
Memory Bandwidth Limitations of Future Microprocessors

Doug Burger, James R. Goodman, and Alain Kägi

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

galileo@cs.wisc.edu - http://www.cs.wisc.edu/~galileo

This work is supported in part by NSF Grant CCR-9207971, an unre-
stricted grant from the Intel Research Council, an unrestricted grant from
the Apple Computer Advanced Technology Group, and equipment dona-
tions from Sun Microsystems.

A version of this paper appears in the 23rd International Symposium on Computer Architecture, May, 1996. Reprinted by permission of ACM

Copyright 1996 (c) by Association for Computing Machinery (ACM). Per-
mission to copy and distribute this document is hereby granted provided
that this notice is retained on all copies and that copies are not altered.

Abstract

This paper makes the case that pin bandwidth will be a critical
consideration for future microprocessors. We show that many of
the techniques used to tolerate growing memory latencies do so at
the expense of increased bandwidth requirements. Using a decom-
position of execution time, we show that for modern processors
that employ aggressive memory latency tolerance techniques,
wasted cycles due to insufficient bandwidth generally exceed those
due to raw memory latencies. Given the importance of maximizing
memory bandwidth, we calculateeffective pin bandwidth, then
estimate optimal effective pin bandwidth. We measure these quan-
tities by determining the amount by which both caches and mini-
mal-traffic caches filter accesses to the lower levels of the memory
hierarchy. We see that there is a gap that can exceed two orders of
magnitude between the total memory traffic generated by caches
and the minimal-traffic caches—implying that the potential exists
to increase effective pin bandwidth substantially. We decompose
this traffic gap into four factors, and show they contribute quite
differently to traffic reduction for different benchmarks. We con-
clude that, in the short term, pin bandwidth limitations will make
more complex on-chip caches cost-effective. For example, flexible
caches may allow individual applications to choose from a range
of caching policies. In the long term, we predict that off-chip
accesses will be so expensive that all system memory will reside on
one or more processor chips.

1 Introduction

The growing inability of memory systems to keep up with pro-
cessor requests has significant ramifications for the design of
microprocessors in the next decade. Technological trends have
produced a large and growing gap between CPU speeds and
DRAM speeds. The number of instructions that the processor can
issue during an access to main memory is already large. Extrapo-
lating current trends suggests that soon a processor may be able to
issue hundreds or even thousands of instructions while it fetches a
single datum into on-chip memory.

Much research has focused on reducing or tolerating these
large memory access latencies. Researchers have proposed many

techniques for reducing the frequency and impact of cache misses.
These include lockup-free caches [28, 40], cache-conscious load
scheduling [1], hardware and software prefetching [6, 7, 13, 14,
26, 32], stream buffers [24, 33], speculative loads and execution
[11, 35], and multithreading [30, 38].

It is our hypothesis that the increasing use and success of
latency-tolerance techniques will expose memory bandwidth, not
raw access latencies, as a more fundamental impediment to higher
performance. Increased latency due to bandwidth constraints will
emerge for four reasons:

1. Continuing progress in processor design will increase the
issue rate of instructions. These advances include both archi-
tectural innovation (wider issue, speculative execution, etc.)
and circuit advances (faster, denser logic).

2. To the extent that latency-tolerance techniques are successful,
they will speed up the retirement rate of instructions, thus
requiring more memory operands per unit of time.

3. Many of the latency-tolerance techniques increase the abso-
lute amount of memory traffic by fetching more data than are
needed. They also create contention in the memory system.

4. Packaging and testing costs, along with power and cooling
considerations, will increasingly affect costs—resulting in
slower, or more costly, increases in off-chip bandwidth than
in on-chip processing and memory.

The factors enumerated above will render memory band-
width—particularly pin bandwidth—a more critical and expensive
resource than it is today. Given the complex interactions between
memory latency and bandwidth, however, it is difficult to deter-
mine whether memory-related processor stalls are due to raw
memory latency or increased latency from insufficient bandwidth.
Current metrics (such as average memory access time) do not
address this issue. This paper therefore separates execution time
into three categories: processing time (which includes idle time
caused by lack of instruction-level parallelism [ILP]), memory
latency stall time, and memory bandwidth stall time.

Assuming that a growing percentage of lost cycles are due to
insufficient pin bandwidth, the performance of future systems will
increasingly be determined by (i) the rate at which the external
memory system can supply operands, and (ii) how effectively on-
chip memory can retain operands for reuse. By retaining operands,
on-chip memory (caches, registers, and other structures) can
increase effective pin bandwidth. By measuring the extent to
which on-chip memory shields the pins from processor requests,
we can determine how much computational power a given package
can support.

The miss rate provides a good estimate of traffic reduction for
simple caches. Since many techniques can trade increased traffic

for decreased latency (i.e., more cache hits), miss rate is not the
best measure of traffic reduction for more complex memory hierar-
chies. The use oftraffic ratios [18, 20]—the ratio of traffic below a
cache to the traffic above it—provides a more accurate measure of
how on-chip memories change effective off-chip bandwidth.

Improving the traffic ratio increases the effective off-chip band-
width, improving performance in systems that stall frequently due
to limited pin bandwidth. We propose a new metric, calledtraffic
inefficiency, which quantifies the opportunity for reduction in the
traffic ratio. We define traffic inefficiency as the ratio of traffic gen-
erated by a cache and some optimally-managed memory. This
quantity gives an upper bound on the achievable effective band-
width for a given memory size, package, and program. By decom-
posing traffic inefficiency into individual components, we can
identify where the opportunities lie for improving effective pin
bandwidth through traffic reduction.

Section 2 of this paper both defines our execution time decom-
position and gives a detailed justification for our claim that
latency-tolerance techniques will expose pin bandwidth con-
straints in future systems. In Section 3, we present measurements
that decompose execution time for an aggressive processor and a
range of latency-tolerance techniques—showing that bandwidth
stalls will indeed be significant for such processors. Section 4
defines traffic ratio and effective pin bandwidth. We then present
measurements of traffic ratios for a range of caches, and compute
their effective pin bandwidths. Section 5 defines and measures
traffic inefficiencies, computes an upper bound on effective pin
bandwidth, and uses these results to propose and measure some
cache improvements. Finally, Section 6 concludes with a descrip-
tion of possible solutions (both short-term and long-term), related
work, and a summary of our main results.

2 Decomposing program execution time

As the performance gap between processors and main memory
increases, processors are likely to spend a greater percentage of
their time stalled, waiting for operands from memory. The com-
plexity of both modern processors and modern memory hierar-
chies makes it difficult to identify precisely why a processor is
stalling, or what limits its utilization (or IPC).

To understand where the time is spent in a complex processor,
we divide execution time into three categories:processor time,
latency time, andbandwidth time.1 Processor time is the time in
which the processor is either fully utilized, or is only partially uti-
lized or stalled due to lack of ILP. Latency time is the number of
lost cycles due to untolerated, intrinsic memory latencies. By
“intrinsic” we mean memory latencies in a contentionless system;
latencies that could not be reduced by adding more bandwidth in
between levels of the memory hierarchy. Bandwidth time is the
number of lost CPU cycles due both to contention in the memory
system and to insufficient bandwidth between levels of the hierar-
chy. This partitioning scheme is superior to using average memory
access time, which neither separates raw access latency from band-
width restrictions, nor translates directly into processor perfor-
mance (e.g., four simultaneous cache misses in a lockup-free
cache will appear as one cache miss latency to the processor, but
will be counted as four distinct misses when calculating average
memory access time).

Let be a partitioning of some program’s execution
time, , spent in each of these three categories (processing,
latency, and bandwidth, respectively). Let be these times
normalized to . Let be the execution time of the program
assuming a perfect memory hierarchy (i.e., every memory access

1. Our decomposition is similar to that used by Kontothannasis et al. to
measure cache performance of vector supercomputers [27].

