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1. Introduction

Abstract It is well-known that achieving high performance

To achieve highly accurate branch prediction, it is'n 4 wide ISsue and deeply plpellne_d processar
necessary not only to allocate more resources to brancFﬁemandS a highly agcgrate branch prediction mecha-
prediction hardware but also to improve the understand "S- Branch pr_eghcnon research has developed
ing of branch execution characteristics. In this paper, wdncreasingly sophisticated analysis methods to under-
present a new profile-based conditional branch analysi§tand the underlying execution behavior of branch
technique calletbranch working set analysito provide  Instructions. This analysis has lead to the develop-
additional information about control flow behavior of ment of a string of new, powerful predictors in both
general purpose applications. This analysis evaluategcademic and industrial research and development
the dynamic behavior of branch execution by parti’[ion_initiaﬂves. Since the introduction of 2-level branch
ing either individual branches or pre-classified branchprediction [2, 3], branch prediction research has
groups into sets based on temporal locality and orderingocused on improving predictor performance by
information. We refer to these sets as the working sets ofsing more sophisticated analysis techniques to iden-
branches. tify the characteristics of mispredictions. It has been

To demonstrate the usefulness of this form of analyshown [4, 6, 10] that certain branches are better pre-
sis, we examine the efficiency of current allocation techdicted with history information derived from different
niques for branch history table (BHT) space andbranch instructionsirfter-correlatio) while others
propose a new solution to this allocation process thahave better prediction accuracy when branch history
improves the performance of these tables. In oufs |imited to that branch instructiorinfra-correla-
approach the mapping between branch instructions anﬁon)_ Designs of hybrid branch predictors [6, 14]
BHT entries is specifieq during compilation to _redupeseek to improve predictor accuracy by incorporating
table contention -- leading to more relevant h'Stor'eSmuItipIe predictors with a selection mechanism to

and improved predictor performance. As a result, evenyo “yhe " pest predictor (either inter-correlated or

for programs with a large number of static br"’mChes‘:intra—correlated). Recent work has explored the effect

only 100 to 200 history entries are needed to approxi-_. . : .
ma)t/e the performanceyof larger 1024-entry BH'IPpFur-Of interfering branches in prediction tables [11] and
: : . " .. the feasibility of classifying branches into groups
thermore, when the technique is applied to a predictor .~ "~ . )
with 1024-entry BHT, its prediction accuracy is W't.h similar behawor [9]' This work has been shown
improved by 16% -- comparable with the performanceto improve the prediction accuracy of 2-level branch
of a BHT of infinite capacity. predictors [15, 18]. In addition, program or profile-
based static branch predictions [5, 8, 12, 13, 16, 25]

*Currentlyemployedwith Intel Corporation, SantaCIara,and branch alignment techniques [7, 17] have

CA 95052 exploited compiler supports to improve the perfor-
mance of branch prediction -- both static and
dynamic.

In this paper, we propose a new profile-based
conditional branch analysis technique callednch
working set analysigvhich provides additional infor-
mation about the behavior of branch execution and
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how that behavior effects the underlying dynamic  This paper is organized into six sections. Section
branch prediction microarchitecture. This analysis i presents some related works in branch prediction.
based on the notion that the execution of conditionabection 3 describes the simulation environment used
branches in a general purpose program contain terfer the branch working set analysis and the branch
poral locality and ordering characteristics just as thallocation. Section 4 presents the branch working set
execution of other operations and data references. Mnalysis methodology and its results. Section 5 intro-
Gloy et al [19] proposed a procedure reorderingduces and analyzes the branch allocation technique
method that utilizes the temporal ordering informa-and its performance results. Finally, section 6 con-
tion related to function level execution interleaving,cludes the paper.

and showed that their method can significantly reduce

I-cache conflict misses. We adapt their techniques t8. Related Work

improve the efficiency of the resources used to per-

form branch prediction with the goal of improved on understanding execution behavior of branch

predictor performance. . .
. . . instructions to further enhance already accurate
Our analysis of branch interaction evaluates the

. . - . . namic prediction mechanisms. In thi ion, w
interleaving of conditional branch execution obtalneddy amic prediction mechanisms this section, we

- examine research relating to branch working set anal-
from profiling several runs of a program. The branch

. ) : . . _ ysis and conflict avoidance in the BHT.
instructions in a program can then be partitioned int . .

