
Journal of Instru
tion-Level Parallelism 2 (2000) 1-6 Submitted 2/2000; published 5/2000
DIVA: A Dynami
 Approa
h to Mi
ropro
essor Veri�
ationTodd M. Austin taustin�ee
s.umi
h.eduAdvan
ed Computer Ar
hite
ture LaboratoryUniversity of Mi
higan1301 Beal AvenueAnn Arbor, MI 48109 USA Abstra
tBuilding a high-performan
e mi
ropro
essor presents many reliability
hallenges. De-signers must verify the
orre
tness of large
omplex systems and
onstru
t implementationsthat work reliably in varied (and o

asionally adverse) operating
onditions. To further
ompli
ate this task, deep submi
ron fabri
ation te
hnologies present new reliability
hal-lenges in the form of degraded signal quality and logi
 failures
aused by natural radiationinterferen
e.In this paper, we introdu
e dynami
 veri�
ation, a novel mi
roar
hite
tural te
hniquethat
an signi�
antly redu
e the burden of
orre
tness in mi
ropro
essor designs. The ap-proa
h works by augmenting the
ommit phase of the pro
essor pipeline with a fun
tional
he
ker unit. The fun
tional
he
ker veri�es the
orre
tness of the
ore pro
essor's
ompu-tation, permitting only
orre
t results to
ommit. In the event of an in
orre
t result, the
he
ker �xes the error and
ushes any in
orre
t results from the
ore using the existingspe
ulation re
overy me
hanism. Overall design
osts
an be dramati
ally redu
ed be
ausedesigners need only verify the
orre
tness of the
he
ker unit. The
ore pro
essor need notbe fully
orre
t, only suÆ
iently
orre
t that its errors do not adversely a�e
t performan
e.We detail the DIVA
he
ker ar
hite
ture, a design optimized for simpli
ity and low
ost.Using detailed timing simulation, we show that even resour
e-frugal DIVA
he
kers havelittle impa
t on
ore pro
essor performan
e. To make the
ase for redu
ed veri�
ation
osts,we argue that the DIVA
he
ker should lend itself to fun
tional and ele
tri
al veri�
ationbetter than a
omplex
ore pro
essor. Finally, future appli
ations of dynami
 veri�
ationare suggested.1. Introdu
tionReliable operation is perhaps the single most important attribute of any
omputer system,followed
losely by performan
e and
ost. Users need to be able to trust that when thepro
essor is put to a task the results it renders are
orre
t. If this is not the
ase, there
an be serious reper
ussions, ranging from disgruntled users to �nan
ial damage to lossof life. There have been a number of high-pro�le examples of faulty pro
essor designs.Perhaps the most publi
ized
ase was the Intel Pentium FDIV bug in whi
h an infrequentlyo

urring error
aused erroneous results in some
oating point divides [1℄. More re
ently, theMIPS R10000 mi
ropro
essor was re
alled early in its introdu
tion due to implementationproblems [2℄. These faulty parts resulted in bad press, lawsuits, and redu
ed
ustomer
on�den
e. In most
ases, the manufa
turers repla
ed the faulty parts with �xed ones, butonly at great expense. For example, Intel made available repla
ement Pentium pro
essors

Austinto any
ustomer that had a faulty part and requested a repla
ement, at an estimated
ostof $475 million [3℄.1.1 Designing Corre
t Pro
essorsTo avoid reliability hazards,
hip designers spend
onsiderable resour
es at design andfabri
ation time to verify the
orre
t operation of parts. They do this by applying fun
tionaland ele
tri
al veri�
ation to their designs. 1Fun
tional Veri�
ation Fun
tional veri�
ation o

urs at design time. The pro
essstrives to guarantee that a design is
orre
t, i.e., for any starting state and inputs, thedesign will transition to the
orre
t next state. It is quite diÆ
ult to make this guaranteedue to the immense size of the test spa
e for modern mi
ropro
essors. For example, ami
ropro
essor with 32 32-bit registers, 8k-byte instru
tion and data
a
hes, and 300 pinswould have a test spa
e with at least 2132396 starting states and up to 2300 transition edgesemanating from ea
h state. Moreover, mu
h of the behavior in this test spa
e is not fullyde�ned, leaving in question what
onstitutes a
orre
t design.Fun
tional veri�
ation is often implemented with simulation-based testing. A model ofthe pro
essor being designed exe
utes a series of tests and
ompares the model's results tothe expe
ted results. Tests are
onstru
ted to provide good
overage of the pro
essor testspa
e. Unfortunately, design errors sometimes slip through this testing pro
ess due to theimmense size of the test spa
e. To minimize the probability of this happening, designersemploy various te
hniques to improve the quality of veri�
ation in
luding
o-simulation [4℄,
overage analysis [4℄, random test generation [5℄, and model-driven test generation [6℄.A re
ent development
alled formal veri�
ation [7℄ works to in
rease test spa
e
overageby using formal methods to prove that a design is
orre
t. Due to the large number ofstates that
an be tested with a single proof, the approa
h
an be mu
h more eÆ
ientthan simulation-based testing. In some
ases it is even possible to
ompletely verify adesign. However, this level of su