TP TL TB, ,
T

f P f L f B, ,
T TP

A. Latency reduction

Lockup-free caches ? ↓ ↑
Intelligent load scheduling ↑ ↓ ↑
Hardware prefetching ? ↓ ↑
Software prefetching ↑ ↓ ↑
Speculative loads ↑ ↓ ↑
Multithreading ? ↓ ↑
Larger cache blocks ? ↓ ↑

B. Processor trends

Faster clock speed ↓ ↑ ↑
Wider-issue ↓ ? ↑
Speculative (Multiscalar) ↓ ? ↑
Multiprocessors/chip ↓ ↑ ↑

C. Physical trends

Better packaging technology ↑ ↓ ↓
Larger on-chip memories ↑ ↓ ↓

Table 1: Estimated effects on execution divisions

f P f L f B

f P f L f B

f P f L f B

completes in one cycle). Let be the execution time of the pro-
gram assuming an infinitely-wide path in between each level of the
memory hierarchy. are computed as follows:

(1)

(2)

(3)

This characterization of execution time can be converted easily
into CPI, if that is the metric of interest. These three categories can
be broken down further to isolate individual parts of the system.
This enables us to estimate more accurately the performance
impact of imperfect components in a complex modern processor—
the performance of which cannot be calculated directly from aver-
age memory latency and miss rate.

Table 1 presents predictions of how the fraction of time lost to
bandwidth stalls will change for future machines. In every row of
Tables 1A and 1B, we see that the normalized fraction of band-
width stalls is increasing. The technological advances listed in
Table 1C will mitigate the relative increases of bandwidth-related
stalls. Sections 2.1 and 2.2 explain the trends that we present in
Tables 1A and 1B. Sections 2.3 and 2.4 describe the physical
trends listed in Table 1C. These latter two subsections describe
why the physical increases in effective memory bandwidth will be
insufficient to satisfy the increased bandwidth needs of future pro-
cessors.

2.1 Latency-reduction techniques

Improved techniques for reducing and tolerating memory
latency can increase —the percentage of execution time spent
stalled due to insufficient memory bandwidth. Reduction of mem-
ory latency overhead () aggravates bandwidth requirements for
two reasons. First, many of the techniques that reduce latency-
related stalls increase the total traffic between main memory and
the processor. Second, the reduction of increases the processor
bandwidth—the rate at which the processor consumes and pro-
duces operands—by reducing total execution time.

The combination of lockup-free caches [28, 40] and careful
scheduling of memory operations that are likely to miss [1, 16] is a

T I

f P f L f B, ,

f P TP T⁄=

f L TL T⁄ T I TP–() T⁄= =

f B TB T⁄ T TI–() T⁄= =

f B

f L

f L

32

64

125

250

500

1000

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

N
um

be
r

of
 p

in
s

(a) Pin count increases

8086

80286

68000

80386

68020

68030

80486

R3000

68040

UltraSparc

Pentium

Harp1

SSparc2

P6

68060

R10000

PA8000

21164

0.002

0.005

0.01

0.03

0.08

0.2

0.5

1.3

3.2

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

M
IP

S
/p

in

(b) Performance increases per pin

8086
80286

6800080386

68020
68030

80486

R3000

SSparc2

68040

68060

UltraSparc
R10000

21164

P6

Pentium

Harp1

PA8000

Figure 1. Physical microprocessor trends

0.006

0.010

0.016

0.025

0.040

0.064

0.100

0.16

0.25

0.40

0.64

1.0

1.6

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

(M
IP

S
)/

(P
in

 M
B

/S
)

(c) Performance over pin bandwidth

8086
80286

68000

80386

68020
68030

80486

R3000

SSparc2

68040

Harp1

Pentium

68060

P6

PA8000

UltraSparc

R10000

21164

method of hiding memory latencies. Although this technique does
not increase the amount of traffic to main memory, lockup-free
caches worsen bandwidth stalls by allowing multiple memory
requests to issue—making queueing delays possible in the mem-
ory system. Furthermore, the presence of lockup-free caches will
likely encourage more speculative execution.

Both software [6, 8, 26, 32] and hardware [13, 14] prefetching
techniques can increase traffic to main memory. They may
prefetch data too early, causing other references to evict the
prefetched data from the cache before their use. They may also
evict needed data from the cache before their use, causing an extra
cache miss. Stream buffers [24, 33] prefetch unnecessary data at
the end of a stream. They also falsely identify streams, fetching
unnecessary data. Speculative prefetching techniques—such as
lifting loads above conditional branches [35]—increase memory
traffic whenever the speculation is incorrect.

Multithreading increases processor throughput by switching to
a different thread when a long-latency operation occurs [30, 38].
Frequent switching of threads will increase interference in the
caches and TLB, however, causing an increase in cache misses and
total traffic. Poorer cache performance—resulting from the
increased size of the threads’ combined working set—may offset
some or all of the gains of the latency tolerance.

Finally, larger block sizes may decrease cache miss rates. Miss
rate improvement occurs until the coarser granularity of address
space coverage (i.e., the reduced number of blocks in the cache)
overshadows the reduction in misses obtained by fetching larger
blocks. Even when larger blocks reduce the miss rate, however, the
increased traffic may cause bandwidth stalls that outweigh the
miss rate improvements.

2.2 Advanced processors

Several factors other than latency-reduction techniques will
increase the needed bandwidth across the processor module
boundary. These factors include advanced processor design tech-
niques and shifts in characteristic uniprocessor workloads.

As processors get faster, they consume operands at a higher
rate. Faster processor clocks run programs in a shorter time,
increasing off-chip bandwidth requirements. Other processor
enhancements (such as wider-issue processors) also reduce execu-
tion time and increase needed bandwidth.

Processors that rely heavily on coarse-grained speculative exe-
cution to increase ILP—such as the Wisconsin Multiscalar [39]—
increase memory traffic whenever they must squash a task after an
incorrect speculation. Multiple distinct execution units in such pro-
cessors can execute different parts of the instruction stream simul-
taneously. This execution may reduce locality in shared, lower-

level caches, thus increasing the miss rate, and therefore the total
traffic.

The emergence of single-chip multiprocessors would substan-
tially increase the number of data loaded per cycle. The increased
bandwidth results primarily from multiple concurrently-running
contexts, but also because of shared-cache interference. The pri-
mary barrier to the implementation of single-chip multiprocessors
will not be transistor availability but off-chip memory bandwidth.
If one processor loses performance due to limited pin bandwidth,
then multiple processors on a chip will lose far more performance
for the same reason.

Finally, throughout the computer industry, there is an increas-
ing software emphasis on visualization, graphics, and multimedia.
These codes tend to have large data sets, with much floating-point
computation. Traditional caches are remarkably ineffective at
reducing the bandwidth requirements of these types of codes [5].
The increased use of this type of software may therefore exacer-
bate bandwidth limitations.

2.3 Physical limits

The rate of increase of processor pins has traditionally been
much slower than that of transistor density. Although large
increases in pin counts have recently occurred—and significant
breakthroughs in packaging technology undoubtedly lie on the
horizon—the issues of reliability, power, and especially cost will
prevent pins from sustaining growth in numbers commensurate
with the growth rate of processor performance.

Figure 1 shows trends in pin, performance, and off-chip band-
width from 1978 to 1997. We compiled this data by hand, from
both the processors’ original manuals and back issues ofMicro-
processor Report. All three y-axes use log scales. The x-axes use a
linear scale.

Figure 1a plots the number of pins per processor from 1978 to
1997. We see from the dotted line that pin counts are increasing by
about 16% per year. More striking is the result in Figure 1b, which
plots processor performance1 per pin versus time. The raw perfor-
mance per pin is also increasing explosively, despite the rapid
increase in pin count shown in Figure 1a.

Packages and buses are designed to provide sufficient off-chip
bandwidth to each generation of processors. Figure 1c—which
plots the raw performance-to-package bandwidth ratio over time—
shows that performance increases are quickly outstripping the

1. Performance here is measured in VAX MIPS for the 680x0 and early
80x86 processors, and issue width times clock rate for the others. These
two measures cannot be compared directly, but are sufficient to view 20-
year trends.

growth in raw peak package bandwidth. The PA-8000 aberration
results from that processor’s lack of on-chip caches, necessitating
an uncharacteristically large package with a high clock rate.
Though feasible today from a cost standpoint, this design strategy
is unlikely to persist very far into the future (as discussed in
Section 4.3).

Processors to date have succeeded in keeping a balance
between their data requirements and available memory bandwidth.
The cumulative effect of the trends and limits described in this sec-
tion will make this balance increasingly harder to achieve, necessi-
tating changes in the way memory systems are designed. These
changes will be especially important when we include the cost of
adding sufficient bandwidth to future high-performance proces-
sors, since the costs of larger packages grow super-linearly. Cost-
sensitive commodity systems will be particularly sensitive to the
need for packages that cost too much.