S N. Gloy et al [19] introduced an algorithm to
sets such that branches whose execution interleaves

: ; Inimize instruction cache conflicts by reordering
above certain threshold are placed in a same set. We g
. rocedures based on the specifics of an I-cache con-
refer to these sets as the working sets of branche

. ; . . iguration and the temporal ordering of procedure
branch instructions in the same working set compete : : .
. : : ) Ihvocation. In branch working set analysis, we exam-

for predictor resources potentially increasing branch ; 4 .
. . ine the temporal ordering of branch instructions to

table interference. The method to determine the

. L : : improve branch prediction accuracy.
working sets of branches is similar to live variable P P Y

. . : Branch working set analysis partitions branches
data flow analysis and a graph coloring based register s i
. : . >~ or pre-classified branch groups into sets based on
allocation technique [21], only instead of dealing,, o= .
. : : - . _“their amount of execution interleaving. Branches are
with variables and register specifiers, the analysis is . . . : 7
. : ; placed in the same working set if their execution is
performed on conditional branch instructions.

To demonstrate the potential use of the workin interleaved above certain threshold value. The algo-

. . "NGithm used to calculate the degree to which branches

set analysis related to conditional branch execution, . . C

. . . are interleaved will be presented later in this paper. If

we examine an alternative branch prediction tech; . . o .

. , . branch instructions exhibit the same execution behav-
nigue calledoranch allocationwhich enables a com-

ior (e.g. high biased to be taken) it may be beneficial

piler to manage an underlying hardware brancqo gather the branches into groups which share

prediction tab_le by speC|fy_|r_1g the mapping bet\'\./eenresources. As an example, two branches that almost
the table entries and conditional branch instructions,

. : . always proceed down the taken path can share the
In this paper, we apply branch allocation to improve

the efficiency of the BHT of a 2-level predictor. By same history in the BHT without a reduction in pre-

- . . _Idictor accuracy -- their histories would be the same
assigning each static conditional branch to a BH . .
anyway. By grouping the resource (branch history) of

gntry Whlch does not mat(;h that of other 'br'ar!cl}hese branch instructions contention for remaining
instruction in the same working set, we can minimize; =" iec can be reduced. P-Y Chang et al [9]
table interference and improve prediction accuracy . quced a mechanism callédaﬁcﬁ classification

The mapping method used in the allocation technlqu% enhance branch prediction accuracy by classifying

closely follows a graph coloring based register allocabranches into groups of highly biased (towards taken

ion technique that enable_s a c_ompiler to efficientlyand towards not taken) or unbiased branches and used
man‘?og(ielILiirg:gce:;g:nzzgriteerbftlelr?.efits of the branc this information to reduce the conflict between
allocation on BII?IT a local historv based 2_Ie\/e:l)r<';1nches with different classifications. In the branch

! y working set analysis, to improve the performance of

; . ranch all ion, we r he workin iz
comparison of SPECInt95 and several commor?maba ch allocation, we reduce the working set size

UNIX applications [20] are presented. of branches in a program by incorporating the taken

