
Analyzing the Working Set Characteristics of Branch Execution

Sangwook P. Kim* and Gary S. Tyson

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122
{swkpeter, tyson}@eecs.umich.edu

Abstract

To achieve highly accurate branch prediction, it is
necessary not only to allocate more resources to branch
prediction hardware but also to improve the understand-
ing of branch execution characteristics. In this paper, we
present a new profile-based conditional branch analysis
technique calledbranch working set analysis to provide
additional information about control flow behavior of
general purpose applications. This analysis evaluates
the dynamic behavior of branch execution by partition-
ing either individual branches or pre-classified branch
groups into sets based on temporal locality and ordering
information. We refer to these sets as the working sets of
branches.

To demonstrate the usefulness of this form of analy-
sis, we examine the efficiency of current allocation tech-
niques for branch history table (BHT) space and
propose a new solution to this allocation process that
improves the performance of these tables. In our
approach the mapping between branch instructions and
BHT entries is specified during compilation to reduce
table contention -- leading to more relevant histories
and improved predictor performance. As a result, even
for programs with a large number of static branches,
only 100 to 200 history entries are needed to approxi-
mate the performance of larger 1024-entry BHT. Fur-
thermore, when the technique is applied to a predictor
with 1024-entry BHT, its prediction accuracy is
improved by 16% -- comparable with the performance
of a BHT of infinite capacity.

1. Introduction

It is well-known that achieving high performance
in a wide issue and deeply pipelined processor
demands a highly accurate branch prediction mecha-
nism. Branch prediction research has developed
increasingly sophisticated analysis methods to under-
stand the underlying execution behavior of branch
instructions. This analysis has lead to the develop-
ment of a string of new, powerful predictors in both
academic and industrial research and development
initiatives. Since the introduction of 2-level branch
prediction [2, 3], branch prediction research has
focused on improving predictor performance by
using more sophisticated analysis techniques to iden-
tify the characteristics of mispredictions. It has been
shown [4, 6, 10] that certain branches are better pre-
dicted with history information derived from different
branch instructions (inter-correlation) while others
have better prediction accuracy when branch history
is limited to that branch instruction (intra-correla-
tion). Designs of hybrid branch predictors [6, 14]
seek to improve predictor accuracy by incorporating
multiple predictors with a selection mechanism to
pick the best predictor (either inter-correlated or
intra-correlated). Recent work has explored the effect
of interfering branches in prediction tables [11] and
the feasibility of classifying branches into groups
with similar behavior [9]. This work has been shown
to improve the prediction accuracy of 2-level branch
predictors [15, 18]. In addition, program or profile-
based static branch predictions [5, 8, 12, 13, 16, 25]
and branch alignment techniques [7, 17] have
exploited compiler supports to improve the perfor-
mance of branch prediction -- both static and
dynamic.

In this paper, we propose a new profile-based
conditional branch analysis technique calledbranch
working set analysis which provides additional infor-
mation about the behavior of branch execution and

*Currently employed with Intel Corporation, Santa Clara,
CA 95052

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

how that behavior effects the underlying dynamic
branch prediction microarchitecture. This analysis is
based on the notion that the execution of conditional
branches in a general purpose program contain tem-
poral locality and ordering characteristics just as the
execution of other operations and data references. N.
Gloy et al [19] proposed a procedure reordering
method that utilizes the temporal ordering informa-
tion related to function level execution interleaving,
and showed that their method can significantly reduce
I-cache conflict misses. We adapt their techniques to
improve the efficiency of the resources used to per-
form branch prediction with the goal of improved
predictor performance.

Our analysis of branch interaction evaluates the
interleaving of conditional branch execution obtained
from profiling several runs of a program. The branch
instructions in a program can then be partitioned into
sets such that branches whose execution interleaves
above certain threshold are placed in a same set. We
refer to these sets as the working sets of branches;
branch instructions in the same working set compete
for predictor resources potentially increasing branch
table interference. The method to determine the
working sets of branches is similar to live variable
data flow analysis and a graph coloring based register
allocation technique [21], only instead of dealing
with variables and register specifiers, the analysis is
performed on conditional branch instructions.