The pin interface is not necessarily the only point in the system
where a memory bandwidth bottleneck could arise. Although
bandwidth out of commodity DRAMs is presently a concern, high-
bandwidth DRAM chips have already appeared on the market
(extended data-out, enhanced, synchronous, and Rambus DRAMS
[34]). DRAM banks are thus unlikely to become a long-term per-
formance bottleneck. The memory bus is the other possible bottle-
neck, particularly for bus-based symmetric multiprocessors
(SMPs). Widening the bus is a viable solution, as is shifting to a
point-to-point network if the bus becomes too great a bottleneck
for future SMPs. We believe that among the processor pins, bus,
and DRAM interface, continued increases in processor pin band-
width will be the hardest to sustain.

2.4 On-chip memory increases

Consider a future processor, to be designed as a follow-on to a
current processor. Suppose for simplicity that the new processor
will have four times as many gates as the current processor.
Assume that the area ratio between processor and on-chip memory
is unchanged. How will the off-chip bandwidth requirements
change for this new chip?

Figure 2 shows the two opposing effects that increasing tech-
nology will have upon the balance between and . These
graphs are qualitative and do not represent real data. Figure 2a
shows the growing gap between processor bandwidth (words con-
sumed per second) and off-chip bandwidth. This trend increases

 at the expense of .
Figure 2b shows the reduction in off-chip traffic that occurs as

on-chip memory size grows per year—enabling greater reuse of
operands. For a given program and input, the amount of computa-
tion will remain constant, but the off-chip traffic will decrease.
This effect produces the opposite effect of the technology curves
on Figure 2a— grows at the expense of .

The vertical arrows in the graphs represent the quantity of each
trend at a given year. If the arrow marked (1) increases faster than
that marked (2), processors will tend to become more memory
bandwidth-bound. Conversely, if (2) increases faster than (1),
memory limitations will become less of an issue for a given pro-
gram.

For many algorithms the computation grows faster than do the
memory requirements. For example, the conventional algorithm of
matrix multiply (multiplying two matrices) has total mem-
ory requirements that grow as , while computation grows as

. Intuitively, then, we might expect the processing require-
ments eventually to overwhelm the bandwidth limitations, increas-
ing and decreasing .

We performed an analysis similar to Hong and Kung’s I/O
complexity analysis [21] to show that this argument is misleading.
Consider the conventional matrix multiplication, using a tiled
algorithm where tiles are of size , the on-chip memory is of size

f P f B

f B f P

f P f B

N N×
O N2()

O N3()

f P f B

L

, the sides of both matrices are elements, and . Previous
work showed [21, 29] that the traffic between the on- and off-chip
memories is proportional to . Assume that the proces-
sor is sufficiently fast for the implemented algorithm to take full
advantage of the on-chip memory. Holding constant keeps the
amount of computation constant. If the on-chip memory is
increased, the program generates less off-chip traffic, allowing the
program (assuming a reasonable) to complete in less time. An
increase in the on-chip memory by a factor of four would increase

 by two, which would reduce the off-chip traffic by nearly half.
Therefore, will not decrease so long as the gap marked by (1)
also increases by a factor of two.

For the future processor with four times as many gates, the pro-
cessing speed must increase only by a factor of two (i.e., the
square root of the increase in memory size) for the balance
between and to remain unchanged. Historically, processor
speedup (even ignoring faster technology) has been greater than
the square root of the transistor count.

Table 2 shows such derivations for the following algorithms:
TMM (tiled matrix multiply), Stencil (an algorithm operating on a

 matrix, which repeatedly updates each element with a
weighted sum of neighboring elements), FFT (an -point fast Fou-
rier transform), and Sort (merge sort). The right-most column
depicts the change in the ratio of computation to required memory
traffic for each application, as (on-chip memory size) increases
by a factor of . If this quantity grows slower than the processing
speed as increases, will decline. We believe that such
improvement in processing power is attainable, at least for several
more generations, and that gap (1) will continue to outpace gap (2)
in Figure 2.

3 Measuring execution time decomposition

In this section we show that bandwidth stalls increase as pro-
cessors and memory hierarchies become more aggressive with
latency tolerance. We measure and decompose the execution time
of six machines that have a range of latency-tolerance mechanisms
in the processor and memory hierarchy.

S N L N«

2N 3 L⁄ N 2+

N

f B

L
f B

f B f P

N N×
N

S
k

S f P

computation

traffic

processor

b/w

[o
ps

 o
r

by
te

s]
/s

ec
on

d

op
s

or
 b

yt
es

yearyear
87 90 93 96198487 90 93 961984

1

2

Figure 2. Processing vs. bandwidth changes

(a) (b)

Algorithm Memory Comp. (C) Memory traffic (D) C/D

TMM

Stencil

FFT

Sort

Table 2: Application growth rates

O N2() O N3() O N3 S⁄() k

O N2() O N2() O N2 S⁄() k

O N() O N N2log() O Nlog2N S2log⁄() k2log

O N() O N N2log() O Nlog2N S2log⁄() k2log

SPEC92 SPEC95

L1 cache 128KB unified 64KB I, 64 KB D
Direct-mapped

On-chip, 1-cycle access
L1/L2 bus 128 bits wide

bus/proc clock: 1/3 bus/proc clock: 1/4
L2 cache 1MB 2MB

4-way set assoc.
Off-chip, 30 ns access

L2/memory bus 64 bits wide
bus/proc clock: 1/3 bus/proc clock: 1/4

Memory 90 ns access
Infinite banks

Table 4: Memory system simulation parameters

Benchmarks
SPEC92

Number
refs (M)

Data set
sizes (MB)

Inputs

Compress 21.9 0.41 1000000 byte file

Dnasa2 181.0 0.18 FFT, MxM=128x64x64

Eqntott 221.1 1.63 int_pri_3.eqn

Espresso 22.3 0.04 mlp4 only

Su2cor 163.4 1.53 in.short

Swm 50.6 0.93 180x180, 50 iter.

Tomcatv 104.2 3.67 256x256, 10 iter

SPEC95

Applu 383.7 32.38 33x33x33 grid, 2 iter.

Hydro2D 263.7 8.71 test data set, 1 iter.

Li 471.3 0.12 test.lsp

Perl 1280.8 25.70 jumble.pl

Su2cor 533.8 22.53 test data set

Swim 267.4 14.46 test data set

Vortex 1180.3 19.87 test data set

Table 3: Benchmark trace lengths and inputs

Experiment A B C D E F

Processor in-order issue out-of-order issue
Branch pred. 8K 16K
Cache blocking lockup-free
L1/L2 blocks 32/64 64/128 32/64

SPEC92 parameters / SPEC95 parameters
Speed (MHz) 300/400 300/600
RUU slots 16/64 64/128
L/S Q entries 8/32 32/64

Table 5: Processor simulation parameters

implemented only one prefetching scheme: tagged prefetch [17].
We assume that our blocking caches can still service hits when
they are processing a miss.

Table 5 lists the six experiments (calledA-F) that we ran for
each benchmark. ExperimentsA-C use an in-order issue, four-way
superscalar processor with a two-level branch predictor and two
load/store units. ExperimentsD-F assume a processor that uses an
out-of-order issue mechanism based on the Register Update Unit
(RUU) [41], with support for speculative loads. ExperimentsD and
E are identical except thatE uses the tagged prefetching scheme
(as does experimentF).

Table 5 shows how many entries the branch prediction table
holds, as well as the cache block sizes, processor speed, number of
RUU entries, and the number of entries in the load/store queue. We
assumed more aggressive processor parameters for the SPEC95
runs; they are shown in Table 5. Finally, we assume that multi-
plexed data/address lines are used only on the main memory bus,
that all channels are bidirectional, that all memories return the crit-
ical word first, and that we have an infinitely-deep write buffer.

3.2 Decomposition results

Figure 3 graphs execution time normalized to the processing
time () of experimentA, for each benchmark and experiment.
The bars are split into processing cycles, raw latency stall cycles,
and limited bandwidth stall cycles. The number atop each bar rep-
resents the fractions of the bars that are bandwidth stall cycles.