Recent research in branch prediction has focused
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frequency based branch classification into the analy- In branch allocation we use the analysis of
sis, treating all highly biased branches (e.g. not takerranch interleaving to assign each branch instruction
as a single branch group sharing predictor resourcéas a BHT entry. For the performance comparison
(e.g. BHT history). between a typical local history based 2-level predictor
B. Calder et al [7] proposed improved basicand a predictor with branch allocation technique, we
block reordering algorithms calldstanch alignments have modified a branch predictor in the base Sim-
which incorporate static or dynamic branch predicpleScalar toolset (sim-bpred) to incorporate the static
tion architectures, and perform a link-time basicBHT index assignments generated by the allocation
block reordering to reduce mispredict and misfetctroutine.
penalty cycles. Six out of eight SPECint95 benchmarks and sev-
Since the introduction of 2-level branch predic-eral common UNIX applications [20] are used to per-
tion [2, 3], dynamic branch prediction research haform the branch working analysis and to demonstrate
concentrated on analyzing and enhancing the 2-levéhe performance of the branch allocation technique.
schemes [4, 6, 9, 10, 11, 14, 15, 18, 24]. In general, All benchmarks are either run to completion or run
2-level predictor uses a part of instruction fetchfor the first 500 million instructions. Note that to
address in PC as an index value to its first level hismaintain reasonable time and space for the experi-
tory table such as BHT or its second level historyments, we have reduced the number of static condi-
table in conjunction with branch direction outcomestional branches from each benchmark based on the
from the first level table. The PC based index hashinfrequency of occurrences. Table 1 shows the bench-
generally uses a modulo of the low order instructiommarks, the input sets used and the percentage of
fetch address bits to indicate the table index. This wiltlynamic branches analyzed.
lead to conflicts among branches that share the same
low order bits. Talcott et al [11] analyzed the effect of
branch prediction table interference and showed its

. . T Percentage
negative influence on prediction accuracy. P.-Y} genchm o Dynamic | of the
Input set ynamic ranches ynamic

Chang et al [15] and E. Spra'-ngl_e [18] SUQQESted hard- arks branches analyzed branches
ware solutions to the negative interference problems analyzed

in the sgcon(_j level table of 2-level prediction sche_m: com- | compress sma 17084797| 1708231  99.99%
by filtering biased branches [15] and by neutralizing press ILin
negatively interfering branches [18]. For the purposée

- gce jump.i 31060483 2911691 93.74%
of the branch allocation, we attempt to reduce the
contention in BHT by statically assigning branches tg P9 vigo-ppm 47371202 47370048 99.99%
entries in BHT based on the working set analysis i li_ref.out 117061934| 117050321  99.99%
information. . .
m88ksi ctl.big 113363291 113350674 99.99%
m
3. Simulation Environment perl scrabbl.in 7764844 7752111 99.84%
All simulations in this study are conducted using .. simin 2344842 p3a26413  99.91%

the SimpleScalar tool set [22] provided by T.M. Aus
tin and D. Burger from the University of Wisconsin.| 95 | sigmelricsodp| 40286429| 40224123~ 99.85%
For the branch working set analysis the SimpleScala

toolset is used to generate necessary profile informa- P9 NPPO7.ps 4845613j 48437347 99.96%
tion on conditional branch execution. Then, we have piot surface2.dem 5550088] 55476752  99.96%
designed analysis tools -- adapted from live variable
data flow analysis used in graph coloring based regi
ter allocation algorithms -- to process the data on con-simples- | testfmath 18961136 1894012 99.89%
ditional branches in order to summarize the temporal (ss)
locality and ordering information. Finally, the last
step of analysis parses the temporal ordering informa
tion and generates the working set information o
conditional branches.

-

)

python yarn.tests.py 4713493 471058710  99.94%

tex output- 27516428 27488833 99.90%
PACT96.tex

Table 1: Benchmarks, Input sets and
Percentage of branches analyzed
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4. Branch Working Set Analysis executes branches B and C, and each receives time

Istamp valued0 and15 respectively. After branch C,

we encounter another dynamic instance of branch A.

analysis Branch working set analysis uses proﬁleWe then check if there is any branch with time stamp
greater than the branch As time stamp of 5; both B

qurmatlon, bunt'from one or more runs Qf an app“'.and C have time stamps that are greater than the
cation to determine the execution behavior of condis

: o ranch As time stamp. At this point, we have identi-
tional branches. It utilizes a summary of temporal. L . !