To demonstrate the potential use of the working
set analysis related to conditional branch execution,
we examine an alternative branch prediction tech-
nique calledbranch allocation, which enables a com-
piler to manage an underlying hardware branch
prediction table by specifying the mapping between
the table entries and conditional branch instructions.
In this paper, we apply branch allocation to improve
the efficiency of the BHT of a 2-level predictor. By
assigning each static conditional branch to a BHT
entry which does not match that of other branch
instruction in the same working set, we can minimize
table interference and improve prediction accuracy.
The mapping method used in the allocation technique
closely follows a graph coloring based register alloca-
tion technique that enables a compiler to efficiently
manage the processor register file.

To illustrate performance benefits of the branch
allocation on BHT, a local history based 2-level
branch predictor, PAg [3] is chosen, and performance
comparison of SPECint95 and several common
UNIX applications [20] are presented.

This paper is organized into six sections. Section
2 presents some related works in branch prediction.
Section 3 describes the simulation environment used
for the branch working set analysis and the branch
allocation. Section 4 presents the branch working set
analysis methodology and its results. Section 5 intro-
duces and analyzes the branch allocation technique
and its performance results. Finally, section 6 con-
cludes the paper.

2. Related Work

Recent research in branch prediction has focused
on understanding execution behavior of branch
instructions to further enhance already accurate
dynamic prediction mechanisms. In this section, we
examine research relating to branch working set anal-
ysis and conflict avoidance in the BHT.

N. Gloy et al [19] introduced an algorithm to
minimize instruction cache conflicts by reordering
procedures based on the specifics of an I-cache con-
figuration and the temporal ordering of procedure
invocation. In branch working set analysis, we exam-
ine the temporal ordering of branch instructions to
improve branch prediction accuracy.

Branch working set analysis partitions branches
or pre-classified branch groups into sets based on
their amount of execution interleaving. Branches are
placed in the same working set if their execution is
interleaved above certain threshold value. The algo-
rithm used to calculate the degree to which branches
are interleaved will be presented later in this paper. If
branch instructions exhibit the same execution behav-
ior (e.g. high biased to be taken) it may be beneficial
to gather the branches into groups which share
resources. As an example, two branches that almost
always proceed down the taken path can share the
same history in the BHT without a reduction in pre-
dictor accuracy -- their histories would be the same
anyway. By grouping the resource (branch history) of
these branch instructions contention for remaining
BHT entries can be reduced. P.-Y. Chang et al [9]
introduced a mechanism calledbranch classification
to enhance branch prediction accuracy by classifying
branches into groups of highly biased (towards taken
and towards not taken) or unbiased branches and used
this information to reduce the conflict between
branches with different classifications. In the branch
working set analysis, to improve the performance of
the branch allocation, we reduce the working set size
of branches in a program by incorporating the taken

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

frequency based branch classification into the analy-
sis, treating all highly biased branches (e.g. not taken)
as a single branch group sharing predictor resources
(e.g. BHT history).

B. Calder et al [7] proposed improved basic
block reordering algorithms calledbranch alignments
which incorporate static or dynamic branch predic-
tion architectures, and perform a link-time basic
block reordering to reduce mispredict and misfetch
penalty cycles.

Since the introduction of 2-level branch predic-
tion [2, 3], dynamic branch prediction research has
concentrated on analyzing and enhancing the 2-level
schemes [4, 6, 9, 10, 11, 14, 15, 18, 24]. In general, a
2-level predictor uses a part of instruction fetch
address in PC as an index value to its first level his-
tory table such as BHT or its second level history
table in conjunction with branch direction outcomes
from the first level table. The PC based index hashing
generally uses a modulo of the low order instruction
fetch address bits to indicate the table index. This will
lead to conflicts among branches that share the same
low order bits. Talcott et al [11] analyzed the effect of
branch prediction table interference and showed its
negative influence on prediction accuracy. P.-Y.
Chang et al [15] and E. Sprangle [18] suggested hard-
ware solutions to the negative interference problems
in the second level table of 2-level prediction scheme
by filtering biased branches [15] and by neutralizing
negatively interfering branches [18]. For the purpose
of the branch allocation, we attempt to reduce the
contention in BHT by statically assigning branches to
entries in BHT based on the working set analysis
information.

