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Abstract

Branch prediction is one of the main hurdles in the
roadmap towards deeper pipelines and higher clock
frequencies. This work presents a new approach to
enhancing current branch predictors: Selective Branch
Prediction Reversal. The rationale behind this proposal is
the fact that many branch mispredictions can be avoided if
branch prediction is selectively reversed. We present a
Branch Prediction Reversal Unit (BPRU) that selectively
reverses branch predictions by correlating with the
predicted values of the branch inputs, in addition to recent
control flow. As a case study, we have included the BPRU
in an already proposed branch predictor, the Branch
Predictor through Value Prediction (BPVP). The effect is a
reduction by half in its original misprediction rate. We
have also measured the improvement when the BPRU
engine is used in a hybrid scheme composed of a BPVP
and a gshare predictors. Results using immediate updates
show average reductions in misprediction rate ranging
from 7% to 14%. Performance evaluation of the proposed
BPRU in a 20-stage superscalar processor shows an IPC
improvement of up to 9%.

1. Introduction

One of the common ways to increase processor
performance relies on reducing the clock cycle. On a given
technology, fewer gates per pipeline stage result in higher
frequencies. However, this causes an increase in the
pipeline depth. For instance, the Intel P6 processor has a
pipeline of 10 stages and a first announced clock
frequency of 733 MHz at 0.18 microns, whereas the new
Intel Pentium 4 was first announced to work at a clock rate
of 1.4 GHz with the same technology. To achieve this
frequency, the pipeline is lengthened to 20 stages [6].

Deeper pipelines present a serious challenge: the
branch misprediction penalty increases since branches take
longer to be resolved and thus, the entering to the pipeline
of instructions from the correct path is delayed. Even if

branch prediction accuracy is quite high, small
improvements significantly influence performance, due to
the superlinear relationship between prediction accuracy
and processor performance [7].

This paper presents a new approach to enhancing
current branch predictors: Selective Branch Prediction
Reversal. The rationale behind this approach is the fact
that many branch mispredictions can be avoided if they are
selectively reversed. Inverting some branch predictions
was proposed by other authors [14]. However, their
approach showed limited performance benefits since the
inversion mechanism relied on correlating the inversion
with the outcome of recent branches. We propose a
Branch Prediction Reversal Unit (BPRU) that reverses
branch predictions based on the predicted values of the
branch inputs, and the path followed to reach the branch
(including the PC of the input producers). Thus, BPRU
correlates the inversions with data values and recent
control flow.

The BPRU can be combined with any other proposed
predictor. As a case study for the application of the BPRU,
in this work, we use as baseline predictor the Branch
Predictor through Value Prediction (BPVP) [8], which is a
branch predictor that already correlates predictions with
data values. The BPVP was shown to have extremely high
prediction accuracy when used in combination with a
correlating branch predictor such as the gshare [15],
outperforming other contemporary branch predictors. We
show that the proposed BPRU can significantly improve
the accuracy of the original BPVP. On average, the BPRU
reduces the misprediction rate of the BPVP by half.

The rest of this paper is organized as follows. Section 2
presents a taxonomy of branch mispredictions. The
proposed BPRU is described in Section 3 and Section 4
analyzes its performance. Section 5 presents the related
work, and finally, Section 6 summarizes the main
conclusions of this work.

2. Taxonomy of Branch Mispredictions

This section motivates the inclusion of a Branch



Prediction Reversal Unit (BPRU) in a traditional branch
predictor. We focus our analysis on the BPVP [8], which
predicts branch outcomes by predicting the values of their
inputs and performing an early computation of their results
according to the predicted values.

Figure 1 establishes a relationship between the behavior
of the value predictor and branch predictions. Value
predictions can be split into confident and non-confident,
depending on the confidence counter of the entry being
used1. Each of them can result in a branch input hit or a
branch input miss. A value prediction hit causes a branch
prediction hit. However, a value prediction miss does not
necessarily cause a branch miss. For instance, if a branch
checks whether the input value is different from zero, any
predicted input value but zero will cause a branch hit.