ExperimentsD andE show reductions in due to the out-of-
order execution engine. The most aggressive out-of-order proces-
sor (F) speeds up some benchmarks (Su2cor92, Swm92, Tomcatv)
but not others. The SPEC95 benchmarks show little reduction in
execution time forF because the less-aggressive processors (A-E)
that we used for the SPEC95 runs assume a larger base out-of-
order window (64 RUU entries versus 16 for the SPEC92 runs).
This larger base window captures much of the available ILP, leav-
ing little additional ILP for experimentF to capture.

TP

f P

3.1 Methodology

Our benchmarks consist of seven from the SPEC92 suite [42]
and seven from the SPEC95 suite [43]. We selected the bench-
marks based on two factors: whether they provided a reasonable
range of data set sizes and types of computation, and whether their
simulation times were tractable (or could be made so by reducing
input parameters, without skewing the simulation results).

The three integer SPEC92 programs that we used are Com-
press, Espresso, and Eqntott. The four floating-point-intensive
SPEC92 codes are Su2cor, Swm, Tomcatv, and Dnasa2 (two of the
Dnasa7 kernels—the two-dimensional FFT and the 4-way unrolled
matrix multiply). The three integer SPEC95 codes are Li, Perl, and
Vortex. The four floating-point SPEC95 codes are Applu,
Hydro2d, Swim, and Su2cor. We present results for both the
SPEC92 and SPEC95 versions of Su2cor, and Swm (Swim), since
they are different versions with different inputs. Table 3 lists the
inputs that we used to generate the traces for each benchmark. It
also lists both the number of memory references that we simulated
(in millions) and the data set sizes for each benchmark.

We used the SimpleScalar tool set [4] to measure the execution
time of simulated processors that use a MIPS-like instruction set.
SimpleScalar uses execution-driven simulation to measure execu-
tion time accurately. It includes simulation of instruction fetching
and system calls. We added a more detailed, multi-level memory
hierarchy simulator that includes bus contention. We list the
parameters for the simulated memory system in Table 4. We made
the memory system slightly more aggressive for the SPEC95 runs
by doubling the L2 cache size and splitting the L1 cache into sepa-
rate instruction and data caches. The bus-to-processor clock fre-
quency ratio is smaller for the SPEC95 runs because we simulate
faster processors for SPEC95—the absolute bus speeds are the
same or faster for the SPEC95 runs.

To measure (derived in Section 2), we execute three
simulations for each experiment. To obtain , we run a simula-
tion in which every load and store hits in the L1 cache (one cycle).
We measure by simulating a memory hierarchy assuming infi-
nitely-wide paths between adjacent levels of the hierarchy. Finally,
we measure by simulating the full memory system.

The latency-tolerance techniques we evaluate here are the fol-
lowing: increased cache line sizes, the use of lockup-free caches,
out-of-order execution with speculative loads, and prefetching. We

f P f L f B, ,
TP

T I

T

Using larger block sizes has three effects: increasing both
latency and bandwidth stalls (Compress), reducing latency stalls
but increasing bandwidth stalls (Su2cor92), or reducing both
(Swm92 and Tomcatv). The performance impact correlates
directly with the amount of spatial locality that the cache can
exploit for each program. Providing a lockup-free cache (C)
changes performance very little for all benchmarks; the small
reductions in are all nearly offset by corresponding increases in

. Larger reductions in are visible when the out-of-order core
is added (D) to the non-blocking caches.

The most important point that Figure 3 makes, however, sup-
ports the thesis of this paper: as the latency-reduction techniques
are applied, the bandwidth limitations () become more severe,
generally growing larger than the stalls due to raw latency ().
Table 6 shows how the relation between and changes when
experimentF is compared to experimentA. The benchmarks we
list here are those that are not cache-bound (Espresso, Eqntott, and
Li). In experimentA, is greater than for every benchmark

except Applu. The relation between latency and bandwidth stalls
reverses when we simulate an aggressively latency-tolerant proces-
sor. In experimentF, is greater than for every benchmark
except for Vortex and Perl (and is still significant for both, at
16.7% and 16% of total execution time, respectively).

4 Calculating effective pin bandwidth

Section 3 showed that stalls caused by insufficient memory
bandwidth become significant as processors and memory hierar-
chies attempt to tolerate memory latencies more aggressively. On-
chip memory plays a crucial role in reducing off-chip traffic [18].
This reduction increases the effective pin bandwidth, as seen by
the processor. When pin bandwidth limits performance, it is
important to quantify how much the on-chip memory increases
effective pin bandwidth by reducing traffic across the pins.

We therefore measure thetraffic ratio of a range of caches,
which allows us to calculate effective pin bandwidth for a given
processor. Hill and Smith proposed using traffic ratios to evaluate

f L
f B f L

f B
f L

f L f B

f L f B

f B f L
f B

0.0

0.4

0.8

1.2

1.6

2.0

2.4

A B C
Applu

D E F A B C
Hydro2d

D E F A B C
Li

D E F A B C
Perl

D E F A B C
Su2cor

D E F A B C
Swim

D E F A B C
Vortex

D E F

SPEC95 benchmarks

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

			

	

	

.15

	
	
.07

	

	.02

	
	.10

		
.08

		
.11

			 	 		

	

	

.12

	

	

.14

	

	

.11

	

	

.23

	
	

.25

	

	

.25

			 	 		

	

	.01

	

	.00

		.02

		
.05

		
.05

	
	.06

			 	 		 	 	X 	 	X

	

	
.10

	

	

.18

	

	

.18

	

	

.16

			 	 		

	

	
.09

	

	

.11

	

	.04

	
	
.16

		
.13

		
.15

			 	 		

	

	
.06

	

	.01

	

	.02

	
	

.24

		
.21

		
.24

			 	 		

	

	

.15

	

	

.26

	

	

.15

	

	

.19

	

	

.19

	

	

.17

			

Figure 3. Effect of latency-reduction techniques

Exp. Compress Su2cor92 Tomcatv Applu Hydro2D Perl Swim95 Vortex

Stall

A 46.8 3.2 24.6 2.6 30.0 2.1 10.9 15.0 29.4 11.8 --- --- 25.2 6.0 40.6 14.9

F 25.6 31.0 3.5 16.3 5.1 18.4 4.0 11.0 20.6 24.8 37.0 16.0 3.1 24.1 56.1 16.7

Table 6: Comparing latency and bandwidth stalls for experiments A and F

f L f B f L f B f L f B f L f B f L f B f L f B f L f B f L f B

0.0

0.5

1.0

1.5

2.0

2.5

A B C
Compress

D E F A B C
Eqntott

D E F A B C
Espresso

D E F A B C
Su2cor

D E F A B C
Swm

D E F A B C
Tomcatv

D E F

SPEC92 benchmarks

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

.

.
.03

.

.

.13

.

.
.06

.

.

.12

.

.

.17

.

.

.30

.

..00
.
..01

.

..00

.

..00
.
..01

...01

.

..00
.
..02

..
.01

..
.03

..
.03

..
.04

.

..02

.

.
.08

.

..04

.

.
.07

.

.
.10

..
.16

.

..01

.

..02

.

..02

.

..07

..
.06

..
.15

.

..02

.

..02

.

.
.04

.

.
.09

.

.
.10

..
.18

f_B (limited b/w stalls)

f_L (raw latency stalls)

f_P (compute time)

the extent to which a cache reduces bus traffic [20]; we generalize
their metric to multiple on-chip levels of cache. For a leveli in the
memory hierarchy, we obtain the data traffic ratio () by dividing
the traffic between levelsi and () by the traffic between lev-
els andi ():

(4)

For simple caches with a write-through policy, can be calcu-
lated directly from the cache miss rate, the number of issued loads
and stores, and the cache block size. A write-back cache decouples
the direct correlation between miss rate and traffic ratio. Miss rate
becomes a crude approximation of traffic ratios for complicated
memory hierarchies: a lockup-free cache may combine two misses
with one response from memory, prefetching increases traffic more
than it reduces the miss rate, future instruction sets may explicitly
move data between levels of the memory hierarchy, and supporting
variable transfer sizes makes it difficult to measure cache traffic
accurately with miss rate alone.