3. Simulation Environment

All simulations in this study are conducted using
the SimpleScalar tool set [22] provided by T.M. Aus-
tin and D. Burger from the University of Wisconsin.
For the branch working set analysis the SimpleScalar
toolset is used to generate necessary profile informa-
tion on conditional branch execution. Then, we have
designed analysis tools -- adapted from live variable
data flow analysis used in graph coloring based regis-
ter allocation algorithms -- to process the data on con-
ditional branches in order to summarize the temporal
locality and ordering information. Finally, the last
step of analysis parses the temporal ordering informa-
tion and generates the working set information of
conditional branches.

In branch allocation we use the analysis of
branch interleaving to assign each branch instruction
to a BHT entry. For the performance comparison
between a typical local history based 2-level predictor
and a predictor with branch allocation technique, we
have modified a branch predictor in the base Sim-
pleScalar toolset (sim-bpred) to incorporate the static
BHT index assignments generated by the allocation
routine.

Six out of eight SPECint95 benchmarks and sev-
eral common UNIX applications [20] are used to per-
form the branch working analysis and to demonstrate
the performance of the branch allocation technique.
All benchmarks are either run to completion or run
for the first 500 million instructions. Note that to
maintain reasonable time and space for the experi-
ments, we have reduced the number of static condi-
tional branches from each benchmark based on the
frequency of occurrences. Table 1 shows the bench-
marks, the input sets used and the percentage of
dynamic branches analyzed.

Benchm
arks

Input set
Total

dynamic
branches

Dynamic
branches
analyzed

Percentage
of the

dynamic
branches
analyzed

com-
press

compress_sma
ll.in

17084797 17082310 99.99%

gcc jump.i 31060483 29116913 93.74%

ijpeg vigo.ppm 47371202 47370048 99.99%

li li_ref.out 117061934 117050321 99.99%

m88ksi
m

ctl.big 113363291 113350675 99.99%

perl scrabbl.in 7764844 7752111 99.84%

chess sim.in 23448420 23426413 99.91%

gs sigmetrics94.p
s

40286429 40224125 99.85%

pgp IJPP97.ps 48456134 48437347 99.96%

plot surface2.dem 55500887 55476752 99.96%

python yarn.tests.py 47134930 47105870 99.94%

simples-
calar
(ss)

test-fmath 18961136 18940120 99.89%

tex output-
PACT96.tex

27516428 27488833 99.90%

Table 1: Benchmarks, Input sets and
Percentage of branches analyzed

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

4. Branch Working Set Analysis

We propose a new profile-based conditional
branch analysis technique calledbranch working set
analysis. Branch working set analysis uses profile
information, built from one or more runs of an appli-
cation to determine the execution behavior of condi-
tional branches. It utilizes a summary of temporal
locality and ordering information collected during
conditional branch profiling to recognize execution
interleaving of conditional branches. The following
subsections present the detailed methodology used in
branch working set analysis and its primary results.

4.1 Methodology
The first step of the analysis is to identify the

amount of execution interleaving for each conditional
branch. This step is analogous to the live variable
data flow analysis typically used for a graph coloring
based register allocation [21]. The difference is that
the working set analysis is profile-based and the live
variable analysis is a program-based static technique.

To identify the execution interleaving of condi-
tional branches, during the profile run of a program,
we mark each branch with a time stamp when the
branch is executed. we use a count of the number of
instructions executed prior to that dynamic branch
instance as a domesticate. Figure 1 shows an example
of this process for an application that executes one
branch every 5 instructions.

Referring to Figure 1, branch A is time stamped
5 indicating that there have been 5 instructions exe-
cuted prior to branch A. The profile run continues and

executes branches B and C, and each receives time
stamp values10 and15 respectively. After branch C,
we encounter another dynamic instance of branch A.
We then check if there is any branch with time stamp
greater than the branch A’s time stamp of 5; both B
and C have time stamps that are greater than the
branch A’s time stamp. At this point, we have identi-
fied the execution interleaving of branches A with B,
and C. The second step of the analysis records each
instance of branch execution interleaving between
branches A and B, and branches A and C. This will
be used to calculate an overall interleave count during
program execution. After the second step, branch A’s
time stamp is updated with a new time stamp (20) and
processing continues until the end of profile run is
reached.

The second step of the analysis summarizes the
temporal locality and ordering information by con-
structing a conflict graph based on the branch execu-
tion interleaving information from the first step
analysis. This is analogous to constructing a variable
conflict or interference graph in a graph coloring
based register allocation. A variable conflict graph is
composed of nodes which represent variable names
and edges which represent a conflict, meaning, if
there is an edge between two nodes, the two variables
are simultaneously live. In Figure 2, the variable con-
flict graph reveals the fact that the variables a, b, and
c are simultaneously live.