Table 1 quantifies the frequency of the different cases
described in Figure 1 for the whole SpecInt95 benchmark
suite. The BPVP uses an 8 KB stride predictor as value
predictor. Section 4 further details the experimentation
process. First of all, the value predictor provides 57.9% of
confident predictions and 42.1% of non-confident ones.
Most of the confident input predictions are correct (52.4%
over 57.9%), and just a minor percentage cause branch
misses (3.2% over 57.9%). Furthermore, for the non-
confident input predictions, 31.5% over 42.1%, lead to
value mispredictions. We also see that the majority of the
total branch mispredictions come from these non-

                                                          
1 Value predictor entries have a confidence field, usually implemented as
a saturating counter, in order to assign confidence to predictions [12].

confident input mispredictions (11.2% over 14.4%). All
benchmarks follow this trend, which suggests a correlation
between branch mispredictions and value predictions:
most branch misses come from non-confident predicted
inputs and only a few branch mispredictions come from
confident ones. However, in order to reverse branch
predictions, not only the confidence counters of the value
predictor should be taken into account. If all branch
predictions based on non-confident input predictions were
reversed, the overall accuracy would be degraded.

3. Branch Prediction Reversal Mechanism

This section analyzes alternative parameters that may
be used in a branch reversal mechanism and then, the
proposed implementation of the BPRU is described.

3.1. Quantitative Analysis of the Branch Reversal
Mechanism

We have performed an off-line analysis in order to gain
some insight into the processor parameters that provide a
better correlation with branch mispredictions. The
following parameters have been independently examined:

a) The predicted value of the branch input.
b) The PC of the branch input producer.
c) The predicted branch input and the branch PC.
d) The predicted branch input and the PC of the branch

input producer.
e) The predicted branch input, the PC of the branch input

producer and the path followed to reach the branch.

We have run the entire SpecInt95 suite using a
modified version of the sim-safe simulator [2]. Then, the
occurrences of cases A, B and C (see Figure 1) are
measured for the five scenarios, assuming unbounded
storage resources. For those parameter values for which
Equation (1) is fulfilled, the branch prediction is reversed.

occurrences in A > (occurrences in B + occurrences in C) (1)

Thus, a new misprediction rate is obtained, which
shows the potential of reversing the branch prediction
considering this a priori information. More details about
these experiments can be found in [1]. Figure 2 shows the
new misprediction rate for gcc, go, ijpeg and li

input hit input hit
br. hit br. hit br. miss br. hit br. hit br. miss

gcc 42.8% 4.4% 3.4% 11.2% 23.8% 14.4%
compress 46.4% 0.8% 4.6% 10.9% 22.4% 14.9%

go 27.3% 3.9% 5.4% 16.6% 27.4% 19.3%
ijpeg 63.3% 1.6% 2.5% 10.3% 13.1% 9.1%

li 45.9% 1.6% 2.0% 5.8% 33.9% 10.9%
m88ksim 76.2% 0.9% 2.6% 3.7% 11.0% 5.5%

perl 46.8% 3.5% 3.2% 12.9% 23.5% 10.1%
vortex 70.6% 1.9% 1.5% 13.4% 7.2% 5.4%

AVERAGE 52.4% 2.3% 3.2% 10.6% 20.3% 11.2%
57.9% 42.1%

Non-conf. pred. input
input missBenchmark

Confident pred. input
input miss

confident

Branch input
prediction

input miss

input hit branch hit

branch miss

branch hit

non-conf.

input miss

input hit branch hit

branch miss

branch hit

A

B

C

Figure 1. Diagram of the different branch outcomes depending
on the input prediction.

Table 1. Branch prediction breakdown for an 8 KB BPVP.
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applications for the five evaluated scenarios. The
underlying branch predictor is the BPVP using a stride
value predictor with an unrealistic size of 1 MB in order to
isolate the potential of our proposal from the performance
of the value predictor. It can be observed that the approach
(e) is the best one. It reduces the BPVP misprediction rate
by half for all benchmarks. These results show the
potential of branch prediction reversal to enhance the
performance of branch predictors when data values and
control flow information are taken into account.

3.2. Branch Prediction Reversal Unit (BPRU)

This section presents the implementation of the Branch
Prediction Reversal Unit (BPRU). As a case study, we
show how it works in conjunction with the BPVP
predictor, although this unit could be included in any
branch predictor.