ess is usually reserved for in-order issue pipelines orsimple out-of-order pipelines with small window sizes. Complete formal veri�
ation of
omplex modern mi
ropro
essors with out-of-order issue, spe
ulation, and large instru
tionwindows is
urrently an intra
table problem [8, 9℄.Ele
tri
al Veri�
ation Fun
tional veri�
ation only veri�es the
orre
tness of a pro
es-sor's fun
tion at the logi
 level, it
annot verify the
orre
tness of the logi
 implementationin sili
on. This task is performed during ele
tri
al veri�
ation. Ele
tri
al veri�
ation o

ursat design time and fabri
ation time (to speed bin parts). Parts are stress-tested at extremeoperating
onditions, e.g., low voltage, high temperature, high frequen
y, and slow pro
ess,until they fail to operate.2 The allowed maximum (or minimum) for ea
h of these operating
onditions is then redu
ed by a safe operating margin (typi
ally 10-20%) to ensure thatthe part provides robust operation at the most extreme operating
onditions. If after this1. Often the term \validation" is used to refer to the pro
ess of verifying the
orre
tness of a design. Inthis paper we adopt the nomen
lature used in the formal veri�
ation literature, i.e., veri�
ation is thepro
ess of determining if a design is
orre
t, and validation is the pro
ess of determining if a design meets
ustomers' needs. In other words, veri�
ation answers the question, \Did we build the
hip right?", andvalidation answers the question, \Did we build the right
hip?".2. Or fail to meet a
riti
al design
onstraint su
h as power dissipation or mean time to failure (MTTF).2

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ationpro
ess the part fails to meet its operational goals (e.g., frequen
y or voltage), dire
tedtesting is used to identify the
riti
al paths that are preventing the design from rea
hingthese targets [10℄.O

asionally, implementation errors slip through the ele
tri
al veri�
ation pro
ess. Forexample, if an infrequently used
riti
al path is not exer
ised during ele
tri
al veri�
ation,any implementation errors in this
ir
uit will not be dete
ted. Data-dependent implementa-tion errors are perhaps the most diÆ
ult to �nd be
ause they require very spe
i�
 dire
tedtesting to lo
ate. Examples of these types of errors in
lude parasiti

rosstalk on buses [11℄,Miller e�e
ts on transistors [12℄,
harge sharing in dynami
 logi
 [12℄, and supply voltagenoise due to dIdt spikes [13℄.1.2 Deep Submi
ron Reliability ChallengesTo further heighten the importan
e of high-quality veri�
ation, new reliability
hallengesare materializing in deep submi
ron fabri
ation te
hnologies (i.e., pro
ess te
hnologies withminimum feature sizes below 0.25�m). Finer feature sizes result in an in
reased likelihoodof noise-related faults, interferen
e from natural radiation sour
es, and huge veri�
ationburdens brought on by in
reasingly
omplex designs. If designers
annot meet these newreliability
hallenges, they may not be able to enjoy the
ost and speed advantages of thesedenser te
hnologies.Noise-Related Faults Noise related faults are the result of ele
tri
al disturban
es in thelogi
 values held in
ir
uits and wires. As pro
ess feature sizes shrink, inter
onne
t be
omesin
reasingly sus
eptible to noise indu
ed by other wires [11, 14℄. This e�e
t, often
alled
rosstalk, is the result of in
reased
apa
itan
e and indu
tan
e due to densely pa
ked wires[15℄. At the same time, designs employ lower supply voltages to de
rease power dissipation,resulting in even more sus
eptibility to noise as voltage margins are de
reased.Natural Radiation Interferen
e There are a number of natural radiation sour
es that
an a�e
t the operation of ele
troni

ir
uits. The two most prevalent radiation sour
es aregamma rays and alpha parti
les. Gamma rays arrive from spa
e. While most are �lteredout by the atmosphere, some o

asionally rea
h the surfa
e of the earth, espe
ially at higheraltitudes [16℄. Alpha parti
les are
reated when atomi
 impurities (found in all materials)de
ay [17℄. When these energeti
 parti
les strike a very small transistor, they
an depositor remove suÆ
ient
harge to temporarily turn the devi
e on or o�, possibly
reating a logi
error [18, 14℄. Energeti
 parti
les strikes, sometimes
alled single-event radiation (SER),have been a problem for DRAM designs sin
e the late 1970's when DRAM
apa
itors be
amesuÆ
iently small to be a�e
ted by energeti
 parti
les [17℄.It is diÆ
ult to shield against natural radiation sour
es. Gamma rays that rea
h thesurfa
e of the earth have suÆ
iently high momentum that they
an only be stopped withthi
k, dense materials [16℄. Alpha parti
les
an be stopped with thin shields, but anye�e
tive shield would have to be free of atomi
 impurities, otherwise, the shield itself wouldbe an additional sour
e of natural radiation. Neither shielding approa
h is
ost e�e
tivefor most system designs. As a result, designers will likely be for
ed to adopt fault-tolerantdesign solutions to prote
t against SER-related upsets.3