Branch A 5 <- 20

Branch B 10

Branch C 15

Branch Time stamp

Branch A 20

Branch B 10

Branch C 15

Figure 1: Time stamp analysis example of
branch execution behavior

Dynamic sequence

Branch A

Branch B

Branch C

Branch A

 Branch Time stamp
A variable conflict graph

 A branch conflict graph

Figure 2: Variable conflict graph and
branch conflict graph examples

a b

c

A B

C

A conflict edge

1000

500
50

A conflict edge with
an interleave count

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

A conflict graph for summarizing the temporal
locality and interleaving related to conditional branch
execution is similar to that of a variable conflict
graph. As shown in Figure 2, each node in the branch
conflict graph represents a conditional branch instruc-
tion, and an edge between two nodes represent that
the execution of the two branches is interleaved at
some point in the profile run of a program. Execution
interleaving for a pair of branches can occur multiple
times during the profile run, hence, to capture the
multiple occurrences of branch interleaving, we add
an interleave counter along with each edge in the
branch conflict graph. For instance, in Figure 2, the
execution of branch A and B have been interleaved
for 1000 times.

The final step of the analysis partitions the condi-
tional branch instructions into working sets based on
the branch conflict information from the first two
analysis steps. Our definition of a working set is a set
of conditional branch instructions which form a com-
pletely interconnected subgraph in the branch conflict
graph. Note that many other definitions of a working
set are possible and undoubtedly some will prove bet-
ter at categorizing branches, but for the simplicity of
the study, a complete subgraph definition is used.

4.2 Analysis and Results
Before presenting the results of the analysis,

there is one refinement step applied to a branch con-
flict graph. Each edge in the conflict graph identifies
the number of times two branch instructions have
been interleaved during execution. The interleave
count for two branches can be very high if they are in
the same loop, but for others, the count can be trivi-
ally small and can be eliminated from consideration
to reduce processing time.

To eliminate small and incidental conflicts, a
threshold value is given and any edge with a smaller
count than the threshold is eliminated. This can effec-
tively reduce the size of the conflict graph while hav-
ing little impact on the overall working set
information. We have chosen a threshold value of
100; the majority of edge values for branches in a
working set are several orders of magnitude higher
than 100, but 100 is high enough to eliminate a signif-
icant number of edges for programs with a large num-
ber of working sets. Other threshold values such as
500 or 1000 show no significant difference on the
results. Table 2 shows the primary results of the anal-
ysis. For each benchmark shown in Table 2, the total
number of working sets, the static average number of

branches in a working set, and its dynamic average
number -- weighted by branch execution count -- are
presented.

The primary result in Table 2 shows that the
number of conditional branches that are in the same
working set is relatively small. For example,com-
pressshows an average of only 25 branch instructions
while even gcc which contains more than 16,000
static conditional branches shows an average working
set size of only 336. This indicates that a branch pre-
dictor only needs to allocate its cache-like history
table space for a relatively small set of conditional
branches at one time following the temporal ordering
information.

We believe that analyzing the working set behav-
ior of branch execution can be used to improve pre-
dictor performance by getting more efficient
utilization from predictor resources. In addition,
although not presented in this paper, it is clear that the
analysis can be applied not only to individual
branches but also to pre-classified branch groups to
be incorporated with other branch analysis tech-
niques.

Benchmarks
Total static #
of working

sets

Average
static

working set
size

Average
dynamic

working set
size

compress 224 41 25

gcc 51888 365 336

ijpeg 246 27 36

li 2792 178 154

m88ksim 1203 144 150

perl 1079 51 51

chess 23936 250 244

pgp 775 45 39

plot 5370 143 185

python 25216 347 318

ss 19368 287 246

Table 2: The Sizes of Branch Working Sets

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

5. Branch Allocation

To demonstrate the use of the working set analy-
sis we now propose a mechanism calledbranch allo-
cation enabling compiler control of the hardware
prediction table by statically assigning each condi-
tional branch to a prediction table entry. In this paper,
we apply the branch allocation technique to improve
the utilization of the BHT. This is achieved by
improving the mapping function between conditional
branches and BHT in a local history based 2-level
branch predictor. As discussed earlier, in a 2-level
predictor, the BHT index is generally determined by
hashing the low order bits of fetch address in PC.
This leads to contention among branches that share
the same low order bits. The branch allocation tech-
nique enables a compiler to directly manage the map-
ping of branch instruction to table entries. The
compiler can then use the profile based branch work-
ing set analysis to minimize the number of conflicts,
or when classification is used to minimize the inter-
ference caused by conflict between branches in dif-
ferent groups.