. N : ._ “fied the execution interleaving of branches A with B,
locality and ordering information collected during

I - : .~ and C. The second step of the analysis records each
conditional branch profiling to recognize execution.

interleaving of conditional branches. The foIIowingInStance of branch execution interleaving between

subsections present the detailed methodology used bnranches A and B, and branches A and C. This will

branch workina set analvsis and its primary results. °¢ used to calculate an overall interleave count during
9 y P y " program execution. After the second step, branch A's

4.1 Methodology time stamp is updated with a new time sta2@) énd

) o ) ] processing continues until the end of profile run is
The first step of the analysis is to identify the oached.

amount of execution interleaving for each conditional  The second step of the analysis summarizes the

branch. This step is analogous to the live variablégmporal locality and ordering information by con-
data flow analysis typically used for a graph coloringsicting a conflict graph based on the branch execu-
based register allocation [21]. The difference is tha};y, interleaving information from the first step

the working set analysis is profile-based and the livena)ysis. This is analogous to constructing a variable
variable analysis is a program-based static techniqunflict or interference graph in a graph coloring
_ To identify the execution interleaving of condi- hase( register allocation. A variable conflict graph is
tional branches, during the profile run of a programeomngsed of nodes which represent variable names
we mark each branch with a time stamp when thgnq eqges which represent a conflict, meaning, if
branch is executed. we use a count of the number gfqore is an edge between two nodes, the two variables
instructions executed prior to that dynamic branchye simultaneously live. In Figure 2, the variable con-

instance as a domesticate. Figure 1 shows an exampig; graph reveals the fact that the variables a, b, and
of this process for an application that executes ong 4. simultaneously live.

branch every 5 instructions.

We propose a new profile-based conditiona
branch analysis technique callechnch working set

Dynamic sequence A variable conflict graph
Branch Time stamp

Branch A Branch 5 <-20 ° °
Branch

B
Branch\B 10
Branch C
A conflict edge
A

Branch Branch C 15

A branch conflict graph
1000

Branch Time stamp
Branch A 20
Branch B 10

50
Branch C 15 °

Figure 1: Time stamp analysis example of A conflict edge with
branch execution behavior an interleave count

Referring to Figure 1, branch A is time stamped ~ Figure 2: Variable conflict graph and
5 indicating that there have been 5 instructions exe- branch conflict graph examples
cuted prior to branch A. The profile run continues and
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A conflict graph for summarizing the temporal branches in a working set, and its dynamic average
locality and interleaving related to conditional branchnumber -- weighted by branch execution count -- are
execution is similar to that of a variable conflict presented.
graph. As shown in Figure 2, each node in the branch
conflict graph represents a conditional branch instruc-

tion, and an edge between two nodes represent that _ Average Average

the execution of the two branches is interleaved at Total static # static dynamic

some point in the profile run of a program. Executior Benchmarks | - of Vlzrtzmg working set | working set

interleaving for a pair of branches can occur multiplé size size

times during the profile run, hence, to capture the compress 294 41 25

multiple occurrences of branch interleaving, we add

an interleave counter along with each edge in the  9¢¢ 51888 365 336

branch conflict graph. For instance, in Figure 2, the  jjeq 246 27 36

execution of branch A and B have been interleave

for 1000 times. . 2792 178 154
The final step of the analysis partitions the condit  mgsksim 1203 144 150