Figure 3 depicts the block diagram of the BPRU. It
consists of a Reversal Table (RT) and the logic necessary
for making the reversal of the preliminary branch
outcome. Each entry of the RT stores a reversal counter,
which is an up/down saturating counter, and a tag. The RT
is accessed when the branch is predicted, by hashing some
processor state information. The most significant bit of the
counter of the corresponding RT entry indicates whether
the branch outcome is reversed. Once the correct branch
outcome is computed, the RT entry is updated,
incrementing the counter if the preliminary branch
outcome was incorrect, and decreasing the counter
otherwise.

Figure 4 depicts the block diagram of the BPRU when
it is integrated along with the BPVP predictor. Details
about how the BPVP works can be found in [8]. We refer
to this new scheme as BPVP+BPRU. According to the
analysis of the previous section, the most effective
approach to reversing branch predictions is to correlate
with the predicted value, the PC of the branch input
producer and the path followed to reach the branch. The
first and the second parameters along with a non-
confidence signal are forwarded from the BPVP to the
BPRU. In addition, the BPRU maintains a Path History

Register (PHR), which stores the path followed to reach
the branch. For each fetched control-flow instruction
(conditional or unconditional), the PHR is shifted 2 bits to
the left and the 2 least significant bits of the PC are shifted
in. The RT is indexed by hashing the PC of the branch
input producer, the predicted value and the PHR.
Nevertheless, for other branch predictors, different
information could be used, such as the values of some
particular registers, the branch PC, history of recent
outcomes, etc.

Conflicts in the RT are one of the major problems that
may limit the BPRU performance [1]. We observed that
the use of tags alleviates destructive aliasing, obtaining
higher performance than a non-tagged RT of the same size,
despite of the space occupied by the tags. Besides, the
replacement policy of the RT has to be carefully selected.
Our replacement policy gives priority to entries with lower
values in their reversal counter.

4. Experimental Results

This section analyzes the performance of the proposed
BPRU engine when it is integrated along with the BPVP.
We also present results for a hybrid mechanism composed
of two correlating predictors: bimodal (2bit) [19] and
gshare [15]. Thus, the evaluated hybrid predictors are:
BPVP+BPRU+gshare, BPVP+gshare, and 2bit+gshare2.

4.1. Simulation Methodology

We have considered the five programs from the
SpecInt95 benchmark suite that exhibit the highest
misprediction rates. Table 2 shows for each benchmark the
input set, the number of dynamic instructions and the
number of conditional branches. All benchmarks were
compiled with maximum optimizations (-O4 -migrate) by
the Compaq Alpha compiler, and they were run until

                                                          
2 The first and the second predictors use the selector proposed in [8],
whereas the 2bit+gshare uses the selector proposed in [15]. For each
case, we chose the selector that produced the best results.
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completion using the SimpleScalar/Alpha v3.0 tool set [2].

Benchmark Input Set
# dyn. Instr.

(in Mill.)
# dyn.cond.

branch (Mill)
compress 40000 e 2231 169.6 12.6
gcc genrecog.i 145.4 19.3
go 9 9 145.6 15.4
ijpeg specmun -qual 45 166.0 9.4
li 7 queens 242.7 32.0

Table 2. Benchmark characteristics

4.2. Results for Immediate Updates

The first set of experiments update prediction tables
immediately, in order to evaluate the potential of the
selective reversal mechanism when it is isolated from
other aspects of the microarchitecture (using the sim-safe
simulator). We first measure the misprediction rate of the
BPVP+BPRU predictor for different sizes. For each
configuration, half of the total size is devoted to the BPVP
and the other half to the BPRU. The RT is implemented as
an 8-way associative table using 13 bits for tags and 3 bits
for the reversal counters. All the experiments compare
predictors of the same total size, including the space
occupied by tags and counters.

Figure 5 shows the results. It can be observed that
BPVP+BPRU significantly outperforms BPVP for all
benchmarks and all evaluated sizes. On average, the
BPRU reduces the misprediction rate of the BPVP by half
for 32 KB capacity. Besides, as the total predictor size
grows, the difference between both misprediction rates
becomes higher, which shows that the BPRU exploits
other type of correlations not included in the BPVP.