In this study, we augment the format of branch
instructions to include an index specifier for BHT
entries. However, the allocation of index bits in any
existing branch ISA would be difficult, and without
changing the ISA, branches in library routines will
not be affected by the allocation technique. If aug-
menting an ISA is not an option, the working set
information used in the allocation technique can be
incorporated into a branch alignment transformation
[7] for any ISA without change although it may not
be as effective as our scheme. In addition, for a hard-
ware predictor to utilize a static mapping index to
generate a prediction at the fetch cycle of a branch
instruction, the index value may be needed with the
preceding branch instruction, or hardware support to
cache the index values may be required1.

5.1 Methodology and Analysis
The branch allocation is performed in three steps.

The first two steps are exactly the same as the first
two steps in the branch working analysis summariz-
ing the temporal locality and ordering information
related to conditional branch execution by construct-
ing a branch conflict graph as shown in Figure 2. The

1. The parameters of a cache of indices would have to be
carefully managed to avoid the original problem of contention,
only this time in the cache instead of the BHT.

final step of the allocation technique processes the
branch conflict graph and specifies an index to BHT
entry for each conditional branch in much the same
manner as a graph coloring based register allocator
specifies a register for each variable. The difference is
that in register allocation, register spilling requires
modifications of code to eliminate simultaneously
live values, while in branch allocation, it need not
eliminate conflicts, it only attempts to minimize
them. In other words, if it is determined that a work-
ing set has too many member branch instructions for
a one to one mapping into the BHT table, multiple
branches within the same working set are mapped to
the same BHT entry location. The allocation routine
chooses the branches with the fewest conflicts among
the working set branches to map to the same location
in order to minimize contention.

In Table 3 below, we show the BHT size neces-
sary to allow branch allocation to reduce the table
conflicts to below that of a 1024-entry conventional
BHT with PC indexing scheme.

The results from Table 3 show that for most of
the benchmarks, the BHT size requirements are in the

Benchmark
BHT size required for branch

allocation

chess 320

compress 208

gcc 544

gs 740

li 270

m88ksim 166

perl_a 288

perl_b 288

pgp 188

plot 224

python 570

ss_a 336

ss_b 360

tex 680

Table 3: BHT size required for the branch
allocation technique

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

200 to 400 range, indicating that the branch alloca-
tion based indexing scheme has a potential to signifi-
cantly reduce the conflicts or conversely a smaller
BHT is possible with proper allocation of table
entries. Even forgcc benchmark which contains more
than 16,000 static conditional branches, approxi-
mately half of the conventional BHT size is required
when the branch allocation is used.

5.2 Enhancement and Analysis
The branch allocation performance heavily relies

on the effectiveness of the working set information in
a branch conflict graph. Two branches conflict each
other if the amount of execution interleaving is above
a threshold value. However, if the two branches have
similar execution behavior, the contention between
branches may not degrade predictor performance. In
other words, the conflicts between the two branches
with similar execution characteristics do not contain
significant negative effects. P.-Y. Chang et al [9]
introducedbranch classification to enhance branch
prediction accuracy by partitioning branches into
classes with similar execution characteristics. To
improve the effectiveness of the working set informa-
tion in a branch conflict graph, we utilize branch clas-
sification to further eliminate conflict edges for
branches exhibiting the same characteristics (remem-
ber that these characteristics include highly biased
taken and not taken branch execution). By eliminat-
ing these conflict edges from the graph, branch allo-
cation can be improved and table size reduced.

When refining the working set information in a
branch conflict graph using the branch classification,
we identify those branches that are highly biased
towards one direction; either greater than 99% taken
or less than 1% taken. If two conflicting branches are
in the same highly biased class, we ignore the conflict
even if it is above a threshold value. If a target ISA
allows, these highly biased conditional branches can
be statically predicted reducing the requirements of a
hardware predictor. If not, two history entries from
BHT can be set aside such that highly biased towards
taken andnot taken branches can be mapped to these
two entries separated from others.