tional branch instructions into working sets based on

the branch conflict information from the first two per 1079 > >1

analysis steps. Our definition of a working set is a set  chess 23936 250 244

of conditional branch instructions which form a com- ogp +75 45 39

pletely interconnected subgraph in the branch confligt

graph. Note that many other definitions of a working plot 5370 143 185

set are possible and undoubtedly some will prove bet- ., 25216 347 318

ter at categorizing branches, but for the simplicity o

the study, a complete subgraph definition is used. ss 19368 287 246

i Table 2: The Sizes of Branch Working Sets
4.2 Analysis and Results

Before presenting the results of the analysis, The primary result in Table 2 shows that the
there is one refinement step applied to a branch comumber of conditional branches that are in the same
flict graph. Each edge in the conflict graph identifiesvorking set is relatively small. For examplegm-
the number of times two branch instructions havepressshows an average of only 25 branch instructions
been interleaved during execution. The interleavavhile evengcc which contains more than 16,000
count for two branches can be very high if they are irstatic conditional branches shows an average working
the same loop, but for others, the count can be triviset size of only 336. This indicates that a branch pre-
ally small and can be eliminated from consideratiordictor only needs to allocate its cache-like history
to reduce processing time. table space for a relatively small set of conditional

To eliminate small and incidental conflicts, abranches at one time following the temporal ordering
threshold value is given and any edge with a smalleénformation.
count than the threshold is eliminated. This can effec- We believe that analyzing the working set behav-
tively reduce the size of the conflict graph while hav-or of branch execution can be used to improve pre-
ing little impact on the overall working set dictor performance by getting more efficient
information. We have chosen a threshold value ofitilization from predictor resources. In addition,
100; the majority of edge values for branches in although not presented in this paper, it is clear that the
working set are several orders of magnitude higheanalysis can be applied not only to individual
than 100, but 100 is high enough to eliminate a signifbranches but also to pre-classified branch groups to
icant number of edges for programs with a large numbe incorporated with other branch analysis tech-
ber of working sets. Other threshold values such asiques.

500 or 1000 show no significant difference on the
results. Table 2 shows the primary results of the anal-
ysis. For each benchmark shown in Table 2, the total
number of working sets, the static average number of
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5. Branch Allocation final step of the allocation technique processes the

To demonstrate the use of the working set anal branch conflict graph and specifies an index to BHT

. . entry for each conditional branch in much the same
sis we now propose a mechanism cabezhch allo-

. . : manner raph colorin register all r
cation enabling compiler control of the hardware anner as a graph coloring based register allocato

- : L . specifies a register for each variable. The difference is
prediction table by statically assigning each Condl"[hat in register allocation, register spilling requires
tional branch to a prediction table entry. In this paper 9 » "9 pIing Teq

. . ; modifications of code to eliminate simultaneously
we apply the branch allocation technique to 'MProVe; e values, while in branch allocation, it need not
the utilization of the BHT. This is achieved by ' .

; : : : o eliminate conflicts, it only attempts to minimize
improving the mapping function between CondltlonalEhem. In other words, if it is determined that a work-

branches and BHT in a local history based 2-leve : .
: . S ing set has too many member branch instructions for
branch predictor. As discussed earlier, in a 2-leve] o ;
a one to one mapping into the BHT table, multiple

predictor, the BHT index is generally determined by, L .

. . . branches within the same working set are mapped to
hashing the low order bits of fetch address in PC . . .
This leads to contention amona branches that shthe same BHT entry location. The allocation routine

. 9 . Chooses the branches with the fewest conflicts among

the same low order bits. The branch allocation tech; . .
. . . the working set branches to map to the same location
nique enables a compiler to directly manage the map-

. ) . i in order to minimize contention.
ping of branch instruction to table entries. The .
) : In Table 3 below, we show the BHT size neces-
compiler can then use the profile based branch work- .
) ) o . Sary to allow branch allocation to reduce the table
ing set analysis to minimize the number of conflicts, . :
N L . conflicts to below that of a 1024-entry conventional
or when classification is used to minimize the inter- . ; .
. . .BHT with PC indexing scheme.
ference caused by conflict between branches in dif-
ferent groups.
In this study, we augment the format of branc

instructions to include an index specifier for BHT Benchmark BHT size required for branch
entries. However, the allocation of index bits in any allocation
existing branch ISA would be difficult, and without chess 320

changing the ISA, branches in library routines will
not be affected by the allocation technique. If augt
menting an ISA is not an option, the working set gce 544
information used in the allocation technique can b
incorporated into a branch alignment transformatio
[7] for any ISA without change although it may not l 270
be as effective as our scheme. In addition, for a hard

compress 208

\y’

gs 740

. .- . . . m88ksim 166
ware predictor to utilize a static mapping index t
generate a prediction at the fetch cycle of a branch perl_a 288
instruction, the index value may be needed with the perl_b 288
preceding branch instruction, or hardware support tp -
cache the index values may be required pgp 188
. plot 224
5.1 Methodology and Analysis
python 570