The misprediction rate of the BPVP is not impressive,
since this predictor was designed to be used in conjunction
with a correlating branch predictor [8]. Figure 6 shows the
misprediction rates for the hybrid BPVP+BPRU+gshare,
BPVP+gshare and 2bit+gshare predictors. More details
about the configurations used can be found in [1].

First, the BPVP+BPRU+gshare outperforms the
BPVP+gshare for all benchmarks and for all size
configurations excepting compress, for which both show
about the same performance. The BPVP+BPRU+gshare
with a size of 36 KB obtains, on average, a similar
misprediction rate than the BPVP+gshare of 128 KB.
Second, the combination of BPVP+BPRU+gshare
significantly outperforms the 2bit+gshare for all size
configurations. On average, the BPVP+BPRU+gshare
with a total size of 9 KB has about the same misprediction
rate (7.7%) as the 2bit+gshare of 128 KB (7.5%).
Summarizing, on average the BPVP+BPRU+gshare
reduces the misprediction rate by a factor that ranges from
7% to 14% with respect to the BPVP+gshare, and from
24% to 35% with respect to the 2bit+gshare.

Finally, we note that the potential of the BPRU is

limited by destructive aliasing when accessing the RT.
This can be observed by looking at the misprediction rate
of the BPVP+BPRU+gshare using an interference-free
RT. The unbounded RT provides huge improvements for
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all benchmarks. For instance, in the go program, the miss
rate of an 8 KB BPVP+gshare drops from 18% to 9%
when a BPRU with an interference-free RT is included.
This shows the potential of the proposed branch reversal
mechanism as well as an opportunity for improvement by
using better indexing schemes to access the RT.

4.3. Results for Realistic Updates

This section presents an evaluation of the proposed
BPRU in a dynamically-scheduled superscalar processor.
Details of the simulated superscalar pipeline are described
in Table 3. In addition, the original sim-outorder simulator
pipeline has been lengthened to 20 stages, following the
pipeline scheme of the Pentium 4 processor [6].

F etch  en gin e
U p to  8  in structions/cycle , 2  taken  b ranch es,
8  cycles m ispred ictio n  p enalty.

E xecu tion  engin e
Issues up  to  8  in structions/cycle, 128 -en tries
reord er buffer, 6 4 -en tries load /sto re queue.

F un ctional U nits
8  in teger alu , 2  in teger m ult, 2  m em p orts,
8  F P  alu , 1  F P  m u lt.

L1  In str-cach e
128 K B , 2-w ay set associative, 32 bytes/lin e,
1  cycle  h it latency.

L1  D ata-cach e
128 K B , 2-w ay set associative, 32 bytes/lin e,
1  cycle  h it latency.

L2  un ified  cache
512 K B , 4-w ay set associative, 32 bytes/lin e,
6  cycles h it latency, 18  cycles m iss laten cy.

M em ory
8  bytes/line , virtual m em o ry 4  K B  pages,
30  cycles TLB  m iss.

Table 3. Simulated superscalar pipeline parameters.

Figure 7 shows the IPC obtained for each benchmark
when using the BPVP+BPRU+gshare, BPVP+gshare and
2bit+gshare predictors for three different sizes. The
latency considered for the 2bit+gshare is one cycle, that
is, the branch prediction is made during the fetch stage.
The latency considered for the BPVP+BPRU is 3 cycles,
since the BPVP has to perform several table accesses to
provide the prediction3 [8]. We can observe that the
addition of the BPRU results in a significant speedup for
all cases. The average IPC obtained with the

                                                          
3 To reach this latency, accesses to the different tables can be pipelined
by adding latches in between.

BPVP+BPRU+gshare predictor is significantly higher
than the IPC of the 2bit+gshare (average speedups of
13%, 14% and 14% for 32 KB, 64 KB and 128 KB
respectively). Also, a BPVP+BPRU+gshare of about 32
KB achieves the same performance as a BPVP+gshare of
128 KB.

Table 4 shows the speedup obtained by BPVP+BPRU+
gshare with respect to BPVP+gshare and 2bit+gshare for
a total predictor size of 64 KB.