We use the traffic ratio at each level in the hierarchy to calcu-
late the effective bandwidth to the next lower level of the hierar-
chy. By dividing the bandwidth from level of the memory
hierarchy by , we obtain theeffective bandwidth from level

. By taking

(5)

wherek is the number of levels of on-chip caches, and is the
pin bandwidth for the processor in question, we obtain , which
is the effective pin bandwidth seen by the processor.

4.1 Simulation methodology

We used trace-driven simulation to measure memory traffic for
various cache sizes and configurations. We used QPT to generate
traces [19]. The traces contained data memory references but no
instructions. QPT handles double-word memory accesses by con-
secutively issuing the two adjacent single-word addresses.

We used the DineroIII cache simulator [19] to perform our
cache simulations. The simulations used the same benchmarks
(SPEC92 only) and inputs shown in Table 3. We calculate traffic
ratios by running Dinero, and dividing the total traffic by the prod-
uct of the loads and stores issued and the load/store size. “Total
traffic” in this case includes write-back traffic but not request traf-
fic (i.e., addresses). We also flush the cache upon program comple-
tion, writing back all dirty data. We include these flushed write-
backs in our traffic measurements. Our results contain only data
access, not instructions or TLB misses.

4.2 Measured traffic ratios

Table 7 shows traffic ratio measurements for a range of single-
level, direct-mapped, 32-byte-block, write-allocate, write-back
cache sizes. We saw similar results for caches with higher associa-
tivities. The “<<<” symbol indicates that the cache size in question
is larger than the benchmark’s data set size. We consider this area
of the experiment space to be uninteresting, sinceR will always
approach 0 when the program runs out of the cache.

When , a cache generates exactly as much total traffic
to memory as would exist with no cache. It is well known [20] that
small caches can generate more traffic than a cacheless reference
stream; Table 7 demonstrates this result with 1-4KB caches for
more than half of our benchmarks. If a block is replaced quickly
after its first use—or if there is little spatial locality associated with
the access that caused the miss—the other six or seven words
loaded with the 32-byte block are superfluous.

Compress and Su2cor generate more traffic with even a 64KB
cache than would a cacheless system. Compress repeatedly
accesses a hash table, so its memory reference stream contains lit-
tle spatial locality (a larger block size will consequently waste
bandwidth). Su2cor iterates over several large arrays, several of
which conflict heavily in its main routine until the cache size
reaches 64KB. In contrast to Su2cor, Swm has roughly the same
traffic ratio from 16KB to 1MB cache sizes. Swm iterates over
large arrays, with a reference pattern that contains little locality
and no small working sets [36]. Tomcatv displays similar behavior.
In general, ranges between 0.1 and 1.0 for caches that are not
overly large or small for a given program.

Since the SPEC92 benchmarks’ data sets are not large, these
results are conservative—many of these programs run out of the
caches and techniques designed to tolerate long latencies have less
effect.

The generation of machines that these benchmarks were
designed to test did not have on-chip caches larger than 64KB. We
therefore calculated the arithmetic mean of the for all caches
with sizes greater than or equal to 64KB and less than the data set
size of each benchmark. The mean across all benchmarks was
0.51. While this estimate cannot be applied to an individual pro-
gram/cache combination, it is fair to say that for these benchmarks,
reasonably-sized on-chip caches reduce the traffic from the proces-
sor by about half.

4.3 Extrapolating pin bandwidth requirements

With our traffic ratios in hand, we now extrapolate pin growth
and processor performance, to see what sort of packages we will
likely need a decade hence. Figure 1a, shows the rate of growth of
processor pins from 1978 to today. We see that the number of pins
on processors is increasing at about 16% per year (the dotted line
on Figure 1a plots this function).

If we conservatively assume a growth rate of 60% in sustained
microprocessor performance—which has been less than the
growth rate for the past decade [2]—we can estimate future
increases in bandwidth requirements. Assuming that both of these
trends persist, and that on-chip traffic ratios remain about the
same, we see that in a decade the processor of 2006 will have a
package with two or three thousand pins. Even with this large
package, the bandwidth requirementsper pin will be a factor of 25
greater than those of today.

If processors are not to be limited by off-chip bandwidth, at
least three possibilities exist (for the processor of 2006):

• Industry may manage to build cost-effective, several-
thousand-pin packages clocked at several GHz.

• Industry may instead build a cost-effective package
with ten thousand pins and clock it between 0.5 and 1
GHz.

• Improved on-chip traffic ratios increase effective pin
bandwidth more than they do today—reducing the
need for such huge packages.

The third option listed above is the least costly. To evaluate the
potential for package size reduction—given a fixed quantity of on-
chip memory—the next section experimentally measures an upper
bound on how much effective pin bandwidths may be improved.

5 Improving effective pin bandwidth

We have shown that when a processor employs aggressive
latency tolerance, it may spend much time stalled because of lim-
ited memory bandwidth. In Section 4, we quantified the amount by
which on-chip memory mitigates this performance loss. In this
section, we calculate a rough upper bound on effective pin band-
width by simulating caches that minimize off-chip traffic.

Ri
i 1+ Di

i 1– Di 1–

Ri Di Di 1–⁄=

Ri

i 1+
Ri

i 1+

Epin

Bpin

Ri
i 1=

k

∏
--------------=

Bpin
Epin

Ri 1.0=

Ri

Ri

5.1 Traffic inefficiency

To evaluate what percentage of the possible traffic reduction a
cache achieves, we measuretraffic inefficiency—defined as the
ratio of traffic produced by the cache in question and the traffic
produced by a perfectly-managed cache. We will call this “perfect
memory” anMTC, for minimal-traffic cache.

The traffic inefficiency for leveli in the memory hierarchy, ,
is therefore:

(6)

where is the traffic generated by the cache at leveli, and
 is the traffic generated by anMTC of the same size and level

as the cache.
A memory organization with a is therefore perfectly

managed, in terms of memory traffic reduction. Large values of
indicate a memory organization that generates much more traffic
below it than is necessary.

The traffic inefficiency of a cache allows us to compute an
upper bound on effective pin bandwidth. This upper bound is only
valid if the processor model remains unchanged; it is possible to
change the memory reference stream and therefore further reduce
traffic.

Let be the upper bound on effective pin bandwidth.
Using traffic ratios and traffic inefficiencies, we can compute this
upper bound as follows:

(7)

A simpler expression for this bound is possible using the traffic
ratio of theMTC, but Equation 7 uses terms for which we present
measurements in this paper.

5.2 Measuring a minimal-traffic memory

If we consider only loads from main memory, measuring an
MTC is straightforward. A cache (discounting stores) generates the
minimum possible traffic if it has the following characteristics:

• full associativity,
• the transfer size is equal to the request size,1

• it uses an optimal replacement policy, and
• sufficiently low-priority loads can bypass the cache.2

If we consider only reads, the optimal replacement policy is
Belady’smin policy [3]. Themin policy chooses the replacement
victim from a set (in this case the entire cache) by evicting the

1. We assume requests of four-byte words for all experiments.
2. A bypass occurs when a miss has a lower replacement priority than any-
thing else in its set (which is in this case the entire cache).

cache block that the processor will reference furthest in the future
(or a block that the processor will never reference again).

The min policy is not optimal for write-back caches, since
there is an additional cost associated with replacing a dirty block.
Horwitz et al. proposed an algorithm to manage optimal replace-
ment in the presence of write-backs [22]. We implemented only
the min algorithm, and not the optimal write-conscious Horwitz
algorithm. We believe that the disparity between the two is small,
and therefore not worth the additional complexity of simulating
the Horwitz algorithm. The traffic inefficiencies presented in the
following section are therefore not minimal, but are nevertheless
an aggressive bound.

We assumed write-back caches because, for anMTC, a write-
back policy will always generate less traffic than a write-through
policy. Themin policy will make the write bypass the cache if its
line will not be read before it is replaced. We also assumed a write-
validate policy [25], in which the cache block is allocated by over-
writing it with the store data. This policy will always generate less
traffic than allocate-on-write because both theMTC’s transfer and
address blocks are one word.

We used QPT and Dinero to measure for the cache traf-
fic term ofG. We wrote our own two-pass simulator, which also
used QPT-generated traces, to perform theMTC simulation and
obtain . The traffic measurements for both simulators include
the same components (e.g., write traffic) as did the traffic ratio
experiments.

