of IF-conversion is more pronounced in MISC than in other
architectures because of the need for duplication of branch instructions across all
PEs. In MISC, the IF-conversion algorithm removes not only the original branch
instruction but all the duplicates as well. Table 4.2 shows the resultant reduction
in branches due to the use of IF-conversion on the set of applications chosen for
this study. The first column identifies the benchmark application, the second gives
a dynamic count of the instructions executed, the third column gives a dynamic
count of the number of conditional branches, and the fourth specifies how many of
those conditional branches can be eliminated using predication. This table shows
that on average approximately 8 percent of conditional branches can be eliminated
and replaced by short sequences of predicated code. In some cases, most notably
KMP, a much greater number of branches can be removed. This will reduce the
branch duplication problem and improve the performance of the code scheduler by
increasing basic block size [49].

4.4 Dependence Graph

Following the initial conventional optimizations, a dependence graph is generated
to support the code partitioning and load balancing phases of the compiler. To
construct the graph, instructions are associated with nodes in the graph and true
dependencies are associated with directed edges. Control dependencies are also
represented as directed edges identifying a dependence between a branch instruction
and each instruction in the basic blocks following the branch (both fall-through
or branch target blocks). Other dependencies are added in order to construct a
precedence ordering [50]. A precedence ordering augments the dependence graph
with additional dependencies required to identify possible memory conflicts; these
conflicts can occur when the compiler can not guarantee that two distinct memory
operations do not map to the same memory location. In this case, the original
order of the operations must be maintained by including additional dependencies
in the precedence graph.

Chapter 4: Design of the MISC Compiler 45

Table 4.2: Reduction of Dynamic Branch Executions Due to IF-Conversion

Total| Conditional| Removed Using

Program Instructions Branches| If Conversion
(in thousands) | (in thousands)| (in thousands)

compress 83,947 11,739 1,234
equtott 1,395,165 342,595 1,020
espresso 521,130 76,466 2,306
gee 142,359 21,579 4,132
xlisp 1,307,000 147,425 8,922
sc 889,057 150,381 28,120
povray 1,438,399 335,702 52,311
sobel 342,676 58,122 0
ear 17,010,166 1,311,243 71,025
KMP 932,541 182,031 74,924
InnerProduct 9 1 0
LinkedList 10 2 1

4.5 Code Separation

A grasp of the concept of a leading (or lead) processing element is central to the
understanding of code separation. In a MIMD architecture, each of the instruction
streams executes independently (ignoring for a moment any data dependencies).
Therefore, if operations are scheduled carefully, some of the streams can be allowed
to proceed farther ahead in the computation than others. Staggering the relative
entry cycle times for the execution of a section of code provides a perfect method for
hiding the delay imposed by high latency operations. For example, if the instruction
that issues a high latency operation is scheduled on a processor that enters that
section of code a sufficient number of cycles before the processor that uses the item,
the effects of the latency will be hidden and parallelism can be exploited. In such
a case it is possible that the lead PE will be executing instructions in a new section
of code while trailing PEs are still completing previous sections.

The task of code separation is to separate the task across processing elements,
with the goal of minimizing the effects of high memory latency and high functional
unit latency for operations like multiply and divide by decoupling the definition
of the data item from its use. Code separation is performed in two stages: code
partitioning and load balancing.

Chapter 4: Design of the MISC Compiler 46

4.5.1 Code Partitioning

The function of code partitioning is to organize the instructions specified in RTL
form into a directed acyclic graph of groups. Much like initial register allocation
strategies, code partitioning initially assumes an infinite number of processing el-
ements. The actual partitioning algorithm begins by determining how individual
instructions are initially grouped together. Strongly connected components are se-
quences of nodes in a directional graph which, for every pair of nodes v and w, there
is a path from v to w and a path from w to v °.

Each group consists of a sequence of mutually dependent RTL lines. The first
task of the partitioning phase is to process the dependence graph in order to to
identify instructions that are mutually dependent. Code partitioning examines the
program dependence graph to find strongly coupled chains of instructions those
instruction sequences that have circular dependence chains. These chains can then
be used to partition RTLs into dependence groups. The primary grouping, referred
to as the control group, contains all branch operations and the lines in the RTL
required to calculate branch conditions and targets (i.e. branch instructions and
the instructions that they depend on). The branch instructions are duplicated for
each dependence group in order to maintain a consistent control flow through the
code (Alternate partitioning strategies can relax this condition if no data is being
manipulated in a block by some PEs).

4.5.2 Load Balancing

Once the primary groups are partitioned into an acyclic graph, the load balanc-
ing phase determines how to partition the remaining groups. Load balancing is
performed in two distinct stages: Instruction Balancing and Group Fill.

Instruction Balancing

Instruction Balancing tries to balance the amount of work performed by each PE.
Each group is given a weight representing the expected number of cycles it will take
to execute. This count is the product of the latency to execute the instructions in
a group and the expected number of executions of the group. The set of all groups
exceeding a certain weight is then partitioned across the available PEs. The latency
measure can be calculated by assigning a latency value to each instruction type.
The frequency measure can be determined by using previous profile information, or
by static heuristic measures (e.g. groups in loops are executed more than groups
outside of loops). With the reduction in the number of groups caused by the
elimination of any groups that do not exceed the threshold weight, it is feasible to
use an exhaustive search to determine the optimal partitioning.

A standard graph algorithm for determining strongly connected components is used.

Chapter 4: Design of the MISC Compiler 47

Once the optimal permutation is found for those groups that account for most
of the execution time, the remaining groups are allocated as close to the lead PE as
can be achieved without violating the uni-directional data flow restrictions between
PEs. Later on, latency removal will be used to assign the remaining groups to the
physical PEs.

Group Fill

The final stage in balancing instructions, Group Fill, builds the program dependence
graph for the remaining (unallocated) groups and augments this graph with latency
information. The groups are then sorted by their dependence relationship and each
group is temporarily allocated to the latest (farthest from the lead) PE to which
it can be assigned without violating the uni-directional data flow restriction placed
on the schedule.

There are two aspects to group filling: Placing the remaining instructions across
PE in a manner that does not lengthen the execution time of the most burdened
PE and placing variables across PEs in a manner that does not overburden any
one register file. In a machine with 128 general purpose registers (as a 4 processor
MISC configuration has), register pressure is not a significant problem. In the initial
register allocation, prior to code partitioning, 128 registers are assumed available
to a single PE stream. During the code partitioning phase register limitations are
ignored, leaving the final task of register assignment to the load balancing phase.
The goal is to minimize the need to spill register contents to memory, and when spills
are required, maintain the performance of the lead PE. This can be accomplished
by scheduling the instructions required to implement the spill code on trailing PEs
when possible.

The algorithm to perform the instruction load balancing examines the Directed
Acyclic Graph (DAG) of dependence groups. A ready set of dependence groups is
then identified and scheduled on the leading PE if the placement of this group does
not overburden the execution resources of the lead PE (and thereby lengthen the
instruction schedule). All groups left unallocated are considered for each successive
PE until a schedule is found. The last PE accepts all remaining (unscheduled)
groups. This is a greedy heuristic, but has the advantage of placing high latency
operations across processing elements.

To illustrate the algorithms covered in the partitioning phase, the two example
programs, InnerProduct() and LinkedList(), will again be utilized. The RTL form
for these examples is shown in Figures 4.4 and 4.5.

In the InnerProduct() example program (Figure 4.2) the two independent mem-
ory operations (the vector loads for z and z) are split onto two processing elements.
This leads to a schedule that utilizes the full capabilities of the target architecture.
This schedule is shown in Figure 4.6.

Chapter 4: Design of the MISC Compiler 48

[1] t1 = 0 ; q=0

[2] t2 =0 ; k=0

[3] t3 = 1024 ; set register for test
[4] t4 = LOC[_z] ; t4 = base of array z
[5] t5 = LOC[_x] ; th = base of array x
[6] L1:

[7] t6 = (£2>=t3) ; calculate branch cond
[8] PC = t6, L2 ; branch if true

[9] t7 = M[t4+t2] ; load t7= z[k]

[10] t8 = M[tb5+t2] ; load t8= x[k]

[11] t9 = t7 * t8 ; (z[k] * x[k])

[12] tl = t1 + t9 ; 9 =q + (z[k] * x[k])
[13] t2 = t2 + 1 i k++

[14] PC = L1

[15] L2:

Figure 4.4: Example Code: InnerProduct() RTL Form

4.6 Separation Strategies

This section examines the effect of various partitioning heuristics on the ability to
separate the strongly connect groups across the available PEs in a particular MISC
implementation. Partitioning and instruction balance are performed for a four PE
MISC architecture.

4.6.1 Strategy 1: DAE Partitioning

The most restrictive form of separation partitions instructions in much the same
manner as originally performed on the PIPE processor [51]. Each group is char-
acterized as a CONTROL group, containing control and memory instructions, or
FREE groups, containing all other instructions.

In the PIPE machine, the CONTROL group is executed on the access processor
and the FREE groups are combined and assigned to the ezecute processor. This
strategy is implemented in MISC by assigning all instructions in the CONTROL
group to the lead PE and distributing the elements of the FREE groups among the
remaining (trailing) PEs.

Figures 4.7 and 4.8 show the results of partitioning the intermediate code of
the InnerProduct() and LinkedList() examples. Each line in the figures contains an
enumeration (e.g. [1]), a group placement identifier and an RTL statement. The
enumeration is used in the text to specify a line, the group placement identifier

Chapter 4: Design of the MISC Compiler 49

[1] t1 = head ; list=head

[2] t2 = 4 ; calc z offset from list
[3] t3 =8 ; calc x offset from list
[4] t4 = 12 ; calc next offset from list
[5] ts =0 ; set register for loop test
[6] t6 =0 ; value=0

[7] L1:

[8] t7 = (t1==t5b) ; calc loop branch cond

[9] PC = t7, L2 ; branch if true (list==0)
[10] t8 = M[t1+t3] ; load t8= list->x

[11] t9 = (t8==tbh) ; calc inverse if condition
[12] PC = t9, L3 ; branch if true (1list->x==0)

[13] t10 = M[t1+t2]; load t7= list->z
[14] t11 = t10 / t8 ; (list—>z / list->x)

[15] t6 = t6 + ti1 ; value = value + (z[k] / x[k])
[16] L3:

[17] t1 = M[t1+t4] ; load list->next

[18] PC = L1

[19] L2:

Figure 4.5: Example Code: LinkedList() RTL Form

contains the partition group to which the RTL has been assigned and the RTL
statement shows the intermediate form of the program. Each statement of the
RTL description either defines a label or describes an operation to be performed in
the resulting code; comments are delimited by ’;’. Virtual register labels (specified
as t1, t2, t3, etc.) define intermediate points in the calculation and may or may
not map to physical registers or queues (for the sake of clarity, the actual register
mapping has been omitted).