Table 4 shows the BHT size requirements for the
branch allocator to reduce the conflicts below that of
a 1024-entry conventional BHT when the allocator is
incorporated with branch classification. In these
results, we see that for all benchmarks the BHT size
does not need to exceed 160 entries with the majority
of applications needing no more than 50 entries in the

BHT. gs, which had the largest table requirements in
Table 3, now requires only 80 entries in the table.

We also have examined differences in profiling
by using two different input data sets on perl and
SimpleScalar benchmarks. Interestingly, in SimpleS-
calar benchmark runs,ss_a andss_b, there are signif-
icant difference in the table size requirements. This is
the result of different areas of the program being
exercised depending on the input data set used during
profiling. Clearly, any profile based analysis tech-
nique including the branch allocation will not be
effective when input data for actual run of a program
exercises different segments of the code from those
executed in the profile run. However, in the case of
branch allocation, the branch conflict graphs of sev-
eral profiles from different input data can be merged
until the resulting graph indicates that most part of
the program has been exercised. This cumulative pro-
file approach will not necessarily lead to significantly
larger table requirements because it is likely that the
composed conflict graph will have more total number
of working sets, but the size of each working set will
not be different significantly.

Benchmark
BHT size required for branch

allocation with the branch
classification

chess 160

compress 40

gcc 150

gs 80

li 48

m88ksim 40

perl_a 32

perl_b 32

pgp 118

plot 40

python 48

ss_a 160

ss_b 85

tex 80

Table 4: BHT size required for the branch allo-
cation with the branch classification

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

5.3 Effects on Prediction Accuracy
To illustrate the potential performance benefits of

the branch allocation technique, we have compared
the misprediction rates of the two branch allocation
techniques proposed in section 5.1 and 5.2 against a
local history based 2-level branch predictor. For the
comparison, PAg scheme [2, 3] with 1024-entry BHT
as the first level table and 4096-entry pattern history
table (PHT) as the second level table is chosen to be
the baseline 2-level predictor. The comparison is per-
formed on several benchmarks from SPECint95 and
common UNIX applications [20]. In addition, we
have included the misprediction rates of an interfer-
ence free PAg with 2 million-entry BHT and 4096-
entry PHT to see how well each of these schemes
approximates an interference free BHT performance.

Figure 3 shows the misprediction rate compari-
son of the branch allocation technique without the
benefits from the branch classification. We have var-
ied the BHT size for the branch allocation based pre-
dictor; 16-entry, 128-entry, and 1024-entry, and have
compared their performance against PAg with 1024-
entry and with an interference free 2 million-entry
BHT. For all predictors, a 4096-entry PHT is used.
The result shows that on average, a 1024-entry BHT
using branch allocation not only outperforms the
baseline PAg with 1024-entry BHT but also shows no
significant difference as compared to the interference
free PAg scheme -- with the exception ofgcc which
contains more than 16,000 static conditional branches
pressuring the hardware prediction tables to the limit.

Next, we perform the misprediction comparison
for the branch allocation technique with the benefits
from the branch classification. As the results in Fig-
ure 4 show, branch allocation with only 128-entry
BHT outperforms the PAg predictor with 1024-entry
BHT with an except of gcc benchmark. When the
branch allocation is applied to a 1024-entry BHT pre-
dictor, its prediction accuracy improves by 16%
showing the efficient utilization of the same size table
space. ‘This indicates that if BHT entries are care-
fully allocated, table sizes greater than 1024-entry are
unnecessary to approximate the results of a BHT
without conflict (an infinite table).

6. Conclusions and Future work
In this paper we have introduced a new profile-

based analysis method calledbranch working set
analysis. The analysis evaluates the temporal order-
ing information by capturing interleaved execution of
conditional branch instructions obtained from profil-
ing and partitions the branches into working sets. The
analysis result reveals that the size of each working
set in a general purpose program is relatively small
indicating that, at any one time, a branch predictor
only needs to allocate its cache-like history table
space for a relatively small set of conditional
branches while maintaining high prediction accuracy.