Baseline BPRU compress gcc go ijpeg li AVG.

realistic 1.07 1.04 1.09 1.03 1.07 1.06
Interf.free RT 1.22 1.11 1.18 1.08 1.11 1.14

realistic 1.19 1.13 1.25 1.05 1.09 1.14
Interf.free RT 1.29 1.28 1.38 1.10 1.12 1.23

BPVP+
gshare

2bit+
gshare

Table 4. Speedup for a total size of 64 KB.

The average speedup of the BPVP+BPRU+gshare over
BPVP+gshare is 6%. Go is the benchmark that obtains the
highest speedup (9%). Comparing BPVP+BPRU+ gshare
with 2bit+gshare, the average speedup is about 14%. The
benchmark that obtains the best speedup is again go
(25%). Finally, the speedup of the BPRU with an
interfererence-free RT is very high, specially for compress,
gcc and go. For a size of 64 KB, the average speedups
over BPVP+gshare are 22%, 11% and 18% respectively.

5. Related Work

The vast majority of branch predictors rely on the fact
that the outcome of a branch may correlate with its own
history [19][20], the behavior of previous branches
[15][19], or the path followed by the program [16]. Some
other works have focused on improving the performance
of those predictors by avoiding aliasing [4][18] or by
combining different branch predictors [5][15].

On the other hand, several studies have shown that
some instructions generate data values that follow
predictable patterns [13][17]. Therefore, value prediction
has been mainly applied to data value speculation [3][12].
The aim of these proposals is to overcome the serialization
imposed by data dependences.

In [17], the potential of improving branch prediction
accuracy by using data value prediction is suggested but
no particular mechanism is proposed. In [8], it is proposed
the BPVP predictor, which correlates branch predictions
with data values, obtaining a very high accuracy when it is
used along with a correlating branch predictor. In [10], it
is proposed a branch predictor which correlates with data
values to index a prediction table. The scheme also
includes a Rare Event Predictor, for the exceptional cases.

In [11], a branch confidence estimator is proposed, and
although it is suggested that can be used for branch
reversal, neither a particular implementation nor a miss
rate evaluation is presented. In [9], different branch

IPC
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confidence estimators are proposed and, in [14], they are
evaluated when used for Selective Branch Inversion. All
proposed confidence estimators are based on correlating
with recent branch outcomes and the branch PC, without
correlating with other processor parameters such as data
values. The results showed average misprediction
reductions by a factor of 5%-7% over a 2bit+gshare
(named mcfarling in that work), which is lower than the
reduction we present in this work (7%-14% achieved by
the BPRU+BPVP+gshare over BPVP+gshare, which, in
turn, is a better predictor than the 2bit+gshare).

6. Conclusions

In this paper we have proposed a Selective Branch
Prediction Reversal mechanism as an effective approach
to improving branch prediction accuracy. It relies on the
fact that many branch mispredictions can be avoided if
they are selectively reversed based on some processor
parameters. We have evaluated several parameters and
showed that the result of a branch prediction can be
correlated with the predicted data value of the branch
input, path history and the PC of the branch input
producer. We have proposed a Branch Prediction Reversal
Unit (BPRU) that selectively reverses particular branches
likely to be mispredicted, based on the above parameters.

As an example of its functionality, we have integrated
the BPRU with the BPVP predictor, which on average
results in a reduction in misprediction rate by half. In
addition, we have compared the hybrid BPVP+BPRU+
gshare against both the BPVP+gshare and the
2bit+gshare predictors. Results using immediate updates
show average reductions of misprediction rates by a factor
that ranges from 24% to 35% over 2bit+gshare, and from
7% to 14% over BPVP+gshare.

We have also evaluated the proposed BPVP+BPRU+
gshare predictor for a superscalar processor with a 20-
stage pipeline using realistic table updates and prediction
latencies. Results show average speedups of 6% (up to 9%
for some applications) over BPVP+gshare and 14% (up to
25%) over 2bit+gshare. Results have also shown that the
potential performance of the BPRU is limited by
destructive aliasing. This suggests an opportunity for
improvement by exploring other indexing schemes to
access the Reversal Table.
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