In the InnerProduct example (Figure 4.7, lines [8] and [14] are placed in the
CONTROL group because they are branch instructions. Lines [9] and [10] are also
placed in the CONTROL group because they are memory access instructions. Any
RTLs that define a value later used by a CONTROL group operation (lines [8],
[9], [10] or [14]) will also be placed in the CONTROL group to avoid moving data
upstream (from a trailing PE to a leading PE); line [7] falls in this category because
it defines the branch control value (register t6) used by the branch instruction in
line [8]. Line [13] is also included because it calculates the loop iterator (k++).
Finally, since no groups can be assigned to the FREE group that contain values
used by the access group (no upstream communication allowed), lines [2] through [5],

Chapter 4: Design of the MISC Compiler 50

PE1 Code PE2 Code PE3 Code PE4 Code
[1] tl =0
[2] t2 =0
[3] t3 = 1024
[4] t4 = LOC[_z]
[5] t5 = LOC[_x]
[6] L1: L1: L1: L1i:
[7] t6 = (t2>=t3)
[8] PC = t6, L2 PC = t6, L2 PC = t6, L2 PC = t6, L2
[9] t7 = M[t4+t2]
[10] t8 = M[t5+t2]
[11] t9 = t7 * t8
[12] tl = t1 + t9
[13] t2 = t2 + 1
[14] PC = L1 PC = L1 PC = L1 PC = L1
[15] L2: L2: L2: L2:

Figure 4.6: Example Code: Balanced InnerProduct() RTL Form

which initialize the registers used by instructions in the CONTROL group, must
also be assigned to the CONTROL group. This leaves three lines ([1], [11] and
[12]) available to allocate to the FREE group. During execution of this example
on a DAE partitioned processor, the CONTROL processor would execute 6150
instructions (accounting for 75 percent of all instructions), leaving 2049 instructions
(25 percent) to be executed by the remaining PEs.

The LinkedList example shows similar results in the partitioning of its code.
Most lines are allocated to the CONTROL group, while relatively few lines ([6], [14]
and [15]) remain to execute on the FREE PEs. Assuming the linked list contains
1000 items, the dynamic count of instructions for the CONTROL processor is 8007
instructions (80 percent) and the FREE PEs process 2001 instructions.

At this point it is important to point out one of the limitations of this analysis.
Clearly if 80 percent of all instruction executions are performed by a single PE (as in
the LinkedList() example), it will be difficult to realize a high issue rate. However,
it may be possible to achieve a substantial increase in performance if the original
scalar schedule had very poor performance due to a few high latency operations and
the partitioned code is able to schedule those high latency dependent operations
between PEs. This would allow those latencies to be subsumed by the partitioning
process (and the slip [52] between the asynchronous PEs).

Table 4.3 shows the results of DAE partitioning on the benchmark suite. The

Chapter 4: Design of the MISC Compiler 51

[1] FREE tl =0 ; q=0

[2] CONTROL t2 =0 ; k=0

[3] CONTROL t3 = 1024 ; set register for test
[4] CONTROL t4 = LOC[_z] ; t4 = base of array z
[5] CONTROL t5 = LOC[_x] ; ts = base of array x
[6] L1:

[7] CONTROL t6 = (t2>=t3) ; calculate branch cond
[8] CONTROL PC = t6, L2 ; branch if true

[9] CONTROL t7 = M[t4+t2] ; load t7= z[k]

[10] CONTROL t8 = M[t5+t2] ; load t8= x[k]

[11] FREE t9 = t7 * t8 ; (z[k] * x[k])

[12] FREE tl = t1 + t9 ; 9 =q + (z[k]l * x[k])
[13] CONTROL t2 = t2 + 1 i k++

[14] CONTROL PC = L1

[15] L2:

Figure 4.7: Example Code: DEA Partitioning of InnerProduct()

first column identifies the application evaluated. Columns titled Control and Free
show the partitioning of dynamic instruction executions into control and free groups
(shown in thousands). The column titled wvirtual shows the maximum number of
virtual PEs that are used in the partitioning algorithm: The Virtual PE entry
gives a measure of how many PEs are required to partition the FREE groups (plus
one for the CONTROL group) in a manner which minimizes the effects of high
latency operations. The column titled physical shows the minimum number of
PEs required to map the virtual PEs to a MISC implementation without degrading
performance ®. The Physical PE count shows the number of PEs required to achieve
the highest performance; this will likely be less than the number of virtual PEs
because scheduling can place some instructions in empty pipeline slots caused by
high latency dependencies.

The most notable fact drawn from DAE partitioning is the heavy skewing of
instructions toward the lead PE. While some performance improvement is found by
decoupling the code in all but two benchmarks (eqntott and espresso), the benefits
are marginal. In these applications very few instructions can be allocated to a
secondary processor due to dependencies between control and access instructions.

Each application examined suffers from a poor partitioning of instructions using
this strategy. None of the applications require more than two PEs because there are

6Note that this is not an optimal schedule, but does provide the same level of performance as
schedules involving more PEs using the algorithms described in this dissertation.

Chapter 4: Design of the MISC Compiler 52

[1] CONTROL t1 = head ; list=head

[2] CONTROL t2 = 4 ; calc z offset from list

[3] CONTROL t3 = 8 ; calc x offset from list

[4] CONTROL t4 = 12 ; calc next offset from list
[5] CONTROL t5 = 0 ; set register for loop test
[6] FREE t6 = 0 ; value=0

[7] L1:

[8] CONTROL t7 = (t1==tb) ; calc loop branch cond

[9] CONTROL PC = t7, L2 ; branch if true (1list==0)
[10] CONTROL t8 = M[t1+t3] ; load t8= list->x

[11] CONTROL t9 = (t8==tb) ; calc inverse if condition
[12] CONTROL PC = t9, L3 ; branch if true (1list->x==0)
[13] CONTROL t10 = M[t1+t2]; load t7= list->z

[14] FREE t11 = t10 / t8 ; (list—>z / list->x)

[15] FREE t6 = t6 + til ; value = value + (z[k] / x[k])
[16] L3:

[17] CONTROL +t1
[18] CONTROL PC
[19] L2:

M[t1+t4 1 ; load list->next
L1

Figure 4.8: Example Code: DEA Partitioning of LinkedList()

plenty of excess cycles to hide latency in the second PE due to the heavy skewing
of instructions. At this point, no load balancing strategy can achieve high levels of
instruction level parallelism because the performance will always be dominated by
the lead PE executing the great majority of the instructions. By scheduling 69% to
92% of all instructions on the lead PE, it will be impossible to obtain an execution
rate greater than about 1.3 IPC (with a single issue lead PE).

However, this does not directly show the performance improvement that can
be expected for an application. For instance, if a scalar implementation of an ap-
plication has an execution rate of 0.3 IPC, then a MISC IPC of 1.2 is a great
improvement even if it also has a relatively low IPC count. However, it is unlikely
that the MISC design can be competitive with more advanced multiple issue ar-
chitectures, if 80% of all instructions are executed in a strictly sequential manner.
To help alleviate this problem a second partitioning strategy was developed that
reduces the demands on the lead PE.

Chapter 4: Design of the MISC Compiler 53

Table 4.3: DAE Partition Results (Dynamic)

Program Control Free Virtual Physical
compress 72 28 3 2
eqntott 83 17 6 1
€SPresso 92 8 3 1
gce 76 24 6 2
xlisp 88 12 4 2
sc 69 31 8 2
povray 7 23 3 2
sobel 69 31 5 2
ear 76 24 8 2
KMP 60 40 4 3
InnerProduct 75 25 3 2
LinkedList 80 20 3 2

4.6.2 Strategy 2: Control Partitioning

The second approach to load balancing, control partitioning, does not require mem-
ory operations be placed on the lead processor unless they are required as part of
a control group (i.e. they generate condition values used by conditional branches),
which reduces the burden placed on the lead PE. Table 4.4 shows the results of
this partitioning strategy on the benchmark suite.

Control partitioning shows improved results across all benchmarks. Four pro-
grams (sc, sobel, KMP and InnerProduct) achieve the best results when three or
more PEs are available. Unfortunately, most of the integer benchmarks still show
that little parallelism is exploited, with eqntott and espresso showing no improve-
ment. These applications often use the result of a memory reference to determine
the control flow; an example of this is traversing a linked-list, where the terminat-
ing condition (NULL) value can only be determined by retrieving the contents of
memory for each item in the list. The scientific applications show a much better
partitioning using this technique because their simple array access patterns are more
easily partitioned; the memory access operations are now allocated to the FREE
PEs, and in many cases there is little address aliasing to restrict the compiler from
assigning references to more than one processor.

Examining our two example programs, we see improvement in InnerProduct(),
but no improvement in LinkedList(). In the InnerProduct() example 4.9, the mem-
ory access operations (lines [9] and [10]) were successfully separated from the control
group; they have no impact on the control flow decisions, so the control processor
can continue processing independent of the execution of the load instructions. Lines

Chapter 4: Design of the MISC Compiler 54

Table 4.4: Control Partition Results

Program Control Free Virtual Physical
compress 63 39 4 2
eqntott 82 18 6 1
espresso 92 8 2 1
gce o6 44 9 2
xlisp 81 19 4 2
sc 52 48 8 3
povray 74 26 4 2
sobel 42 58 6 3
ear 65 35 8 2
KMP 47 53 6 3
InnerProduct 50 50 5 4
LinkedList 70 30 4 2

[4] and [5] can also be relocated because they do not generate values required by
the CONTROL group. In fact, CONTROL partitioning is able to perform an op-
timal partitioning in this particular example. For this reason, it will be omitted
throughout the remainder of the partitioning approaches.

As mentioned earlier, the LinkedList() example (Figure 4.10) shows little im-
provement in partitioning; only lines [2] and [13] could be relocated to the FREE
group. The memory reference at line [10] returns data later used in a branch cal-
culation, which forces the placement of that operation in the control group ”.

Finally, the memory access in line [13] can only be placed into the CONTROL
group if the compiler can determine that it does not reference the same address as
found in reference [10]. The vpce compiler will make this decision (an unsafe one)
because of the different element names in the structure. If this assumption cannot
be made, no improvement over DAE partitioning will be found.

Applying control partitioning provides a more even distribution in the scheduled
code, but the number of instructions placed in the CONTROL group still domi-
nates. In addition, the instructions identified in the CONTROL column must be
allocated to a single (the lead) PE. The next logical step in improving the partition-
ing is to relax the restriction on placement of control flow operations. By allowing
individual PEs to follow independent routes through the control flow, branch points
where very little computation is occurring can be assigned to a small number of
PEs, freeing the rest to perform later computations. IF statements often have this

It should be noted that the value read from memory by line [10] may be required by two PEs:
The control PE to calculate the branch condition in line [11], and the division performed in line
[14]. This is an example of a broadcast memory load operation.

Chapter 4: Design of the MISC Compiler 55

[1] FREE tl =0

[2] CONTROL t2 =0

[3] CONTROL t3 = 1024

[4] FREE t4 = LOC[_z]
[5] FREE t5 = LOC[_x]
(6] L1:

[7] CONTROL t6 = (£2>=t3)
[8] CONTROL PC = t6, L2

[9] FREE t7 = M[t4+t2]
[10] FREE t8 = M[t5+t2]
[11] FREE t9 = t7 * t8
[12] FREE tl = t1 + t9

[13] CONTROL t2 = t2 + 1
[14] CONTROL PC = L1
[15] L2:

Figure 4.9: Example Code: Control Partitioning of InnerProduct()

characteristic; it may be possible to have a trailing PE perform the entire computa-
tion of an if statement while the leading PEs can continue on after the completion
of the conditional. Any point in the control flow graph that joins after a fork is a
candidate for this modified partitioning scheme. This leads to the third partitioning
strategy studied.