5.3 Measuring traffic inefficiency

Table 8 shows that there is a wide disparity of values forG
across the benchmarks. We assumed direct-mapped, 32-byte block
caches for these experiments. Four of the benchmarks typically
have G greater than 20 and less than 100 (Compress, Eqntott,
Espresso, and Su2cor)—even for large caches. The other three—
Dnasa2, Swm, and Tomcatv—typically haveG between 2 and 10.
These three benchmarks are all scientific codes that display little
temporal locality, thus the reference stream contains less opportu-
nity for optimization by a smarter cache. The large jump to aG of
124 for Swm with a 1MB cache occurs because theMTC (being
fully associative) is able contain the entire data set in the cache.
Conversely, conflicts between large data structures make caches
with associativities of less than four (inclusively) require a size of
4MB to contain the entire data set.

Overall, these numbers demonstrate that there is a significant
opportunity to increase effective pin bandwidth, between one and
two orders of magnitude, by making better use of the on-chip
memory. We now turn to determining which factors contribute to
these large gaps. Figure 4 shows a log-log plot of traffic measure-
ments (in KB) versus cache sizes, for three SPEC92 benchmarks.
For brevity, we include only Compress, Eqntott, and Swm, since
they are somewhat representative of the other benchmarks. The top
six lines in each graph represent 4-way, set-associative caches with
block sizes from 4B to 128B. The thick dotted line represents a
fully-associative,min-replacement cache that uses a write-allo-
cate, write-back policy. The thick solid line represents the write-

Gi

Gi

Dcache

DMTC
--------------= 1≥

Dcache
DMTC

Gi 1=
Gi

OEpin

OEpin

Bpin Gi
i 1=

k

∏

Ri
i 1=

k

∏
-------------------------=

Dcache

DMTC

Trace 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

Compress 3.03 1.96 1.76 1.59 1.46 1.29 1.10 0.82 0.43 <<< <<< <<<
Dnasa2 3.40 2.87 1.34 0.94 0.73 0.62 0.29 0.05 <<< <<< <<< <<<
Eqntott 1.04 0.67 0.55 0.47 0.43 0.39 0.34 0.27 0.18 0.11 0.06 <<<
Espresso 1.43 0.68 0.39 0.20 0.08 0.01 <<< <<< <<< <<< <<< <<<
Su2cor 7.44 7.32 6.88 6.11 4.75 2.99 1.43 0.82 0.61 0.29 0.13 <<<
Swm 5.83 5.41 3.94 1.79 0.63 0.60 0.59 0.58 0.58 0.56 <<< <<<
Tomcatv 2.96 2.91 2.54 1.48 0.87 0.75 0.74 0.73 0.72 0.71 0.33 0.24

Table 7: Traffic ratios for 32-byte block, direct-mapped caches

validate, write-backMTC that we used for all traffic inefficiency
calculations. Large gaps between a line and theMTC line indicate
large traffic inefficiencies.

There are three factors visible on Figure 4 that contribute to
large gaps between cache andMTC traffic. The first is increased
block size. Compress has little spatial locality, since most of its
accesses are to a hash table. Any increase in block size causes a
corresponding increase in traffic. The same effect is visible for
Eqntott (to a lesser extent), and for Swm when the cache sizes are
smaller than about 32KB. Swm shows spatial locality for larger
caches because the extra words in larger blocks are used when the
block is not quickly replaced—when a small working set fits in the
cache. The second factor is associativity, which causes the large
gap between caches and theMTC for Swm at 1MB. The third factor
contributing much to the cache/MTC traffic gap is the write-vali-
date policy, which causes the majority of the gap for Eqntott.

In addition to block size, associativity, and write-validate, there
are two factors that enable anMTC to generate less traffic than
caches. These factors are cache bypassing and replacement policy
(min vs. LRU). To better understand which of these factors are
significant, we isolate and list four of these factors in Table 9. We
did not isolate cache bypassing as a factor; however, Tysonet al.

recently showed [45] that, for small caches, greater selectivity
about what is cached can significantly reduce memory traffic.
Table 9 shows how each factor changesG for one cache size per
benchmark. We set all cache sizes to 64KB except for Espresso, to
which we assigned a cache size of 16KB (because of its small data
set). The values in the table show the change in traffic inefficiency
as each factor is toggled. Table 10 lists the pairs of experiments
(Exp1 and Exp2) run to isolate individual factors. The experiment
columns list the replacement policy, set associativity, block size (in
bytes), and write policy for each experiment. We measured the
traffic effects of block size for both LRU- andmin-replacement
caches (experiments III and IV). All experiments (except for Exp2
in experiment V) assumed a write-allocate, write-back policy.

These factors are not independent. Our complete set of results
showed that improving one factor tends to diminish the magnitude
of another, particularly if the factors are large. What is most signif-
icant about Table 9 is the lack of any one factor that dominates the
others, across all benchmarks. The factor that makes the largest
consistent contribution to traffic reduction, not surprisingly, is
reduction of block size. Our results do not consider request traffic,
which increases with smaller block sizes, and thus may be biased
in favor of smaller blocks.

Trace 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

Compress 25.3 18.4 18.7 19.5 21.9 25.5 29.2 30.7 32.5 <<< <<< <<<
Dnasa2 6.2 6.6 6.2 4.7 4.1 4.6 7.0 10.0 <<< <<< <<< <<<
Eqntott 56.3 38.7 34.5 35.8 49.7 94.4 100.5 94.1 72.7 47.7 28.6 <<<
Espresso 18.2 18.8 26.3 40.4 82.2 28.9 <<< <<< <<< <<< <<< <<<
Su2cor 14.1 14.5 15.1 16.4 17.2 21.9 20.1 25.7 40.3 28.7 35.8 <<<
swm 22.7 23.4 17.2 7.9 2.8 2.7 2.8 3.0 3.5 5.4 124.1 74.8
Tomcatv 6.4 6.6 6.2 3.9 2.3 2.0 2.0 2.0 2.1 2.4 1.6 3.7

Table 8: Traffic inefficiencies for 32-byte block, direct-mapped caches

10^2

10^3

10^4

10^5

10^6

10^7

64 256 1K 4K 16K 64K 256K 1M

Cache and MTC size (bytes)

T
ra

ffi
c

(K
B

)

(a) Compress

10^3

10^4

10^5

10^6

10^7

10^8

64 256 1K 4K 16K 64K 256K 1M 4M

T
ra

ffi
c

(K
B

)

(b) Eqntott

10^2

10^3

10^4

10^5

10^6

10^7

64 256 1K 4K 16K 64K 256K 1M 4M

Cache and MTC size (bytes)

T
ra

ffi
c

(K
B

)
(c) Swm

128B blocks

64B blocks

32B blocks

16B blocks

8B blocks

4B blocks

MTC with write-allocate

MTC with write-validate

Figure 4. Total traffic generated by different cache and MTC sizes

radical extension to the on-chip memory systems is to allow the
compiler to manage some data allocation and movement. For
example, the kinds of analyses performed for effective register
allocation might be readily extended to include other variables that
are stored in memory. We are currently investigating both how
novel hardware can be controlled by software, and how software
might take advantage of this opportunity.

Another short-term solution increasing effective off-chip band-
width is compression. Researchers have proposed and/or imple-
mented schemes to use compression for data [9], addresses [12],
and code [10]. All of these schemes increase effective bandwidth
to memory at the expense of some extra hardware on the CPU (and
at memory, in the case of the data and address compression).

A more radical technique than compression, which increases
effective off-chip bandwidth, is to begin building computational
ability into the memory system. The processor would then be able
to issue primitives more powerful than simple reads or writes, per-
haps even method invocations with the appropriate arguments. The
memory system would perform the computation locally and return
the result. The idea of “smart memory” is certainly not new, but we
may be entering an era when it becomes cost-effective.

A large percentage of today’s typical processor chip is already
devoted to on-chip memory. When enough transistors are avail-
able, a greater capacity on-chip will be more important than hav-
ing all of the on-chip memory be fast memory. DRAMs may
initially appear on multi-chip modules, but will eventually also be
incorporated onto the CPU die itself, as new manufacturing pro-
cesses are developed. We are currently evaluating the design space
for mixing DRAM and SRAM on-chip, determining the best way
to exploit the extremely high bandwidths attainable from on-chip
DRAM banks.