To demonstrate the effectiveness of using work-
ing sets to manage branch prediction resources, we
have examined an alternate compiler controlled tech-
nique calledbranch allocation.Branch allocation
statically assigns each conditional branch to the first
level history table in a 2-level branch prediction

compress gcc gs ss tex Average
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%

M
i
s
p

r
e
d

i
c
t
i
o
n

 R
a
t
e

Baseline PAg (1024 BHT, 4096 PHT)
Branch Allocation (16 BHT, 4096 PHT)
Branch Allocation (128 BHT, 4096 PHT)
Branch Allocation (1024 BHT, 4096 PHT)
Interference free PAg (2M BHT, 4096 PHT)

Figure 3: The Branch Allocation performance
results without the branch classification

compress gcc gs ss tex Average
0%
2%
4%
6%
8%

10%
12%
14%
16%

M
i
s
p

r
e
d

i
c
t
i
o
n

 R
a
t
e

Baseline PAg (1024 BHT, 4096 PHT)
Branch Allocation (16 BHT, 4096 PHT)
Branch Allocation (128 BHT, 4096 PHT)
Branch Allocation (1024 BHT, 4096 PHT)
Interference free PAg (2M BHT, 4096 PHT)

Figure 4 : The Branch Allocation performance
results with the branch classification

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

scheme efficiently utilizing BHT table space. Result
indicate that with branch allocation BHT size can be
reduced 60% to 80% without a reduction in perfor-
mance. By incorporating tbranch classification in the
branch allocation scheme BHT table size can be
reduced by as much as 97% without performance
degradation. Branch prediction accuracy is shown to
improve with branch classification even when fewer
hardware resources are available to perform the pre-
diction. When the classification information is
incorporated to the allocation technique, 128-entry
BHT outperforms the conventional 1024-entry BHT
scheme. In addition, the branch allocation based
1024-entry BHT predictor outperforms a conven-
tional BHT predictor of the same size by 16%. Fur-
thermore, with the branch allocation technique
managing the history table assignments, 1024 entry
tables can achieve the performance of PAg predictor
with a near conflict free large first level history table.

These results indicate that a feasible alternative
to continually expanding the size of prediction tables
is to develop better hashing algorithms by analyzing
and understanding execution characteristics of condi-
tional branches.

We believe that branch working set analysis pro-
vides a new approach to studying branch behavior.
This research can be extended in many ways. This
work is not limited to individual static conditional
branches. Branches can be pre-classified based on
intra or inter-correlations and similar history patterns,
and the working set analysis can be applied to these
pre-classified branch groups. Hence, by incorporating
correlation information into the working set analysis
and by modifying the branch allocation technique
accordingly, we can further improve the prediction
accuracy.

Additionally, by identifying branch working sets,
we open new research areas in branch prediction.
• Are the clustered branch mispredictions found in

recent work on dynamic prediction caused by
changes in working set?

• Do clustered cache misses not associated with
large vector strides also correlated to the cluster
mispredictions?
By developing new analysis methods we hope to

develop a deeper understanding of branch execution
leading to new and more sophisticated prediction
capabilities.

Acknowledgments

The authors would like to thank Sanjay J. Patel
and Jared Stark for their support on simulation envi-
ronment and the anonymous reviewers for providing
helpful comments. This research has been supported
by the National Science Foundation grant MIP
9734023 and through the Intel Technology for Educa-
tion 2000 grant.

References
[1] J.E. Smith, “A study of branch prediction strategies,”In

Proceedings of the 8th International Symposium on Com-
puter Architecture, pp. 135-148, May 1981.

[2] T.-Y. Yeh and Y.N. Patt, “Two-level Adaptive Training
Branch Prediction”, in Proceedings of the 24th Interna-
tional Symposium on Microarchitecture, 1991.

[3] T.-Y. Yeh and Y.N. Patt, “Alternative Implementations of
Two-level Adaptive Branch Prediction”,in Proceedings of
the 19th International Symposium on Computer Architec-
ture, 1992.

[4] S.-T. Pan, K. So, and J. T. Rahmeh. “Improving the accu-
racy of dynamic branch prediction using branch correla-
tion”, in Proceeding of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 76-84, Boston, Mass., October
1992.

[5] T. Ball and J.R. Larus, “Branch prediction for free”,in Pro-
ceedings of SIGPLAN Conference on Programming Lan-
guage Design and Implementation, June 1993.

[6] S. McFarling, “Combining branch predictors”,TN 36,
DEC-WRL, June 1993.