4.6.3 Strategy 3: Group Partitioning

The third approach requires only that those control groups containing CALL in-
structions be allocated to the lead processor. This is the least restricted partitioning
algorithm examined that is completely supported by the current specification of the
MISC architecture. This approach operates much like a very tightly coupled mul-
tiprocessor; not only are all PEs executing from a separate instruction stream, but
they do not necessarily follow the same flow of control through the basic blocks.
Some PEs may skip a block or many blocks. A restriction is still placed on the
partitioning by requiring each PE to follow the same flow at function boundaries; if
one PE enters a function, all PEs will enter the function. The results of performing
group partitioning on the benchmark applications are shown in Table 4.5.

These results show that about half of the benchmarks are able to place enough
instructions in the FREE groups to allow an even instruction distribution across
a dual PE configuration. Two scientific applications, KMP and sobel, show ex-
cellent results using group partitioning. Group partitioning is also effective in the

Chapter 4: Design of the MISC Compiler 56

[1] CONTROL tl = head

[2] CONTROL t2 = 4

[3] CONTROL t3 =8

[4] CONTROL t4 = 12

[5] CONTROL th =0

[6] FREE t6 = 0

(7] L1:

[8] CONTROL t7 = (t1==t5)
[9] CONTROL PC = t7, L2
[10] CONTROL t8 = M[t1+t3]
[11] CONTROL t9 = (t8==t5)
[12] CONTROL PC = t9, L3
[13] FREE t10 = M[t1+t2]
[14] FREE t1ll = t10 / t12
[15] FREE t6 = t6 + ti1
[16] L3:

[17] CONTROL tl = M[t1+t4]
[18] CONTROL PC = L1

[19] L2:

Figure 4.10: Example Code: Control Partitioning of LinkedList()

LinkedList() example, Figure 4.11. The conditional branch controlling execution of
the expression could be off-loaded from the control processor to another PE. This
generates an improved partitioning which provides greater flexibility in balancing
the load across four PEs. At this point, the linked list example has also been par-
titioned as well as possible (since the control group contains only a single strongly
connected component). Further partitioning by analyzing memory conflicts will not
alter the partitioning. However, if vpcc did not make the assumption that differing
elements of a structure could not conflict, there would be no improvement possible
at this point, until those conflicts could be resolved.

The majority of the integer applications still allow little opportunity to achieve
balanced instruction issue. In these applications, much of the parallelism is in very
tightly coupled groups of code that cannot be split across multiple PEs without
violating the restriction on unidirectional data flow between PEs. Since this is the
feature that allows decoupled processors to tolerate high memory latencies, relaxing
that restriction could significantly reduce the advantages of decoupling.

One additional problem remains with finding enough groups to provide flexible
partitioning. The semantics of the C language make it difficult to determine possible

Chapter 4: Design of the MISC Compiler 57

Table 4.5: Group Partition Results

Program Control Free Virtual Physical
compress 60 40 4 2
eqntott 75 25 6 2
espresso 69 31 5} 2
gee 95 45 9 2
xlisp 52 48 5} 2
sC 50 50 8 3
povray 42 58 7 3
sobel 30 70 7 4
ear 52 48 9 2
KMP 33 67 8 4
InnerProduct 50 50 5 4
LinkedList 40 60 5} 3

memory conflicts at compile time. The freedom to assign a pointer variable to
an arbitrary memory location makes it difficult to identify instructions that are
likely to be independent, but cannot be absolutely determined to be independent.
This requires additional links in the dependence graph which restrict the ability
to allocate those memory operations to different dependence groups. The effect of
this possible, but unlikely, dependence is to require a majority of all memory access
operations to be placed on a single (lead) PE. A final partitioning strategy was
studied which removes this problem from the partitioning algorithm.

4.6.4 Strategy 4: Memory Partitioning

All prior partitioning algorithms have had to schedule groups containing memory
operations on a single PE unless it could be proved that no memory conflict was
possible since function calls cross a barrier beyond which no analysis of memory
references can be performed. A conservative approach to partitioning that restricts
a balanced partitioning across PEs is therefore required.

The final approach studied allows memory groups to be partitioned in any fash-
ion. This increases the ability of the partitioning algorithm to generate more FREE
groups (and thereby improve later code balance). This strategy does require some
support from the hardware and/or software to ensure correct memory ordering of
operations in accordance with the specifications of the source program is main-
tained. This is a difficult task for the hardware to perform; however, it is vital to
release the compiler from the tremendous restriction of scheduling in the presence
of frequent function calls.

Chapter 4: Design of the MISC Compiler 58

[1] CONTROL tl = head

[2] FREE t2 = 4

[3] FREE t3 =8

[4] CONTROL t4 = 12

[5] CONTROL th =0

[6] FREE t6 = 0

(7] L1:

[8] CONTROL t7 = (t1==t5)
[9] CONTROL PC = t7, L2
[10] FREE t8 = M[t1+t3]
[11] FREE t9 = (t8==t5)
[12] FREE PC = t9, L3
[13] FREE t10 = M[t1+t2]
[14] FREE t1l = t10 / t8
[15] FREE t6 = t6 + ti1
[16] L3:

[17] CONTROL tl = M[t1+t4]
[18] CONTROL PC = L1

[19] L2:

Figure 4.11: Example Code: Group Partitioning of LinkedList()

An alternate approach would be to perform inter-procedural analysis to allow
the compiler to determine the actual dependencies between memory instructions.
The MISC compiler algorithms described in this chapter are being ported to the
SUIF [53] compiler which is capable of such inter-procedural analysis ®; this will
provide a better platform for analyzing the actual capabilities of this approach.

Table 4.6 shows the effects of the Memory Partitioning approach assuming a
perfect knowledge of memory conflicts can be determined during compilation. This
technique shows a much greater ability to partition code in a manner that allows
for a good load balance and good overall performance improvement. These results
imply that, in languages without the pointer aliasing problem, or in a compiler
with much better pointer analysis than vpcc, it is possible to achieve good code
partitioning results. Many of the benchmark applications show a marked improve-
ment in the ability to assign instructions to the FREE group, and show optimal PE
assignments greater than two. This demonstrates that decoupled processors with
more than two PEs are capable of providing improved performance.

8The version of SUIF incorporating inter-procedural analysis is not currently released outside
of Stanford University. It should be included in a later release.

Chapter 4: Design of the MISC Compiler 59

Table 4.6: Memory Partition Results

Program Control Free Virtual Physical
compress 34 66 6 3
eqntott 52 48 10 2
espresso 44 o6 5} 2
gce 32 68 9 2
xlisp 39 61 7 3
sc 41 59 8 3
povray 42 58 8 4
sobel 30 70 7 4
ear 34 66 9 3
KMP 33 67 8 4
InnerProduct 50 50 5 4
LinkedList 40 60 5} 3

4.7 Reducing Branch Duplication

Once the code has been separated across processing elements, branch instructions
must be duplicated to enable each PE to follow the control flow of (its portion
of) the execution. However, executing this many additional branch operations can
potentially reduce the overall performance of the MISC architecture. Just as IF-
conversion was used in section 4.2.2 to eliminate short forward branches, the MISC
vector and sentinel instructions will be used to reduce the number of loop branches
required during execution. At the same time, the hardware registers inside of MISC
(e.g. VREG) can be used to calculate the loop induction variables. The instructions
that calculate the induction variable may also be eliminated by translating using
the hardware register (VREG) directly.

4.7.1 Using Vector and Sentinel Operations

Two optimization techniques are applied to loops in this compiler branch re-
duction and induction variable calculation. These two optimizations attempt to
eliminate instructions inside inner loops, which can lead to significant performance
improvements when these loop iterations account for a large portion of the execu-
tion time.

For loops with few or no data dependencies between iterations, loop unrolling
[54] is a popular technique to increase the efficiency of the list scheduler. During
this optimization, iterations of the loops are explicitly expanded, making an in-
creased number of instructions available to the scheduler. By providing additional

Chapter 4: Design of the MISC Compiler 60

(hopefully independent) instructions, the list scheduler is less likely to generate
sparsely populated instruction streams.

For loops that cannot be efficiently unrolled, the MISC architecture provides
two mechanisms to reduce the need for branch duplication: VLOOP/SLOOP in-
structions (sections 3.6 and 3.7) and predicated execution (section 3.8).

4.7.2 Induction Variable Calculation

An induction variable is a variable whose value is consistently modified (incremented
or decremented) by a constant value on each iteration of a loop. These variables are
often used to determine the number of iterations to be performed. Furthermore,
induction variables are often used to index array data items or manipulate memory
pointers, and can be defined in terms of an induction expression. While a number
of expressions are possible, a common induction expression is:

dee ifi=1
IV;_{ IV, | +cee ifi>1

where i is the iteration count (value 1 on the first iteration), cee is the amount by
which the induction variable is incremented during each iteration of the loop, and
dee is the value of the induction variable at the start of the first iteration. The
detection of induction variables is a well understood problem. The algorithm used
in this compiler is derived from [30] (Algorithm 10.9).

Once the control state of the machine has been extended to support loop oper-
ations, it is a simple modification to handle the calculation of induction variables
used in the loop. The srcl and sre2 fields of the VLOOP instruction are free to
contain the cee and dee values; VREG will maintain the induction value and src?
will control loop termination as described above.

In the example of InnerProduct() in Figure 4.6 both array index calculations
can be performed by the hardware using this technique. Using this technique leads
to the RTL description after loop translation shown in Figure 4.12.

4.8 Instruction Scheduling

The final stage of the compilation process schedules the instructions on each individ-
ual PE. A least cost schedule is developed that attempts to schedule all instructions
to execute in the shortest time. List scheduling on MISC operates on each of the
processing element individually, scheduling to avoid wasted cycles (due to latency).
Simple list scheduling is complicated by the need to interpret queue register speci-
fications in the RTL and to avoid reordering queuing operations. Furthermore, all
loop instructions (VLOOP and SLOOP) are examined to determine the number
of instructions in the delay slots; if only one instruction is iterated in the loop,

Chapter 4: Design of the MISC Compiler 61

PE1 Code PE2 Code PE3 Code PE4 Code
[1] tl =0
[2]
[3] t3 = 1024 t3 = 1024 t3 = 1024 t3 = 1024
[4] t4 = LOC[_z]
[5] t5 = LOC[_x]
[6]
[7] t6 = (t2>=t3)
[8] VLOOP 1,0,t3 VLOOP 1,0,t3 VLOOP 1,0,t3 VLOOP 1,0,t3
[9] t7 = M[t4+VREG]
[10] t8 = M[t5+VREG]
[11] t9 = t7 * t8
[12] tl = t1 + t9
[13]
[14]
[15] L2: L2: L2: L2:

Figure 4.12: Example Code: Loop Transformation of InnerProduct()

then the loop instruction is removed and the scalar instruction residing in the delay
slot is translated into vector (or sentinel) form. In the InnerProduct() example in
Figure 4.12, the VLOOP operations for each of the processors can be replaced with
a single vector instruction since each loop consist of only one instruction and the
default induction calculation is used (or no induction variable is referenced in PE3
and PE4).

4.9 Summary

This chapter has described the structure and important characteristics of the MISC
compilation process. The effects of various partitioning strategies were examined
to assess the feasibility of translating high-level application code to a decoupled
implementation.