The branch allocation is performed in three steps
The first two steps are exactly the same as the firgt ss_a 336
two steps in the branch working analysis summariz
ing the temporal locality and ordering information
related to conditional branch execution by construct tex 680
ing a branch conflict graph as shown in Figure 2. The  1apje 3: BHT size required for the branch

allocation technique

ss_b 360

1. The parameters of a cache of indices would have to be The results from Table 3 show that for most of

carefully managed to avoid the original problem of contention, . . .
only this time in the cache instead of the BHT. the benchmarks, the BHT size requirements are in the

0-8186-8609-X/98 $10.00 (c) 1998 IEEE



200 to 400 range, indicating that the branch allocaBHT. gs which had the largest table requirements in
tion based indexing scheme has a potential to signifiFable 3, now requires only 80 entries in the table.

cantly reduce the conflicts or conversely a smaller We also have examined differences in profiling
BHT is possible with proper allocation of table by using two different input data sets on perl and
entries. Even fogccbenchmark which contains more SimpleScalar benchmarks. Interestingly, in SimpleS-
than 16,000 static conditional branches, approxi€alar benchmark runss_aandss_h there are signif-

mately half of the conventional BHT size is requiredicant difference in the table size requirements. This is

when the branch allocation is used. the result of different areas of the program being
exercised depending on the input data set used during
5.2 Enhancement and Analysis profiling. Clearly, any profile based analysis tech-

The branch allocation performance heavily relieghique including the branch allocation will not be
on the effectiveness of the working set information ineffective when input data for actual run of a program
a branch conflict graph. Two branches conflict eaclgxercises different segments of the code from those
other if the amount of execution interleaving is aboveexecuted in the profile run. However, in the case of
a threshold value. However, if the two branches haveranch allocation, the branch conflict graphs of sev-
similar execution behavior, the contention betweergral profiles from different input data can be merged
branches may not degrade predictor performance. [ntil the resulting graph indicates that most part of
other words, the conflicts between the two branchete program has been exercised. This cumulative pro-
with similar execution characteristics do not containfile approach will not necessarily lead to significantly
significant negative effects. P.-Y. Chang et al [9]larger table requirements because it is likely that the
introducedbranch classificatiorto enhance branch composed conflict graph will have more total number
prediction accuracy by partitioning branches intoof working sets, but the size of each working set will
classes with similar execution characteristics. Tdot be different significantly.
improve the effectiveness of the working set informa-
tion in a branch conflict graph, we utilize branch clas-
sification to further eliminate conflict edges for BHT size required for branch
branches exhibiting the same characteristics (remem- Benchmark allocation with the branch
ber that these characteristics include highly biase classification
taken and not taken branch execution). By eliminat
ing these conflict edges from the graph, branch all
cation can be improved and table size reduced. compress 40

When refining the working set information in a

o

chess 160

branch conflict graph using the branch classificatiory, gee 190
we identify those branches that are highly biased gs 80
towards one direction; either greater than 99% taken i 48

or less than 1% taken. If two conflicting branches are

in the same highly biased class, we ignore the confli¢t maBksim 40

even if it is above a threshold value. If a target ISA perl_a 32
allows, these highly biased conditional branches car
be statically predicted reducing the requirements of g
hardware predictor. If not, two history entries from pgp 118
BHT can be set aside such that highly biased towards
takenandnot takenbranches can be mapped to these
two entries separated from others. python 48