[7] Brad Calder and Dirk Grunwald, “Reducing Branch Costs
via Branch Alignment”,in Proceedings of the 6th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Oct. 1994.

[8] C. Young and M.D. smith, “Improving the Accuracy of
Static Branch Prediction Using Branch Correlation”,in
Proceedings of ASPLOS VI, Oct. 1994.

[9] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y.N. Patt, “Branch
Classification: a New Mechanism for Improving Branch
Predictor Performance”,in Proceedings of the 27th Inter-
national Symposium on Microarchitecture, 1994.

[10] C. Young, N. Gloy, and M.D. Smith, “A Comparative
Analysis of Schemes for Correlated Branch Prediction”,in
Proceedings of the 22nd Annual International Symposium

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

on Computer Architecture, 1995.

[11] A. R. Talcott, M. Nemirovsky, and R.C. Wood, “The
Influence of Branch Prediction Table Interference on
Branch Prediction Scheme Performance”,in Proceedings
of International Conference on Parallel Architectures and
Compilation Techniques, 1995.

[12] Brad Calder, Dirk Grunwald, Donald Lindsay, James
Martin, Michael Mozer, and Benjamin Zorn, “Corpus-
based Static Branch Prediction”, in Proceedings of the SIG-
PLAN Conference on Programming Language Design and
Implementation, June 1995.

[13] J.R.C. Patterson, “Accurate Static Branch Prediction by
Value Range Propagation”,in Proceedings of the SIGPLAN
Conference on Programming Language Design and Imple-
mentation, June 1995.

[14] P.-Y. Chang, E. Hao, and Y.N. Patt, “Alternative Imple-
mentations of Hybrid Branch Predictors”,in Proceedings of
the 28th International Symposium on Microarchitecture,
1995.

[15] P.-Y. Chang, M. Evers, and Y.N. Patt, “Improving branch
prediction accuracy by reducing pattern history table inter-
ference”, in Proceedings of the 1996 ACM/IEEE Confer-
ence on Parallel Architecture and Compilation Techniques,
1996.

[16] S. A. Mahlke and B. Natarajan, “Compiler Synthesized
Dynamic Branch Prediction”,in Proceedings of the 29th
International Symposium on Microarchitecture, 1996.

[17] C. Young, D. S. Johnson, D. R. Karger, and M.D. Smith,
“Near-optimal Intraprocedural Branch Alignment”, in Pro-
ceedings of PLDI, June 1997.

[18] Eric Sprangle, Robert S. Chappell, Mitch Alsup, and Yale
N. Patt, “The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference,”in Proceedings of
the 24th International Symposium on Computer Architec-
ture, Denver, June 1997.

[19] N. Gloy, T. Blackwell, M.D. Smith, and B. Calder, “Pro-
cedure Placement Using Temporal Ordering Information”,
in Proceedings of the 30th International Symposium on
Microarchitecture, Dec. 1997.

[20] J. Stark, P. Racunas, and Y. N. Patt, “Reducing the perfor-
mance impact of instruction cache misses by writing
instructions into the reservation stations out-of-order”,in
Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, 1997.

[21] Steven S. Muchnick, “Advanced Compiler Design &
Implementation”, 1997.

[22] T.M. Austin and D. Burger, “The SimpleScalar Tool Set,

Version 2.0”, 1997.

[23] T. Ball, P. Mataga, and M. Sagiv, “Edge Profiling versus
Path Profiling: The Showdown”,in proceeding of the 25th
ACM Symposium on Principles of Programming Lan-
guages, Jan. 1998.

[24] Marius Evers, Sanjay J. Patel, Robert S. Chappell, Yale N.
Patt, “Analysis of Correlation and Predictability: What
Makes Two-Level Branch Predictors Work,”in Proceed-
ings of the 25th International Symposium on Computer
Architecture, Barcelona, June 1998.

[25] B. Deitrich, B. Cheng, and W. Hwu, “Improving Static
Branch Prediction in a Compiler”,in Proceedings of Inter-
national Conference on Parallel Architectures and Compi-
lation Techniques, 1998.

[26] J. Kalamatianos and D. Kaeli, “Temporal-based Proce-
dure Reordering for Improved Instruction Cache Perfor-
mance”,in Proceedings of the 4th International Symposium
on High Performance Computer Architecture, 1998.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