The partitioning results indicate that while some parallelism can be extracted
using a DAE model under these compilation techniques, dramatic improvements in
ILP are unlikely because of the large number of instructions executed by the lead
PE. More aggressive partitioning techniques can improve performance, especially in
those applications using simple, non-pointer based data structures. Instruction level
parallelism exploited by a decoupled approach exploits different types of parallelism
as that of a superscalar design. This suggests that a hybrid solution in which each

Chapter 4: Design of the MISC Compiler 62

MISC processing element implements a superscalar design could provide greater
issue widths and improved performance. Extending this analysis to evaluate total
execution time and the ability to hide memory latency between processing elements
will be done in the next chapter.

Chapter 5: Performance of the MISC Architecture 63

Chapter 5

Performance of the MISC
Architecture

This chapter examines how well the MISC system performs executing a series of
benchmark applications. The experiments are separated into three parts. First, the
performance of the MISC system is measured using kernels of scientific code and
results are compared to previous decoupled [55] and superscalar [56] designs. These
kernels contain highly parallelizable loops whose ILP can be efficiently exploited
by a variety of ILP models. The second set of experiments measures the ability of
the MISC architecture and compiler to hide the high latency memory operations
using the partitioning techniques introduced in chapter 4. Finally, execution time
for the MISC system is measured for both integer and scientific applications and
compared to a current superscalar design.

5.1 Performance Results on Livermore Loop Ker-
nels

The Lawrence Livermore Loops were selected as the benchmarks for comparing code
separation on a four PE MISC architecture with optimized compilation of MIPS
code. The loops were extracted from large applications used at the Livermore
National Laboratory. These loop kernels are best used to study the performance
capabilities of different supercomputer designs in extracting parallelism for scientific
applications. The first 12 loops were compiled for both the MIPS and MI1SC,
architectures (the MIPS code was compiled using the cc compiler with optimizations
enabled).

In order to compare the performance of the M1SC4 and MIPS processors the
total number of cycles required to complete a given loop was measured. This is
an obvious method of evaluation when dealing with conventional architectures,
but misses some of the capabilities that exist in the multiple instruction stream

Chapter 5: Performance of the MISC Architecture 64

approach. Higher latencies were used for the MISC, architecture because the
design anticipates a higher clock speed.

The performance of the MIPS architecture in executing these applications was
calculated by hand, while the M ISC} architecture was studied using a behavioral
level simulator executing the binary (assembled) form of each loop. Both the MIPS
and MI1SC, simulations assumed a perfect ICache and an 8K-byte, 32-byte line
UCache configuration. The operational latencies used in the simulations are shown
in Table 5.1.

Table 5.1: Operational Latency

Operation Unit MIPS MISC,
memory load 2 10
Integer Add 1 2
Int Mult 2 4
Branch 2 2

Table 5.2 shows the results of executing the Livermore loops on MIPS and
M1I1SCy architectures. The MIPS configuration was capable of issuing only a single
instruction each clock cycle, while the M ISC, system consisted of four PEs each
capable of issuing a single instruction per cycle. The first column identifies each of
the 12 loops studied. The second column shows the number of clock cycles required
to execute that loop on the M1SC, system. The third column shows the number
of execution cycles on a MIPS (scalar) processor. The fourth column shows the
performance improvement (calculated as MIPS cycles divided by MI1SCy cycles)
achieved by the MI1SC, design.

For a majority of the loops we see a three to four-fold decrease in M 1SC, cycle
counts. This demonstrates that much of the parallelism available in these bench-
marks is effectively being extracted by the M 1SC, design. However, several of these
benchmarks show less of a performance increase than others (most notably LLL6
and LLL11). This is due to a recurrence constraint found in the data manipulated
by the loop in these cases, adding more processors will not increase performance
regardless of the approach used, since the parallelism is simply not available in the
loop.

To provide a comparison with a similarly configured single instruction stream,
multiple issue architecture these loops were hand compiled for a 4 issue VLIW
architecture. The VLIW architecture chosen is based upon the most sophisticated
version found in [57]. This VLIW machine allows four instructions to be issued
per clock cycle and there are no limitations on the type of instructions that can be
issued. The register file is capable of handling eight read and four write requests
on each cycle, and perfect register renaming (using a rotating register file [57]),

Chapter 5: Performance of the MISC Architecture 65

Table 5.2: LLL Comparison: MIPS vs MI1S5C,

Benchmark MIPS MISCy Performance
Loop (cycles) (cycles) Improvement
LLL1 5611 1232 4.55
LLL2 1112 256 4.34
LLL3 6664 2063 3.23
LLL4 3011 753 3.99
LLL5 6979 1994 3.50
LLL6 7726 4982 1.55
LLL7 4338 859 5.05
LLLS8 3218 1476 2.18
LLL9 4081 813 5.02
LLL10 3107 1007 3.08
LLL11 3049 2003 1.52
LLL12 3759 1013 3.71

predicated execution, and loop control operation are assumed. Furthermore, it
is assumed that induction variable calculations can be included in any memory
reference operation (providing pre/post increment capability). The loops were hand
compiled due to a lack of a VLIW compiler capable of supporting the hardware
specifications above. Modulo Scheduling was used to provide software pipelining
to minimize latency delays, and to exploit the other hardware capabilities of the
architecture.

It should be noted that for these highly regular loops, and assuming fixed latency
operations, this idealized VLIW architecture will perform as well as any other
4-issue architecture (superscalar and decoupled included), excluding initialization
effects. Comparing the four PE M1SC, system to this VLIW design shows how
close the MISC approach comes to an optimal design for these loop kernels.

The results in Table 5.3 show that the MISC approach is capable of extracting
virtually the same level of parallelism in most of the loops as this idealized VLIW
machine. In addition, the MISC design has an additional benefit unavailable to
the VLIW machine; since some of the lead PE(s) terminate a loop before trailing
PEs, they are capable of starting the execution of the code following the loop exit
early. This demonstrates an important point in the evaluation of the performance
capabilities of a multiple instruction stream processor; where all functional units in
the VLIW processor are locked into the loop (even if they have nothing to do), the
MIS5Cy processor requires only those PEs necessary to execute the loop code, while
the remaining PEs can immediately start the execution of the next code block(s).

The last two columns in the table show the code improvement of the M1SC,

Chapter 5: Performance of the MISC Architecture 66

machine over the VLIW. The first of these values indicates how soon each machine
was able to start execution of the instructions following the loop. The second value
shows the relative completion times of the loop.

Table 5.3: LLL Comparison: MI15C, vs VLIW

Bench || PE1 | PE2 | PE3 | PE4 | MISC, | VLIW | Improve Improve
in first PE | in last PE
LLLT || 1205 | 1215 | 1221 | 1232 | 1232 1236 1.35 1.00
LLL2 201 | 201 | 211 | 256 256 228 1.13 0.89
LLL3 || 1025 | 1025 | 1035 | 2063 | 2063 1065 1.01 1.00
LLL4 385 | 395 | 404 | 753 753 771 2.00 1.02
LLL5 997 | 999 | 1993 | 1994 | 1994 1994 2.00 1.00
LLL6 0 997 | 1995 | 4982 | 4982 4984 00 1.00
LLL7 727 | 846 | 736 | 859 859 863 1.18 1.01
LLLS8 586 | 720 | 1240 | 1476 | 1476 1456 2.48 0.99
LLL9 609 | 707 | 712 | 813 813 708 1.16 0.87
LLL10 || 506 | 506 | 1006 | 1007 | 1007 1014 2.00 1.01
LLL11 0 999 | 1000 | 2003 | 2003 2004 00 1.00
LLL12 || 1002 | 1012 | 1013 | 1013 | 1013 1013 0.99 1.00

To demonstrate the effects of this let us examine two of the loops in more detail.
An examination of the execution of LLL6 reveals that only the final processing
element is required to perform the majority of the loop calculation. This is due to
a tight recurrence relation found in the loop equation. In the VLIW machine all
functional units are forced to sit idle in the loop body until the aggregate machine
completes calculation of the loop. In the MISC, approach, the three processing
elements not involved in the recurrence calculation are free to continue executing
subsequent code.

If we now assume that LLL11 follows the execution of LLL6, we can determine
the different stagger rates on exit from LLL6 and reschedule LLL11 to take advan-
tage of the free processing elements. Table 5.4 shows the result of this rescheduling
(done at compile time) and compares it to the idealized VLIW architecture. As
seen in the table, the ability to overlap execution of the loops allows the MI1SC,
processor to perform both loops in the time required by the VLIW architecture to
perform the first alone.

This result demonstrates the advantage that the multiple instruction stream
attains across basic blocks. Since each PE enters and leaves any block of code in
a manner that is asynchronous with respect to the other PEs, it enables the lead
PE to continue with later processing before the trailing PEs complete the earlier
computation. This means that the high latency communication originating from

Chapter 5: Performance of the MISC Architecture

Table 5.4: LLL Comparison: MI1SC, vs VLIW of LLL6-11
Bench PE1 | PE2 | PE3 | PE4 | MIPS | VLIW | Improve | Improve
LLL6 0 997 | 1995 | 4982 | 4982 | 4984 o0 1.00
LLLI11 999 | 1000 | 2003 | O 2003 | 2004 o0 1.00
LLL6-11 || 999 | 1997 | 3998 | 4982 | 4982 | 6988 6.99 1.40

67

the lead PE and destined for trailing PEs is not only amortized within a block of
code, but also throughout a function or program; once the lead PE gets ahead, it
stays ahead even through artificial boundaries (like a basic block).

5.2 Evaluating MIS5C; Performance on Complex
Applications

In this section some performance characteristics of the M1SC} processor will be
compared to both a scalar and a superscalar design. Various components will be
evaluated, including the affects of various load balancing mechanisms, the affect of
load latency and the memory organization.

The simulation environment used in this study differs slightly from that used in
the previous section in that complete runs of the SPECint and scientific applications
(described in chapter 4, Table 4.1) are simulated, including all library routines.

5.2.1 Simulation Environment

In order to execute large applications on a new architecture, such as MISC, the
standard C library (as well as several others) must be compiled and system support
included in the simulator. This is a significant task for a new architecture which has
only a compiler and assembler and no operating system. An alternate approach is
to perform a detailed simulation of the architectural features within the framework
of an existing architecture. This second alternative was chosen for this study and
the Alpha processor [58] was selected as the simulation platform. The behavioral
simulation of MISC instructions has been incorporated into the ATOM [59] analysis
tool set; Alpha binaries are now executed, but behave as if they were running on
a M1SC, system. Using this approach also requires that portions of the compiler
(e.g. code partitioning) be incorporated into the ATOM simulator. This was done
as follows:

1. Compile the benchmark applications for an Alpha system, generating an Al-
pha object file.

Chapter 5: Performance of the MISC Architecture 68

2. Link the object file(s) with the standard library and any other required li-
braries generating an executable version of the program.

3. Translate the executable into an Intermediate Representation (IR) that can
be processed by those components of the MISC compiler responsible for code
partitioning and load balancing.

4. Annotate the IR with information about the M I SC) schedule and the original
executable instructions.

5. Simulate the execution of the program under ATOM simulating the data and
control flow for the MISC, processor using the annotations. This entails
incorporating most of the MISC simulator into an ATOM application to de-
termine the event timing during the execution.

6. Gather the simulated performance measurements for analysis.

5.2.2 Caveats

There are a number of limitations to this method of analysis. Register allocation
cannot be performed, so the large number of registers available in the MISC archi-
tecture cannot be exploited. This will limit the aggressiveness of the optimizing
transformations (at least those that trade increased register use for a scheduled
performance gain).