Looking further into the future, we envision a point at which
off-chip communication is so expensive that all of the system
memory resides on the processor chip (or module). If a system
designer wishes to provide more memory than is available on-chip,
another of these homogenous, processor/memory modules is
added. Off-chip accesses thus simply become communication with
another processor, and accesses to remote data have more in com-
mon with a page fault than with a cache miss. Whether this point is
reached by migrating computational ability into the DRAM sys-
tem, or by migrating DRAM onto the processor (or both), the end
result is the same. Figure 5 shows an example of such a system, in
which there is no “dumb” main memory, and cache banks are dis-
tributed among the on-chip DRAM banks. We believe that this is
how future systems will be designed.

We are currently investigating an execution model for such sys-
tems, for both uniprocessor and multiprocessor workloads. Given
the limited on-chip memory, multiprocessors are clearly the
method of choice for exploiting programs with obvious parallel-
ism. For less-easily parallelized programs, sophisticated hybrid
techniques employing some form of data-parallelism, or possibly
extensions to ESP as proposed for the Massive Memory Machine
[15], might provide competitive performance.

Benchmark Compress Dnasa7 Eqntott Espresso Su2cor Swm Tomcatv

Cache size 64KB 64KB 64KB 16KB 64KB 64KB 64KB
Associativity 1.8 -3.8 0.5 73.0 8.4 0.1 1.6
Replacement 12.0 8.4 31.0 3.9 4.6 0.3 0
Blocksize (cache) 25.0 2.7 47.0 68.0 14.0 0.3 1.3
Blocksize (MTC) 14.0 0.4 37.0 3.5 5.0 0.3 0.2
Write validate 1.2 1.2 31.0 1.0 1.2 1.3 0.7

Table 9: Inefficiency gap for different optimizations

Repl. & write policy, assoc., blk. size

Factor Exp1 Exp2

I. Associativity LRU, 1a, 32B, WA LRU, fa, 32B, WA

II. Replacement LRU, fa, 32B, WA MIN, fa, 32B, WA

III. Blk. size (cache) LRU, 1a, 32B, WA LRU, 1a, 4B, WA

IV. Blk. size (MTC) MIN, fa, 32B, WA MIN, fa, 4B, WA

V. Write validate MIN, fa, 4B, WA MIN, fa, 4B, WV

Table 10: Experimental parameters for Table 9

Using the min replacement policy has surprisingly small
effect. This is because a better replacement policy benefits only
codes that have an intermediate amount of locality. Cache replace-
ments occur infrequently for codes that have sufficient locality—
reducing the benefits of better replacement policies. Codes that
have little temporal locality (such as Swm) hardly benefit from a
better replacement policy. These results show that most bench-
marks can greatly reduce their total traffic to memory, but require
different sets of cache parameters per benchmark to do so.

The wide variance in performance based on block size—for
systems which tolerate latency and are at least partially limited by
insufficient memory bandwidth—indicates that machines of the
future will likely have programmable mechanisms to support vari-
able block sizes. Allowing software-controlled transfer sizes will
permit each application to optimize its traffic based on its refer-
ence patterns—large transfers to minimize request overhead if
there is sufficient spatial locality, and small transfers in the absence
of spatial locality. This philosophy can be extended to the other
cache parameters, and may become necessary as good use of on-
chip memory becomes essential to sustaining reasonable perfor-
mance.

6 Future solutions and summary

Both limited off-chip bandwidth and growing relative memory
access latencies have the potential to seriously degrade program
performance. Aggressive latency-tolerance techniques must be
implemented with discretion, as they have the potential to worsen
performance if memory bandwidth, not untolerated access laten-
cies, is the primary bottleneck for a given program. The potential
to overcompensate for latency tolerance will be particularly acute
with future processors that rely heavily on speculation to achieve
high performance.

A range of techniques for dealing with the growing expense of
off-chip accesses exist—above and beyond the brute force, expen-
sive solution of buying more bandwidth to the memory system. We
have shown that the potential exists to use on-chip memory much
more effectively, greatly reducing the number of requests that must
be made off-chip. Not surprisingly, no single technique emerged
for making better use of the on-chip memory. This fact suggests
that future designers should consider on-chip memory systems that
are more flexible, allowing the programmer or compiler to tune the
on-chip memory system parameters (such as block size). A more

6.1 Related work

A large volume of work on caches appears in the literature,
though most has focused on reduction in latency, ignoring the
memory bandwidth constraints. Smith’s classic survey [37] delin-
eated the fundamental issues concerning caches, including the
importance of memory bandwidth. Goodman recognized the
importance of a simple memory hierarchy for reducing memory
bandwidth, particularly in a multiprocessor environment [18]. Hill
and Smith subsequently measured the trade-offs between miss
ratio and traffic ratio by varying block and subblock sizes [20].
McNiven and Davidson looked at reducing traffic between adja-
cent levels of the memory hierarchy [31]. Sugumar and Abraham
developed an efficient method for simulating caches using themin
policy [44]. More recently, Tyson et al. studied ways to bypass the
cache with infrequently-referenced data, thereby reducing miss
rates [45]. Huang and Shen studied minimal required bandwidths
for current processors [23]. They considered only program-gener-
ated values, however, without quantifying actual program address
behavior.

6.2 Summary

This paper has shown that aggressive implementations of
latency-tolerance techniques in future processors will expose
memory bandwidth, particularly pin bandwidth, as a severe perfor-
mance bottleneck. We first surveyed a wide range of these tech-
niques and qualitatively showed that each one exacerbates
bandwidth limitations, either directly or indirectly. We also quali-
tatively analyzed technology trends, showing that future technol-
ogy is likely to aggravate the bottleneck of the chip boundary. To
permit quantification of future bandwidth limitations, we decom-
posed execution time into processing cycles, raw memory latency
stall cycles, and limited bandwidth stall cycles. Using this decom-
position, we measured how bandwidth stalls increase, as proces-
sors tolerate memory latencies more aggressively. For our
applications running on our most aggressive processor, we saw
that the stall cycles due to bandwidth exceeded latency stall cycles
in all cases but two. Excluding those benchmarks that fit comfort-
ably in the cache, the stall cycles due to bandwidth limitations
ranged from 11% to 31% of the programs’ total execution time.
These measurements have significant implications for the designs
of future processors. They also call into question the validity of
studies that assume a perfect memory system.

Given the increased importance of pin bandwidth as a precious
resource, we introduced the notion ofeffective pin bandwidth—the
pin bandwidth as seen by the processor when the on-chip caches

are considered. We usedtraffic ratios to compute effective pin
bandwidth, and measured these ratios for a range of programs and
cache sizes. We found that comparatively large caches eliminated
about half of the processor-generated traffic for our small bench-
marks. We then introduced the notion oftraffic inefficiency, which
places an upper bound on the amount by which caches can reduce
traffic. This bound enabled us to compute the maximal theoretical
effective pin bandwidth for a given cache and workload. We mea-
sured this bound for a range of programs and caches, showing that
effective pin bandwidth could in theory be increased by up to two
orders of magnitude—through better management of on-chip
memory. We decomposed this gap into individual factors, and used
these results to evaluate one and propose several schemes for
improving traffic ratios, thereby mitigating pin bandwidth limita-
tions. Finally, we proposed a number of solutions that range from
the near-term to the long-term. We hypothesize that all system
memory will eventually be coupled with the processor on the die,
enabling levels of performance far beyond what we can achieve
today.

Acknowledgments
We thank the many people who gave us insightful comments on

both this work and this paper: Mark Hill, Guri Sohi, David Wood,
Kazuaki Murakami, Alvy Lebeck, Ross Johnson, Mark Callaghan,
and Stefanos Kaxiras. We also thank Todd Austin for his valuable
assistance with the simulation environment. Finally, we thank the
anonymous referees for their extremely detailed and helpful
reviews.

References
[1] Santosh G. Abraham, Rabin A. Sugumar, B. R. Rau, and Rajiv

Gupta. Predictability of Load/Store Instruction Latencies. InPro-
ceedings of the 26th International Symposium on Microarchitecture,
pages 139–152, December 1993.

[2] Forest Baskett. Keynote address.International Symposium on
Shared Memory Multiprocessing, April 1991.