Table 4 shows the BHT size requirements for the

perl_b 32

plot 40

Ss_a 160
branch allocator to reduce the conflicts below that of -
a 1024-entry conventional BHT when the allocator is ss_b 85
incorporated with branch classification. In these tex 80

results, we see that for all benchmarks the BHT siz : :
does not need to exceed 160 entries with the majorityfable 4: BHT size required for the branch allo-
of applications needing no more than 50 entries inthe ~ cation with the branch classification
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5.3 Effects on Prediction Accuracy Next, we perform the misprediction comparison
To illustrate the potential performance benefits ofO" the branch allocation technique with the benefits
the branch allocation technique, we have comparefiom the branch classification. As the results in Fig-
the misprediction rates of the two branch allocatior"® 4 show, branch allocation with only 128-entry
techniques proposed in section 5.1 and 5.2 against3iT outperforms the PAg predictor with 1024-entry
local history based 2-level branch predictor. For thé3HT with an except of gcc benchmark. When the
comparison, PAg scheme [2, 3] with 1024-entry BHTb_ranch gllocano_n is applied to a 1024-entry BHT pre-
as the first level table and 4096-entry pattern historfliCtor, its prediction accuracy improves by 16%
table (PHT) as the second level table is chosen to howing thg e_fflcllent utlllzatlgn of the same size table
the baseline 2-level predictor. The comparison is perSPace. ‘This indicates that if BHT entries are care-
formed on several benchmarks from SPECint95 anfHlly allocated, table sizes greater than 1024-entry are
common UNIX applications [20]. In addition, we Unnecessary to approximate the results of a BHT
have included the misprediction rates of an interferWithout conflict (an infinite table).
ence free PAg with 2 million-entry BHT and 4096-
entry PHT to see how well each of these schemes

approximates an interference free BHT performance. DBasellnePAg(I1024BHT,4[)96PrIT)
Figure 3 shows the misprediction rate compari- ¢ M Branch Allocdion {16 BHT, 066 PHT)—

son of the branch allocation technique without the &’ (I Branch Allocaton (128 BHT, 4096 PHT)

benefits from the branch classification. We have var- ¢ % I Branch Alocaon (24 BHT, A096PHT)

. . . 0 145
ied the BHT size for the branch allocation based pre- ;3
dictor; 16-entry, 128-entry, and 1024-entry, and have Lpe e e Py (1 BT, AT

compared their performance against PAg with 1024- 81322
entry and with an interference free 2 million-entry % B
BHT. For all predictors, a 4096-entry PHT is used. 2
The result shows that on average, a 1024-entry BHT

using branch allocation not only outperforms the

baseline PAg with 1024-entry BHT but also shows no mpes @ %S B Awede
significant difference as compared to the interferencgigure 4 : The Branch Allocation performance
free PAg scheme -- with the exceptiongafc which results with the branch classification

contains more than 16,000 static conditional branches
pressuring the hardware prediction tables to the limit.

6. Conclusions and Future work

[ Bssne PAg (1024 BHT, 409 PHT) In this paper we have introduced a new profile-
I B Aloction158HT, 4096 PHT) based analysis method callddanch working set

%%ﬁ I B Al LBBHT, 496 PHT) gna_lysis The analysis eyalu.ates the temporal _order-
EZO% b Ml uicr 08U o0 ing information by capturing interleaved execution of
51 conditional branch instructions obtained from profil-
‘5%%0 ing and partitions the branches into working sets. The
T analysis result reveals that the size of each working
510 set in a general purpose program is relatively small
- EZO indicating that, at any one time, a branch predictor
240/2 only needs to allocate its cache-like history table
% space for a relatively small set of conditional
B branches while maintaining high prediction accuracy.
To demonstrate the effectiveness of using work-
Figure 3: The Branch Allocation performance ing sets to manage branch prediction resources, we
results without the branch classification have examined an alternate compiler controlled tech-
nique calledbranch allocation.Branch allocation
statically assigns each conditional branch to the first
level history table in a 2-level branch prediction

DldU! WUl IUZA D U0

M BHT, 4096 PHT

Compress  goc B 8 e Aveap
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