A second limitation is the inability of the simulator to provide accurate instruc-
tion cache behavior. Therefore, for the purpose of this study the instruction cache
is assumed to contain all necessary instruction data (i.e. the ICache access always
hits). This is unlikely to affect the results significantly because a relative compari-
son is being made, and each processor simulated will assume the same instruction
cache configuration.

Finally, the data cache will process references in the order that would be seen
in the original Alpha execution. While this will yield a valid MI1SC, reference
permutation, it will not simulate the asynchronous behavior of the MISC memory
design. However, the M1SC, UCache is modeled so references can be re-ordered
during simulation, resulting in reasonable cache performance even if the original
ordering in the Alpha schedule is poor. ICache access time is 1 cycle for all MISC
and Alpha configurations. UCache and Alpha Data Cache access times are assumed
to be 3 cycles while memory latency is 100 cycles. The UCache and Alpha Data
Cache are configured as 64Kbyte 4way interleaved caches with 128 byte direct
mapped lines. The operational latencies used in the simulations are shown in Table
5.5.

Chapter 5: Performance of the MISC Architecture

Table 5.5: Operational Latencies

[Cache hit 1 cycle
ICache miss not simulated
UCache hit 3 cycles
Memory load 100 cycles
Integer Add 1

Int Mult 4
Branch 1

69

5.3 Hiding Memory Latency

The latency of memory is increasing relative to CPU speed and will continue to do so
for the foreseeable future. Larger cache structures can help alleviate this problem to
some extent, but processor designs capable of tolerating high memory latencies will
eventually be required. If we examine the latency tolerance of a superscalar design
without a cache, we see that any performance gains due to increased instruction
processing capability are overshadowed by memory stalls.

Table 5.6 shows the ability of each of the four previously described partitioning
strategies to hide memory latency using inter-PE transfers in the integer SPEC
benchmark applications. The percent of total memory latency is shown in each
cell; total memory latency is calculated by accumulating the latency for all memory
load operations (between the access request and the placement of the data into the
MQ of one or more of the destination PEs). Latency figures are shown for both
intra-PE and inter-PE memory requests. The third column shows the percent of
memory latency comes from memory loads which originate and are destined for PE1
. Intra-PE latency will slow the application down while the data is retrieved; ideally,
inter-PE latency should not affect overall performance. Results are shown for each
benchmark application (identified in column one) using each of the partitioning
strategies discussed previously in chapter 4 (identified in column two).

Chapter 5: Performance of the MISC Architecture

Table 5.6: Hiding latency using inter-PE queues for SPECint benchmarks

Program | Partition | Latency | Latency | Latency | Latency | Inter-PE
Strategy || in PE1| in PE2 | in PE3 | in PE4 | Latency

compress DAE 78 0 0 0 22
Control 63 4 0 0 33

Group 63 4 0 0 33

Memory 41 8 2 0 49

eqntott DAE 100 0 0 0 0
Control 100 0 0 0 0

Group 81 5 0 0 14

Memory 67 3 0 0 30

espresso DAE 100 0 0 0 0
Control 100 0 0 0 0

Group 43 12 0 0 45

Memory 27 21 0 0 52

gce DAE 74 6 0 0 20
Control 66 14 0 0 20

Group 66 14 0 0 20

Memory 35 22 0 0 43

xlisp DAE 88 0 0 0 12
Control 88 0 0 0 12

Group 53 10 0 0 27

Memory 42 6 8 0 44

sc¢ DAE 73 1 0 0 26
Control 67 9 0 0 24

Group 67 9 0 0 24

Memory 50 2 10 0 38

70

Chapter 5: Performance of the MISC Architecture 71

The table shows that much of the memory latency cannot be hidden between
PEs (shown in fifth column) but resides in the lead PE for most strategies. The DAE
strategy has little opportunity to hide much of the latency since the vast majority
of instructions must be located on PE1. The Control strategy and Group strategy
results show some improvement by reducing the burden on PE1 — particularly
the ability to move the branch calculation of some short forward branches (usually
generated by IF-THEN-ELSE statements) from PE1 to other PEs. The ability
to hide the latency of memory operations is still limited by the inability of the
compiler to guarantee that different memory operations (LAQ/SAQ instructions)
do not conflict. The Memory Partitioning Strategy shows that when memory access
requests are allowed to be distributed between PEs, much of the latency can be
hidden in the inter-PE queues.

Table 5.7 presents the memory latency results for the set of scientific applica-
tions. These applications show that a much greater percentage of memory opera-
tions can be subsumed in inter-PE queues. This is primarily due to the use of less
abstract data types; simple array references dominate as opposed to the trees and
linked-lists in the SPECint applications.

Table 5.7: Hiding latency via inter-PE queues for scientific benchmarks
Program | Partition | Latency | Latency | Latency | Latency | Inter-PE
Strategy || in PE1| in PE2 | in PE3 | in PE4 | Latency

povray DAE 75 0 0 0 25
Control 75 0 0 0 25

Group 35 19 0 0 46

Memory 35 19 0 0 46

sobel DAE 40 0 0 0 60
Control 19 0 0 0 81

Group 8 0 0 0 92

Memory 8 0 0 0 92

ear DAE 88 0 0 0 12
Control 76 6 0 0 18

Group 52 10 7 0 31

Memory 40 9 7 0 44

KMP DAE 62 0 0 0 38
Control 32 0 0 0 68

Group 8 9 3 0 80

Memory 8 9 3 0 80

Separating memory access operations improves the partitioning of the code
enough to allow a majority of the memory latency to

be hidden in two of the

Chapter 5: Performance of the MISC Architecture 72

applications. Another type of application, as seen in the espresso benchmark, ben-
efits from removing the restriction on partitioning branch operations. Unlike the
SPECint benchmarks, little additional improvement is found when employing the
Memory partitioning strategy — these applications do not require sophisticated
pointer analysis to determine whether memory conflicts may occur between access
instructions.

The results for the scientific codes agree with those of the integer benchmarks,
showing that the most restrictive partitioning strategies are only able to hide a
small percentage of high latency memory operations between processing elements;
the exception to this is the sobel benchmark, in which execution time is dominated
by a simple loop with no intra-loop control flow.

5.4 Execution Performance

The final test of MISC performance is to examine total execution time compared to
existing architectures. It should be noted that the SPECint benchmarks represents
the worst case for decoupled design with their heavy instruction interdependence.
Three different configurations of the Alpha architecture are compared to two and
four PE versions of the MISC processor, MISC,; and MI1SCy respectively. The
Alpha was selected because it is a simple superscalar design that is available in two
and four issue implementations. Each Alpha implementation performs in-order
instruction issue and can issue one, two or four instructions during each cycle as
long as all dependencies can be resolved at instruction issue. These configuration are
labeled Alpha,, Alphas and Alphay respectively. This models several hypothetical
implementations that are less restrictive than current Alpha 21064 [58] or 21164
[60] implementations. Both the Alpha designs and the MISC design use a two
level cache and a 50 cycle access time to main memory. Table 5.8 shows the total
execution time of the MISC system relative to the scalar Alpha; system.

Chapter 5: Performance of the MISC Architecture 73

Table 5.8: Relative execution time for scalar, superscalar and MISC designs for

SPECint benchmarks

Program | Partition Alpha, Alphas Alphay | MISCy | MISCy
Strategy | Processor | Processor | Processor | System | System

compress DAE 1.11 1.11
Control 1.29 1.29

Group 1.31 1.31

Memory 1.00 1.54 1.95 1.52 1.93

eqntott DAE 1.00 1.00
Control 1.00 1.00

Group 1.13 1.13

Memory 1.00 1.71 2.01 1.64 1.78

espresso DAE 1.00 1.00
Control 1.00 1.00

Group 1.50 1.72

Memory 1.00 1.34 2.43 1.89 2.12

gce DAE 1.21 1.21
Control 1.28 1.31

Group 1.28 1.31

Memory 1.00 1.56 1.98 1.64 1.92

xlisp DAE 1.16 1.16
Control 1.20 1.20

Group 1.45 1.67

Memory 1.00 1.39 1.92 2.05 2.48

sc DAE 1.23 1.23
Control 1.34 1.34

Group 1.37 1.45

Memory 1.00 1.49 1.84 1.46 1.75

Chapter 5: Performance of the MISC Architecture 74

The results show that with enough memory aliasing, the performance of a de-
coupled machine is similar to the performance of a simple superscalar design with
the same issue width. In some cases, the ability to hide memory latency allowed
further improvements.

Table 5.9 shows the total execution time for each of the scientific applications.
The results for these applications differ significantly from those of the SPECint
benchmarks. In three of the applications, both two-issue and four-issue versions of
the MISC architecture are able to exploit more parallelism than the corresponding
superscalar architectures. This is due to the ability of the ACCESS PEs in a
decoupled design to continue initiating further requests to the cache when an in-
order superscalar design would block soon after a cache miss. This is most clearly
seen in the KMP application where the MISC system achieves twice the ILP of the
corresponding superscalar approach.

Table 5.9: Relative execution time for scalar, superscalar and MISC designs for
scientific benchmarks

Program | Partition Alpha, Alphas Alphay | MISCy | MISCy
Strategy | Processor | Processor | Processor | System | System

povray DAE 1.21 1.21
Control 1.21 1.21

Group 1.83 2.54

Memory 1.00 1.72 2.21 1.83 2.54

sobel DAE 2.11 2.11
Control 2.41 2.73

Group 2.76 3.04

Memory 1.00 1.72 2.20 2.76 3.04

ear DAE 1.13 1.13
Control 1.27 1.27

Group 1.32 1.65

Memory 1.00 1.75 2.07 1.62 1.92

KMP DAE 1.42 1.42
Control 1.73 1.73

Group 3.14 3.91

Memory 1.00 1.52 1.83 3.14 3.91

5.5 Summary

Two distinct experiments were performed in this chapter: the evaluation of the lim-
its of the MISC design in exploiting parallelism for highly parallelizable loop kernels,

Chapter 5: Performance of the MISC Architecture 75

and an evaluation of the ability of both the architecture and the MISC compiler to
identify and exploit the parallelism available in a broader class of applications.

The Livermore Loop kernels were used in the first experiment and showed that
the MISC design is capable of extracting the same level of parallelism as an ideal-
ized VLIW implementation, with the added benefit of a more dynamic instruction
execution around loop boundaries. Overall the MISC design not only achieved
the same level of performance on individual kernels, but allowed for an overlap of
execution when multiple kernels were scheduled to run in sequence.

The second set of experiments involved more general applications comprised
of programs from the SPEC92 benchmark suite as well as a few additional appli-
cations from a variety of scientific domains. These results show that the ability
of a decoupled design to identify and exploit the available parallelism depends on
the code partitioning strategy of the compiler; a restrictive partitioning algorithm,
such as the DAE strategy, does not allow for sufficient flexibility in the instruc-
tion schedule to exploit the parallelism available in the application. More flexible
partitioning strategies do allow for efficient exploitation of parallelism achieving
better performance to that of comparable superscalar designs. We intend to extend
this analysis to compare a modified version of MISC with the more aggressively
scheduled superscalar designs that are becoming more common.

The ability to hide memory latency between asynchronous processing elements
was also studied. Again, when the compiler implemented a sufficiently flexible
partitioning strategy, the architecture was capable of hiding much of the memory
latency.