[3] L. A. Belady. A Study of Replacement Algorithms for a Virtual-
Storage Computer.IBM Systems Journal, 5(2):78–101, 1966.

[4] Doug Burger and Todd M. Austin. Evaluating Future Microproces-
sors: the SimpleScalar Tool Set. Technical Report 1308, Computer
Sciences Department, University of Wisconsin, Madison, WI, April
1996.

[5] Douglas C. Burger, Alain Kägi, and James R. Goodman. The
Declining Effectiveness of Dynamic Caching for General-Purpose
Microprocessors. Technical Report 1261, Computer Sciences
Department, University of Wisconsin, Madison, WI, January 1995.

[6] David Callahan, Ken Kennedy, and Allan Porterfield. Software
Prefetching. InProceedings of the Fourth Symposium on Architec-
tural Support for Programming Languages and Operating Systems,
pages 40–52, April 1991.

[7] Tien-Fu Chen and Jean-Loup Baer. A Performance Study of Soft-
ware and Hardware Data Prefetching Schemes. InProceedings of
the 21st Annual International Symposium on Computer Architec-
ture, pages 223–232, April 1994.

[8] William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen mei
W. Hwu. Data Access Microarchitectures for Superscalar Proces-
sors with Compiler-Assisted Data Prefetching. InProceedings of the
24th International Symposium on Microarchitecture, pages 69–73,
November 1991.

[9] Daniel Citron and Larry Rudolph. Creating a Wider Bus Using
Caching Techniques. InProceedings of the First International Sym-
posium on High-Performance Computer Architecture, pages 90–99,
January 1995.

[10] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Pap-
worth, and Paul K. Rodman. A VLIW Architecture for a Trace
Scheduling Compiler. InProceedings of the Second Symposium on
Architectural Support for Programming Languages and Operating
Systems, pages 180–192, October 1987.

Processor logic SRAM cache DRAM bank

Board-level interconnect

chip 0 chip 1

chip 2 chip 3

Figure 5. A unified processor/DRAM system

[11] Stefanos Damianakis, Kai Li, and Anne Rogers. An Analysis of a
Combined Hardware-Software Mechanism for Speculative Loads.
Technical Report TR-455-94, Princeton University, Princeton, NJ,
April 1994.

[12] M. Farrens and A. Park. Dynamic Base Register Caching: A Tech-
nique for Reducing Address Bus Width.Proceedings of the 18th
Annual International Symposium on Computer Architecture,
19(3):128–137, May 1991.

[13] John W. C. Fu and Janak H. Patel. Data Prefetching in Multiproces-
sor Vector Cache Memories. InProceedings of the 18th Annual
International Symposium on Computer Architecture, pages 54–63,
May 1991.

[14] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride Directed
Prefetching in Scalar Processor. InProceedings of the 25th Interna-
tional Symposium on Microarchitecture, pages 102–110, December
1992.

[15] Hector Garcia-Molina, Richard J. Lipton, and Jacobo Valdes. A
Massive Memory Machine.IEEE Transactions on Computers, C-
33(5):391–399, May 1984.

[16] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding
Memory Latency using Dynamic Scheduling in Shared-Memory
Multiprocessors. InProceedings of the 19th Annual International
Symposium on Computer Architecture, pages 22–33, May 1992.

[17] J. D. Gindele. Buffer Block Prefetching Method.IBM Tech. Disclo-
sure Bull., 20(2):696–697, July 1977.

[18] James R. Goodman. Using Cache Memory To Reduce Processor-
Memory Traffic. InProceedings of the 10th Annual International
Symposium on Computer Architecture, pages 124–131, June 1983.

[19] Mark D. Hill, James R. Larus, Alvin R. Lebeck, Madhusudhan Tal-
luri, and David A. Wood. Wisconsin Architectural Research Tool
Set.Computer Architecture News, 21(4):8–10, August 1993.

[20] Mark D. Hill and Alan Jay Smith. Experimental Evaluation of On-
Chip Microprocessor Cache Memories. InProceedings of the 11th
Annual International Symposium on Computer Architecture, pages
158–166, June 1984.

[21] Jia-Wei Hong and H. T. Kung. I/O Complexity: the Red-Blue Peb-
ble Game. InProceedings of the 13th Symposium on Theory of
Computing, pages 326–333, May 1981.

[22] L. P. Horwitz, R. M. Karp, R. E. Miller, and A. Winograd. Index
Register Allocation.Journal of the ACM, 13(1):43–61, January
1966.

[23] Andrew S. Huang and John P. Shen. A Limit Study of Memory
Requirements Using Value Reuse Profiles. InProceedings of the
28th International Symposium on Microarchitecture, pages 71–81,
December 1995.

[24] Norman P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. In Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, pages 364–373, May 1990.

[25] Norman P. Jouppi. Cache Write Policies and Performance. InPro-
ceedings of the 20th Annual International Symposium on Computer
Architecture, pages 191–201, May 1993.

[26] Alexander C. Klaiber and Henry M. Levy. An Architecture for Soft-
ware-Controlled Data Prefetching. InProceedings of the 18th
Annual International Symposium on Computer Architecture, pages
43–53, May 1991.

[27] L. I. Kontothanassis, R. A. Sugumar, G. J. Faanes, J. E. Smith, and
M. L. Scott. Cache Performance in Vector Supercomputers. InPro-
ceedings of Supercomputing ’94, pages 255–264, November 1994.

[28] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organi-
zation. InProceedings of the 8th Annual International Symposium
on Computer Architecture, pages 81–87, May 1981.

[29] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The
Cache Performance and Optimizations of Blocked Algorithms. In
Proceedings of the Fourth Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 63–74,
April 1991.

[30] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A
Multithreading Technique Targeting Multiprocessors and Worksta-
tions. In Proceedings of the 6th Symposium on Architectural Sup-

port for Programming Languages and Operating Systems,
volume 6, pages 308–318, October 1994.

[31] Geoffrey D. McNiven and Edward S. Davidson. Analysis for Mem-
ory Referencing Behavior For Design of Local Memories. InPro-
ceedings of the 15th Annual International Symposium on Computer
Architecture, pages 56–63, May 1988.

[32] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching. InProceedings
of the Fifth Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 62–73, October 1992.

[33] Subbarao Palacharla and R. E. Kessler. Evaluating Stream Buffers
as a Secondary Cache Replacement. InProceedings of the 21st
Annual International Symposium on Computer Architecture, pages
24–33, April 1994.

[34] Betty Prince. Memory in the fast lane.IEEE Spectrum, 31(2):38–41,
February 1994.

[35] Anne Rogers and Kai Li. Software Support for Speculative Loads.
In Proceedings of the Fifth Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 38–50,
October 1992.

[36] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working
Sets, Cache Sizes, and Node Granularity Issues for Large-Scale
Multiprocessors. InProceedings of the 20th Annual International
Symposium on Computer Architecture, pages 14–25, June 1993.

[37] Alan Jay Smith. Cache Memories.Computing Surveys, 14(3):473–
530, September 1982.

[38] Burton J. Smith. Architecture and Applications of the HEP Multi-
processor Computer System. InReal-Time Signal Processing IV,
pages 241–248, 1981.

[39] Guri Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar Pro-
cessors. InProceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, pages 414–425, June 1995.

[40] Guri Sohi and Manoj Franklin. High-Performance Data Memory
Systems for Superscalar Processors. InProceedings of the Fourth
Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 53–62, April 1991.

[41] Gurindar S. Sohi. Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers.IEEE
Transactions on Computers, 39(3):349–359, March 1990.

[42] Standard Performance Evaluation Corporation.SPEC Newsletter,
Fairfax, Virginia, December 1991.

[43] Standard Performance Evaluation Corporation.SPEC Newsletter,
Fairfax, Virginia, September 1995.

[44] Rabin A. Sugumar and Santosh G. Abraham. Efficient Simulation of
Caches under Optimal Replacement with Applications to Miss
Characterization. InProceedings of the 1993 ACM SIGMETRICS
Conference on Measurements and Modeling of Computer Systems,
pages 24–35, May 1993.

[45] Gary Tyson, Matthew Farrens, John Matthews, and Andrew Plesz-
kun. A New Approach to Cache Management. InProceedings of the
28th International Symposium on Microarchitecture, pages 93–103,
December 1995.