Chapter 6: Improving Memory Performance 76

Chapter 6

Improving Memory Performance

In the previous chapters, the MISC architecture and compiler model were described
and evaluated. The performance of the system has been shown to be quite good
when compared to similarly configured superscalar designs. However, in order for
any application to be able to achieve a high level of performance, the memory system
must be capable of supporting multiple references each cycle. The MISC design
provides unique opportunities for constructing a very high performance memory
system; the use of decoupled memory access instructions and memory buffers per-
mits more requests to be sent to the memory system per cycle. By providing more
outstanding memory requests, the MISC cache can potentially improve the ordering
of requests to maximize throughput.

This chapter measures some performance characteristics of a cache design sup-
porting several of the features present in the MISC UCache. While the MISC
UCache is used throughout this analysis, the results are equally applicable to
any high performance processor design capable of supporting multiple outstand-
ing memory requests.

6.1 Performance of the Cache

As described previously, the ability to handle multiple references during each cycle
is necessary in order to expand the amount of instruction level parallelism that can
be exploited by a processor. However, the design of a cache capable of supporting
multiple references can pose a considerable challenge to the hardware engineers.
Several alternative implementations are possible; one approach is to duplicate re-
sources (as done in the register file). A multi-ported register file trades silicon
area for the ability to handle multiple references per cycle, and is used because of
the relatively small number of registers that exist in most CPU implementations.
However, using the same tradeoff for a cache design is problematic. The number of
elements assigned to the cache unit usually dwarfs that of the register file to begin
with, so duplicating structures would result in a potentially unacceptable increase

Chapter 6: Improving Memory Performance 7

in transistor requirements (or an equally unacceptable decrease in cache size). This
section explores some of the features of the MISC UCache approach that allows it
to maintain the level of performance of a true multi-ported design using a simplified
cache implementation which removes the need to duplicate cache memory.

While the design of the UCache is heavily influenced by the decoupled nature
of the MISC architecture, some of the features found in this cache are equally
applicable to many of the recent aggressive superscalar designs. The MIPS R10000
[63], in particular, implements a two-way interleaved cache similar to the MISC
interleaved UCache and should benefit from the reordering [61] and combining
[62] capabilities in the MISC design. The remainder of this section analyzes the
performance of a MISC UCache-type design and compares it to a conventional
multi-ported approach.

6.1.1 Experimental Configuration

To analyze the performance potential of various multiple access cache organizations,
six cache models were examined, ranging from an interleaved model which is easy to
implement to a fully multi-ported design capable of processing multiple references
without restriction. The six configurations are:

1. I a four-way interleaved cache ! consisting of four 16K byte direct mapped
caches. (I)

2. IR: a four-way interleaved cache with a reorder buffer on each address buffer.
Each bank consists of a 16K byte direct mapped cache. (I + reorder)

3. IC: a four-way interleaved cache with combining support. Each bank consists
of a 16K byte direct mapped cache. (I + combining)

4. IRC: a four-way interleaved cache with a reorder buffer and combining sup-
port. Each bank consists of a 16K byte direct mapped cache. (I 4+ reorder
4+ combining)

5. MP: a four-ported, 64K byte direct mapped cache. (MP)

6. MPR: a four-ported, 64K byte direct mapped cache with a reorder buffer.
(MP + reorder)

These configurations have been chosen to see how well reordering and combining
can be incorporated into an interleaved and/or multi-ported configuration, and how
the performance of these configurations matches that of a conventional multi-ported
cache.

IThe bits of the effective address that are adjacent to those of the cache lines selector are used
to select the cache bank.

Chapter 6: Improving Memory Performance 78

An external memory access cost of 50 clock cycles (on a cache miss) is sim-
ulated. It is further assumed that sufficient bandwidth between the cache and
external memory is available to guarantee that delays due to insufficient band-
width will not occur. True dependencies in the application program may still limit
the number of memory operations which may be outstanding at any cycle, since
some of these applications simply do not have sufficient parallelism to fully exercise
a high performance cache. An extreme example of this is found in the linked list
example in chapter 4, in which it was impossible to perform memory fetch opera-
tions from different iterations due to the dependency between the value loaded in
one iteration and the effective address calculation in the next iteration.

6.1.2 Reordering Memory Requests

Reordering of memory operations is possible when the order of the requests does
not affect the values calculated during execution. This is easily determined in a
sequential application by examining the effective addresses of the requests; if two
references do not refer to the same location, then the order in which the cache
processes these requests is not important to the correct execution of the program.
Reordering memory requests allows memory load operations to bypass stores al-
lowing the latency of the load operation (critical to the system performance) to
be reduced. It is also often advantageous to allow loads to bypass each other, and
since no memory state modification occurs with a load operation, no conflict test is
necessary. Finally, it may be useful to allow stores to bypass each other; this occurs
when the interleaved cache cannot process the first store because of a bank conflict
with an earlier reference, but a later store maps to a free cache bank. By allowing
the store operations to be reordered, multiple cache accesses can be supported.

Reordering of requests can also improve the performance of an interleaved cache
by reducing the likelihood of bank conflicts. This is particularly important because
locality in the reference pattern increases the probability that consecutive references
will map to the same cache bank. Figure 6.1 shows the probability of a bank conflict
between consecutive cache references in a four-way interleaved cache design. Each
column in the figure shows the probabilities for a different SPEC application. The
columns are separated into four segments, corresponding to the four banks in the
cache. The lowest segment (same bank entry) shows the probability that for any
reference the immediate successor will map to the same bank (causing a conflict).
The other three segments show the probability that the immediate successor maps
to each of the other banks in the cache.

If the reference steam contains independent (and random) references, the prob-
ability for each of the four segments should be evenly distributed (25 percent each).
However, most applications show a skewed probability towards bank conflicts —
averaging 38 percent across all applications and as much as 50 percent in the com-
press benchmark. This clearly limits the effectiveness of an interleaved approach

Figure 6.1: Relative distribution of cache bank references

when no reordering logic is provided.

The technique of reordering memory operations has been explored by Smith [9]
and has more recently been implemented in the R10000 processor. These designs
show a significant improvement in cache performance, especially when cache misses
can be bypassed (a technique referred to as a NON-blocking cache design [64]).
The performance impact of reordering references is a function of the number of
outstanding requests, the restrictions on cache access (bank selection policy) and
the nature of memory requests in the application. The effectiveness of reordering
logic is improved when there are more outstanding memory requests. Decoupled
architectures are designed to maximize the number of outstanding memory request
by placing the requests on an ACCESS processor that runs ahead of the use of the
data. This improves the effectiveness of the reorder buffer.

Figure 6.2 shows the effects of reordering on a bank selected cache for the integer
benchmark applications described in Table 4.1. Four of the previously described
configurations are included (I, IR, MP, MPR); the configurations employing com-
bining logic will be examined in the next section. The average access rate for each

Memory Operations per cycle

Chapter 6: Improving Memory Performance 80

configuration was measured across all benchmark applications ?. The vertical axis
shows the average number of references that can be processed by the cache in each
cycle. The horizontal axis shows the affect of scaling the size of the reorder buffer
on the access rate. Reorder buffer size ranges from 4 to 16 entries.

35

2.5 1

N
. @

.

=
o

1 L L L i i i i i i L L
——MPR
——IR

0.5

——MP
-

0

4 5 6 7 8 9 10 11 12 13 14 15

Queue length

Figure 6.2: MISC Cache: Effects of Queue Length

It can be seen from the figure that no configuration initially approaches the max-
imum possible reference per cycle rating of the cache (4 references per cycle). Two
effects limit the ability to locate additional independent references; miss processing
and interdependence between load instructions. When several cache misses occur,
the reorder queue fills up with those requests that are being processed through ex-
ternal memory. This limits the number of available outstanding memory requests

2Each benchmark application was weighed equally in determining the average so that bench-
marks with a longer reference stream did not dominate the average.

Chapter 6: Improving Memory Performance 81

to those that can fit in the remaining (free) queue entries. With a 50 cycle latency
to retrieve data on a cache miss, it is likely that most (and occasionally all) of the
reorder slots will be filled with unprocessed cache misses. The figure shows that a
reorder buffer of length four provides a 60% improvement in cache throughput for
both interleaved and multi-ported configurations.

As the queue size is increased, sufficient queue entries exist to store numerous
cache misses while retaining enough free entries to processes later requests. This
allows the throughput of an interleaved cache with a reorder buffer to approach
that of a multi-ported design with reordering. When the queue size reaches sixteen
entries, both the multi-ported and interleaved approach (with reordering logic)
achieve an average throughput of three references per cycle. These results show
that very little performance penalty is paid for switching from a true multi-ported
design to an interleaved design when aggressive reordering is performed and queue
sizes are sufficiently large.

6.1.3 Combining Memory Requests

In addition to reordering, the cache access rate can be increased by using a technique
called reference combining. Combining is a technique concurrently developed by
Wilson, Olokotun and Rosenblum [62] and Austin and Sohi [65], which attempts
to combine references to the same cache line into a single request.

Combining focuses cache resources on areas in the design that can benefit from
spatial locality and works as follows: Accessing a storage element in a conventional
cache can be thought of as indexing into a two dimensional matrix using the line
selector and line offset fields of the effective address. Combining incorporates ad-
ditional logic in the request buffer (reorder buffer), along with limited cache line
multi-porting, to improve access throughput 3. However, combining logic applied
to an interleaved approach enables multiple references to the same cache line to be
translated into a single cache line request with multiple line offsets. This allows
multiple references to the same line while requiring only a single multi-ported line
be included in the implementation.

This can be accomplished by placing the cache line into a temporary storage
buffer (associated with each cache bank) which is capable of supporting multiple
line offset requests. Duplicating memory cells in a single line buffer per cache bank
does not increase the circuit size significantly and if enough spatial locality exists
in the application, the performance of a single ported line access with a multi-
ported line offset calculation should approach the performance of a true multi-
ported cache design. Furthermore, when combining is implemented in each bank
of an interleaved cache, the optimal throughput can be increased significantly; in
a four-way interleaved cache with two-ported combining logic on each bank, up to

3Recall that a multi-ported cache allows more than one request to be processed regardless of
the relationship between the addresses involved.

Figure 6.3: Relative distribution of cache line/bank references

The effects of combining on cache performance can be seen with and with-
out reordering in Figure 6.4. Combining without reordering provides a small im-
provement over the interleaved cache with neither reordering nor combining. This
improvement comes from the capture of those same line references that exhibit

Chapter 6: Improving Memory Performance 83

spatial locality. When the reorder buffer is included, combining does not need to
be restricted to consecutive references, but can be applied to any reference in the
re-order buffer. Very little additional complexity is required to perform combining
throughout the re-order buffer — the comparison circuit already exists to determine
whether a memory conflict occurs. Figure 6.4 shows the result of incorporating re-
ordering and combining with an interleaved cache design. When a reorder buffer
is included the throughput immediately increases, and then as buffer queue size
increases throughput approaches that of a similarly configured multi-ported cache.
Adding combining to the reorder buffer makes the performance curve of the inter-
leaved cache design match that of a multi-ported design even for relatively small
reorder buffers.

35

3
2.5 A
a
%) L
<
S 2
T
[
o
o
>
S15
£ N
5 & & & & & & & & & & &
=
1 L L L i i i i i i L L I
——MPR
——IR
0.5
——MP
-
0
4 5 6 7 8 9 10 11 12 13 14 15 16

Queue length

Figure 6.4: MISC Cache: Effects of Combining Requests

Chapter 6: Improving Memory Performance 84

6.2 Summary

The MISC cache is a high throughput cache capable of supporting memory access
requests from a set of cooperating processing elements. This design combines an ef-
ficient pipelined, interleaved cache with an aggressive reorder and combining buffer
to achieve cache throughput performance approximating that of a high-performance
multi-ported configuration.

This new cache structure combines the scalability of an interleaved cache with
a mechanism to overcome the limitations of utilizing an interleaved approach. This
study showed that when memory operations can be reordered, the performance
of an interleaved design can approach that of a multi-ported design once the size
of the buffer exceeds some threshold. Including combining logic enables multiple
references to the same cache line to be merged into a single request, which has
the affect of further improving the performance of the more restrictive interleaved
approach. With the inclusion of a small reorder buffer, a simple interleaved cache
design can match the performance of the more complex multi-ported cache. Both
reorder buffers and combining logic can be incorporated into the cache design in-
dependent of the processor model; this design applies equally well to superscalar or
VLIW architectures as it does to MISC.

Chapter 7: Conclusions 85

Chapter 7

Conclusions

This research was originally motivated by the desire to examine the feasibility of
exploiting instruction level parallelism in a scalable decoupled design. At the start
of the project it was not clear whether a multiple instruction stream architecture
would be capable of executing very tightly coupled applications without requiring
complex architectural and compiler support. Previous approaches using a decoupled
mechanism showed great promise in reducing the effects of high memory latency in a
set of well structured scientific applications; however, general purpose, integer based
applications were not studied. This dissertation explored the use of a decoupled
processor design in executing a more general set of applications.
Contributions of this dissertation include:

e Development of a scalable decoupled processor capable of partitioning a task
across multiple processing elements and exploiting instruction level paral-
lelism. The results showed that near optimal performance can be achieved
for the class of applications that were originally targeted by decoupled designs.

e Development of a Compiler Model to Support the Architecture to study the
ability to partition more general applications across processing elements. This
study showed that when modest levels of parallelism exist and can be exploited
with a decoupled design, the unrestricted use of pointer variables severely
limits the performance gains that can be made while guaranteeing program
correctness. This study was limited by the unidirectional dependence flow
designed into the compiler and the methods used to measure it. Further
study of compilation techniques is warranted.

e Development of a Unique Cache System to Improve Memory Performance.
The structure of the MISC cache incorporates several unique features to im-
prove the ability of the cache to process a high rate of memory requests per
cycle. A decoupled reorder buffer enables better utilization of simple inter-
leaved cache design by reducing the effects of bank conflicts through a dy-
namic scheduling of memory requests.. Combining is also included to further

Chapter 7: Conclusions 86

improve the performance of the cache by exploiting cache line locality in a
single multi-ported lines associated with each cache bank. These two features
enable a simple interleaved cache design to achieve performance comparable
to high performance multi-ported cache designs.

7.1 Future Directions

The research performed in this dissertation can be extended in a variety of ways.
Improvements can be made to both the hardware and compiler aspects of the work
discussed in the previous chapters. In this section, I propose modifications that can
be made to the MISC design to better exploit instruction level parallelism. At the
same time, capabilities inherent in the MISC design that can be incorporated into
more conventional, single instruction stream architectures are discussed.

7.1.1 Hybrid Decoupled /Superscalar Design

The MISC architecture is capable of exploiting instruction level parallelism by
separating the code into multiple, single-issue instruction streams; however, each
of these instruction streams may contain additional ILP. An obvious extension to
the MISC design is to implement each MISC processing element as a multiple issue
processor. This allows the very tightly coupled execution characteristics found in
superscalar design to be exploited, while at the same time allowing better scalability
because of the more distributed resource allocation used in the decoupled design.
Using this approach, for example, it is possible to construct a 16 issue architecture
by incorporating four processing elements, each capable of issuing four instructions
per cycle.

The partitioning results described in chapter 4 suggest that a non-homogeneous
approach to designing the processing elements could potentially achieve even greater
levels of ILP by matching the resources of each PE with the expected computa-
tional demand. The lead PE often executes the greatest number of instructions.
This suggests that resources should be allocated to increasing the scalarity of the
lead processor '. Future research should focus on the relationship between the parti-
tioning strategy in the compiler and the resource partitioning among the processing
elements; however, design time benefits may favor a homogeneous approach.

7.1.2 Compiler Development

The MISC compiler was implemented by modifying the vpce compiler to support
the code partitioning strategies (and other components) described in this disserta-

!The term scalarity has recently been adopted to identify the width of a superscalar design;
a superscalar processor capable of executing up to three instructions per cycle is said to have a
scalarity of three.

Chapter 7: Conclusions 87

tion. The vpce compiler was the best choice at the start of the project and provided
adequate functionality to demonstrate the capabilities of the partitioning required
to generate code for the MISC design. However, vpce lacks certain features which
would provide more optimal results. First, vpcc lacks the capability to perform
the memory alias analysis necessary to achieve the improved partitioning shown in
the Memory Partitioning strategy. Another deficiency (in terms of this research)
is that vpcc is not in the public domain; this severely limits the ability to freely
distribute the MISC compiler.

Since the initiation of the MISC compiler project, Stanford University has made
a public release of the SUIF compiler. This compiler can be freely modified and
re-distributed, requiring only the retention of the copyright notice. Furthermore,
the SUIF compiler is designed to exploit both instruction level and data parallelism
by performing sophisticated pointer analysis. These features make it a better base
compiler for further development of the ideas presented in chapter 4. Changing
compiler platforms is a difficult task for an architecture as complex as MISC, but
necessary to continue the investigation of the limits to the MISC design and to
enable the compiler to be released to other researchers.

7.1.3 Incorporating Register Queues in Superscalar Designs

One aspect of the MISC design that can be directly incorporated in standard archi-
tectures is the use of register queues. The use of register queues allow the compiler
to schedule more registers than are available using the relatively few operand spec-
ification bits allocated to operand addressing, enabling the compiler to trade high
register pressure for better instruction schedules.

In order to incorporate the ideas in this dissertation in existing designs it is
necessary to make any modifications of the instruction set architecture as non-
invasive as possible. Complete transparency is the obvious goal, but where that
cannot be achieved, the simplicity of translating existing binaries is needed. Much
the same problem was faced by Intel when it added floating point operations to the
x86 line of microprocessors.

When the 8086 processor was originally developed to replace the 8080, floating
point support was not included in the instruction set. As the processor gained in
popularity, floating point capability had to be added to the ISA. Unfortunately
there were not enough bits left in the format to support a conventional register
operand addressing mode, so a mechanism had to be developed to specify the
source and destination of an operation in fewer bits. This lead to the development
of the floating point register stack. Most x86 floating point operations take the
top two values off the register stack and place the result back on the stack. The
successful inclusion of the floating point stack in the x86 demonstrates the circuit
design does not pose significant implementation difficulties in the processor design.
Fundamentally there is no difference between the design of a register file supporting

Chapter 7: Conclusions 88

stack access and one supporting queue access.

This demonstrates a way to incorporate a queuing discipline on top of a single
register specifier (e.g. R1) without requiring drastic changes in the instruction
set or the circuit design. For example, the implementation of the queue register
semantics on an existing instruction set can be achieved without effecting previous
code by overloading the semantics of an existing register and using a mode bit (as
used in the real /segmented x86 address calculations) to activate the queue feature
or by modifying the operating system to perform load time register reallocation for
those existing binaries.

7.1.4 Prefetch Co-processor

Decoupled architectures offer a complementary approach to cache structures in
reducing the effects of slow main memory. These architectures work well for ap-
plications with a well structured access pattern, whereas caches work well with
applications that display locality of reference. Currently, researchers are exploring
methods to achieve better cache performance by prefetching those items with little
locality, but with a pattern of reference that can be captured by the insertion of
specialized instructions by the compiler. This is exactly what decoupled designs do
well. It is difficult to balance the load of instructions across multiple processing el-
ements in applications with complex, intertwined data dependencies; this prevents
a large speedup in execution. By changing the function of the access processor to
that of a prefetch co-processor for a conventional superscalar architecture, the need
to incorporate every dependence that affects memory access is removed. Because of
the transparent nature of the cache, incorrect prefetches will result in slower (but
still correct) program execution. Recent studies have shown that a variety of hard-
ware feedback mechanisms can provide information allowing speculative prefetch
hardware to improve overall cache performance [66]. The inclusion of an equally
transparent prefetch co-processor decoupled from the execution of the main pro-
cessor, yet with the assistance of hardware feedback, opens a new area of research.

This approach has a number of advantages. The transparent nature of the cache
allows the inclusion of a co-processor to help in cache management regardless of
the architectural specification of the system. Old programs can run without mod-
ification, yet statistics can be gathered and the prefetch co-processor code can be
generated in order to improve performance. The decision on whether to incorporate
the prefetch code can be made at any time for any set of applications. There is
no need to modify the architecture of the existing processor to improve cache per-
formance. Why make a modification which is visible to the processor architecture
to improve performance of a cache unit that is supposed to be transparent? It is
better to incorporate a transparent controller (a decoupled processor) to manage
that resource.

Chapter 7: Conclusions 89

7.1.5 Epilog

The MISC architecture presented in this dissertation demonstrates the feasibility
of using a decentralized processor design to exploit a level of parallelism previ-
ously relegated to highly centralized processor designs. Furthermore, some features
inherent in the MISC design can be easily incorporated into more conventional
single-instruction stream approaches. This work suggests a number of new areas
for research in finding scalable methods to exploit instruction level parallelism. The
extensions to the MISC design discussed in the future work section highlight a few
of these new research areas.

Bibliography

90

Bibliography

1]

Brian Moore, Andris Padegs, Ron Smith and Werner Buchholz,
Concepts of the System /370 Vector Architecture, Proceedings of the

14th Annual International Symposium on Computer Architecture,
(1987) 282-288.

Mehrad Yasrebi and G. J. Lipovski, A State-of-the-Art SIMD Two-
Dimensional FFT Array Processor, Proceedings of the 11th Annual
International Symposium on Computer Architecture, (1984) 21-27.

Toshio Kondom, Toshio Tsuchiya, Yoshihiro Kitamura, Yoshi
Sugiyama, Takashi Kimura and Takayoshi Nakashima, Pseudo
MIMD Array Processor AAP2, Proceedings of the 13th Annual
International Symposium on Computer Architecture, (1986) 330-
337.

Guang R. Gao, Lubomir Bic and Jean-Luc Gaudiot, Advanced Top-
ics in Dataflow Computing and Multithreading, IEEE Computer
Society Press, (1995).

B. Ramakrishna Rau and Christopher D. Glaeser, Some Schedul-
ing Techniques and an Easily Schedulable Horizontal Architecture

for High Performance Scientific Computing, Proceedings of the 14th
Annual Workshop on Microprogramming (1981) 183-198.

Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Ken Mackenzie
and Donald Yeung, The MIT Alewife Machine: Architecture and
Performance, Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, (1995) 2-13.

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis
Stevens, Anoop Gupta and John Hennessy, The DASH Prototype:
Implementation and Performance, Proceedings of the 19th Annual
Symposium on Computer Architecture, (1992) 92-103.

Bibliography

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

91

Steven Reinhardt, Mark Hill, James Larus, Alvin Lebeck, James
Lewis and David Wood, The Wisconsin Wind Tunnel: Virtual Pro-
totyping of Parallel Computers, Proceedings of the 1993 ACM Sig-
metrics Conference on Measurement and Modeling of Computer Sys-
tems, (1993) 48-60.

James E. Smith, Decoupled Access/Execute Computer Architec-
tures, Proceedings of the 9th Annual International Symposium on
Computer Architecture, (1982) 112-119.

Matthew Farrens, Gary Tyson and Andrew Pleszkun, Study of
Single-Chip Processor/Cache Organizations for Large Numbers of
Transistors, Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture, (1994) 338-347.

Gary Tyson, Matthew Farrens and Andrew R. Pleszkun, MISC:
A Multiple Instruction Stream Computer, Proceedings of the 25th
Annual Symposium and Workshop on Microprogramming and Mi-
croarchitectures, (1992) 193-196.

Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Pa-
pworth and Paul K. Rodman, A VLIW Architecture for a Trace
Scheduling Compiler, Proceedings of the Second International Con-
ference on Architectural Support for Languages and Operating Sys-
tems, (1987).

B. R. Rau, D.W.LL. Yen, W. Yen and R. A. Towle, The Cydra 5
departmental supercomputer: Design philosophies, decisions and
tradeoffs, Computer, Volume 22 (1989) 12-34.

Apollo Computers, The Series 10000 Personal Supercomputer: In-
side a New Architecture, Apollo Computers, Chelmsford, Mass.
(1988) 2-88.

IBM, Special Issue on the IBM RISC System/R6000 processor. IBM
Journal Research and Development 34-1 (1990).

Intel Corp., 1860 64-Bit Macroprocessor Programmer’s Reference
Manual, Pub. No. 270710-001, Intel Corp., Santa Clara, Calif
(1990).

James E. Smith, Decoupled access/execute computer architectures,
ACM Transactions on Computer Systems, (1984) volume 2, 289
308.

Bibliography

[18]

[19]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

92

B. Ramakrishna Rau and Joseph A. Fisher, Instruction-Level Par-
allel Processing: History, Overview and Perspective, Journal of Su-
percomputing, Volume 7-1(1993) 9-50.

James. E. Thorton, Parallel Operation in the Control Data 6600,
AFIPS Proceedings of the Spring Joint Computer Conference, part
11, 26 (1964) 33-40.

John Hennessy and David Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo, California,
(1990).

R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple
Arithmetic Units, IBM Journal 11 (1967) 25-33.

Wm. Wulf, Evaluation of the WM Architecture, Proceedings of the
19th Annual Symposium on Computer Architecture, (1992) 382-390.

Richard L. Sites, Alpha AXP Architecture, Communications of the
ACM, Volume 36-2 (1993) 33-44.

J.R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter
and H. C. Young, PIPE: a VLSI Decoupled Architecture, Proceed-
ings of the 12th Annual International Symposium on Computer Ar-
chitecture, Volume 2 (1985) 20-27.

G. L. Craig, J. R. Goodman, R. H. Katz, A. R. Pleszkun, K. Ra-
machandran, J. Sayah and J. E. Smith, PIPE: A High Performance
VLSI Processor Implementation, Journal of VLSI and Computer
Systems, (1987).

Honesty C. Young and James R. Goodman, A Simulation Study of
Architectural Data Queues and Prepare-to-Branch Instruction, Pro-
ceedings of the IEEFE International Conference on Computer Design:
VLSI in Computers, (1984) 544-549.

Matthew Farrens and Andrew Pleszkun, Implementation of the
PIPE Processor, Computer (1991) 65-70.

Honesty Cheng Young, Evaluation of a Decoupled Computer Archi-
tecture and the Design of a Vector Extension, Ph.D Thesis, Univer-
sity of Wisconsin-Madison, (1985).

R. Gupta, A Fine-grained MIMD Architecture based upon Register
Channels, Proceedings of the 23rd Annual Symposium and Workshop
on Microprogramming and Microarchitectures, (1990) 54-64.

Bibliography

[30]

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

93

A. V. Aho, R. Sethi and J. D. Ullman, Compilers Principles, Tech-
niques and Tools, Addison-Wesley Publishing, (1986).

R. Gupta, The Fuzzy Barrier: A Mechanism for High-speed Syn-
chronization of Processors, Proceedings of the Third International
Conference on Architectural Support for Programming Languages
and Operating Systems (1989).

Carlo H. Sequin and David A. Patterson, Design and Implementa-
tion of RISC1 University of California, Berkeley Technical Report
CSD-82-106 (1982).

G. S. Tjaden and M. J. Flynn, Detection and Parallel Execution of
Independent Instructions, IEEE Transactions on Computer, Volume
19-10 (1970) 889-895.

Norman P. Jouppi and David W. Wall, Available Instruction-Level
Parallelism for Superscalar and Superpipelined Machines, Proceed-
ings of the Third International Conference on Architectural Support
for Languages and Operating Systems, (1989) 272-282.

D. J. Kuck, Y. Muraoka, and S. C. Chen, On the number of oper-
ations simultaneously executable in FORTRAN-like programs and
their resulting speed-up, IEEE-TC, (1972) Vol C-21, 1293-1310.

Todd Austin and Gurindar Sohi, Dynamic Dependency Analysis of
Ordinary Programs, Proceedings of the 19th Annual International
Symposium on Computer Architecture, (1992) 342-351.

Michael Butler, Tse-Yu Yeh and Yale Patt, Single Instruction
Stream Parallelism is Greater than Two, Proceedings of the 18th

Annual International Symposium on Computer Architecture, (1991),
276-286.

M. S. Lam and R. P. Wilson, Limits of control flow on parallelism,
Proceedings of the 19th Annual International Symposium on Com-
puter Architecture, (1992) 46-58.

M. E. Benitez and J. W. Davidson, Code Generation for Stream-
ing: an Access/Execute Mechanism, Proceedings of the Fourth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, (1991) 132-141.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank and R. A. Bring-

mann, Effective Compiler Support for Predicated Execution Using

Bibliography

[41]

[42]
[43]
[44]

[45]

[47]

48]

[50]

[51]

[53]

94

the Hyperblock, Proceedings of the 25th Annual International Sym-
posium on Microarchitecture, (1992) 45-54.

M. S. Lam, Software Pipelining: An Effective Scheduling Tech-

nique for VLIW Machines, Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation,
(1988) 318-328.

SPEC CINT92 and CFLOAT92, Release V1.1, (1992)
SPEC CINT89 and CFLOATS9, Release V1.0, (1989)

POVRAY team, Persistence of Vision Ray Tracer (POV-Ray) User’s
Documentation, Version 2.0, Unpublished Document, (1993).

Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-
Hall, Englewood Cliffs, N.J., ISBN 0-13-332578-4, (1989).

Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest,
Introduction to Algorithms, The MIT Press, ISBN 0-262-03141-8,
(1990) 869-876.

F. H. McMahon, LLNL FORTRAN KERNELS: MFLOPS,

Lawrence Livermore Laboratories, (1984).

Thomas H. Cormen, Charles E Leiserson and Ronald L Rivest, In-
troduction to Algorithms, McGraw-Hill Book Company, ISBN 0-07-
0013143-0 (1990).

Gary Scott Tyson, The Effects of Predicated Execution on Branch
Prediction, Proceedings of the 27th Annual International Symposium
on Microarchitecture, (1994) 196-206.

M. Johnson, Superscalar Processor Design, Prentice-Hall, Engle-
wood Cliffs, N.J., (1991).

Matthew K. Farrens and Andrew R. Pleszkun, Strategies for Achiev-
ing Improved Processor Throughput, Proceedings of the 18th An-

nual International Symposium on Computer Architecture, (1991)
362-369.

J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter
and H. C. Young PIPE: a VLSI Decoupled Architecture, Proceedings
of the 12th Annual International Symposium on Computer Architec-
ture, (1985) 20-27.

M. S. Lam, The SUIF Interface Format, Stanford University, (1995).

Bibliography

[54]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

95

J. E. Smith, S. Weiss and Nicholas Y. Pang, A Simulation Study
of Decoupled Architecture Computers, IEEE Transactions on Com-
puters, Volume C-35-8 (1986) 692-702.

Matthew Farrens, Phil Nico and Pius Ng, A Comparison of Su-
perscalar and Decoupled Access/Execute Architectures, Proceedings
of the 26th Annual International Symposium on Microarchitecture,
(1993) 100-103.

D. Bernstein, D. Cohen, Y. Lavon and V. Rainish, Performance
Evaluation of Instruction Scheduling on the IBM RISC Sys-
tem /6000, Proceedings of the 25th Annual International Symposium
on Microarchitecture, (1992) 226-235.

B. R. Rau, M. Lee, P. P. Tirumalai and M. S. Schlansker, Register
Allocation for Software Pipelined Loops, Proceedings of the ACM

SIGPLAN 1992 Conference on Programming Language Design and
Implementation, (1992) 283-299.

Digital Equipment Corporation, Maynard, Mass. DECchip 21064
Microprocessor: Hardware Reference Manual, (1992).

Amitabh Srivastava and Alan Eustace, ATOM: A system for build-
ing customized program analysis tools, Proceedings of the ACM SIG-
PLAN 1994 Conference on Programming Language Design and Im-
plementation, (1994) 196-205.

Digital Equipment Corporation, Maynard, Mass. DECchip 21164
Microprocessor: Hardware Reference Manual.

Manoj Franklin and Gurindar Sohi, Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain Paral-
lel Processors, Proceedings of the 25th Annual International Sympo-
sium on Microarchitecture, (1992) 236-245.

Kenneth Wilson, Kunle Olokotun and Mendel Rosenblum, Increas-
ing Cache Port Efficiency for Dynamic Superscalar Microprocessors,
Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture, (1996) 147-157.

Motorola, The R10000 Reference Manual, (1996).

Keith I. Farkas and Norman P. Jouppi, Complexity/Performance
Tradeoffs with Non-Blocking Loads, Proceedings of the 21rd An-
nual International Symposium on Computer Architecture, (1994)
211-222.

Bibliography

[65]

[66]

96

Todd Austin and Gurindar Sohi, High-Bandwidth Address Trans-
lation for Multiple-Issue Processors, Proceedings of the 23rd An-

nual International Symposium on Computer Architecture, (1996)
158-167.

Tien-Fu Chen and Jean-Loup Baer, A Performance Study of Soft-
ware and Hardware Data Prefetching Schemes, Proceedings of the

21rd Annual International Symposium on Computer Architecture,
(1994) 223-232.

Appendix A: MISC' Instruction Set 97

Appendix A

MISC Instruction Set

Appendix A has been removed in this condensed version of the dissertation. MISC
instructions fall into seven categories:

Scalar Instructions:
add and fadd fmul fsub mul
or sll sra srl sub Xor

Compare and Branch Instructions:
ba bnz bz ceq cge
cgt fceq fcge fcgt

Predicate Instructions:
addp andp faddp fmulp fsubp mulp
orp sllp srap srlp subp Xorp

Vector Instructions:

addv andv faddv fmulv fsubv mulv
orv sllv srav srlv subv vloop
X0TrVv

Sentinel Instructions:

adds ands fadds fmuls fsubs muls
ors slls sloop sras srls subs
Xors

Memory Instructions:
laq laqg?2 saq laqv laqg2v saqv

Special Instructions:
cvtif cvtfi gempty qoff gon