Austin
IF ID REN R O B CT

in−order
issue

in−order
retirement

EX

out−of−order
execute

IF ID REN R O B CT

in−order
issue

EX

out−of−order
execute

CHK

Traditional Out−of−Order Core DIVA CheckerDIVA Core

nonspec
results

a) b)

instructions
with inputs
and outputs

WT

architected
 state
(regs + mem)

architected
 state
(regs + mem)

in−order
check

Figure 1: Dynami
 Veri�
ation. Figure a) shows a traditional out-of-order pro
essor
ore. Figure b)shows the
ore augmented with a
he
ker stage (labeled CHK). The shaded
omponents in ea
h�gure indi
ate the part of the pro
essor that must be veri�ed
orre
t to ensure
orre
t programexe
ution.In
reased Complexity With denser feature sizes, there is an opportunity to
reatedesigns with many millions and soon billions of transistors. While many of these transistorswill be invested in simple regular stru
tures like
a
he and predi
tor arrays, others will�nd their way into
omplex
omponents su
h as dynami
 s
hedulers, new fun
tional units,and other yet-to-be-invented gadgets. There is no shortage of testimonials from industryleaders warning that in
reasing
omplexity is perhaps the most pressing problem fa
ingfuture mi
ropro
essor designs [19, 20, 21, 22℄. Without improved veri�
ation te
hniques,future designs will likely be more
ostly, take longer to design, and in
lude more undete
teddesign errors.1.3 Dynami
 Veri�
ationToday, most
ommer
ial mi
ropro
essor designs employ fault-avoidan
e te
hniques to ensure
orre
t operation. Design faults are avoided by putting parts through extensive fun
tionalveri�
ation. To ensure designs are ele
tri
ally robust, frequen
y and voltage margins areinserted into a

eptable operating ranges. These te
hniques, however, are be
oming lessattra
tive for future designs due to in
reasing
omplexity, degraded signal integrity, andnatural radiation interferen
e.Traditional fault-toleran
e te
hniques
ould address some of the reliability
hallengesin future designs, but only at great
ost. System-level te
hniques su
h as triple modularredundan
y (TMR) [23℄
an dete
t and
orre
t a single transient fault in the system at theexpense of three times the hardware plus voting logi
. Logi
-level fault-tolerant solutions,su
h as self-
he
king
ir
uits [24℄, often have lower
ost (typi
ally only twi
e as mu
h hard-ware), but they are still
ostly and
an slow
riti
al
ir
uits. Moreover, these approa
hesonly address transient errors, i.e., errors whi
h manifest temporarily (su
h as energeti
parti
le strikes). They
annot address design errors if the error o

urs within ea
h of theredundant
omponents - the redundant units will simply agree to take the wrong a
tion.4

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ationIn this paper, we introdu
e dynami
 veri�
ation, a novel mi
roar
hite
ture-based te
h-nique that permits dete
tion and re
overy of all fun
tional and ele
tri
al faults in thepro
essor
ore, both permanent and transient. A Dynami
 Implementation Veri�
ationAr
hite
ture (DIVA) extends the spe
ulation me
hanism of a modern mi
ropro
essor to de-te
t errors in the
omputation of the pro
essor
ore. As shown in Figure 1, a DIVA pro
essoris
reated by splitting a traditional pro
essor design into two parts: the deeply spe
ulativeDIVA
ore and the fun
tionally and ele
tri
ally robust DIVA
he
ker. The DIVA
ore is
omposed of the entire mi
ropro
essor design ex
ept the retirement stage. The
ore fet
hes,de
odes, and exe
utes instru
tions, holding their spe
ulative results in the re-order bu�er(ROB). When instru
tions
omplete, their input operands and results are sent in programorder to the DIVA
he
ker. The DIVA
he
ker
ontains a fun
tional
he
ker stage (CHK)that veri�es the
orre
tness of all
ore
omputation, permitting only
orre
t results to passthrough to the
ommit stage (CT) where they are written to ar
hite
ted storage. If any er-rors are dete
ted in the
ore
omputation, the
he
ker �xes the errant
omputation,
ushesthe pro
essor pipeline, and then restarts the pro
essor at the next instru
tion.The DIVA
he
ker dete
ts and
orre
t errors in the
ore pro
essor by re-exe
uting thenon-spe
ulative instru
tion stream (observable at
ore retirement). It does this using asimple (but
omplete) pipeline that leverages a stream of high-quality bran
h predi
tions,input value predi
tions, and
a
he prefet
hes from the
ore pro
essor. Operating in thewake of the
omplex
ore pro
essor eliminates the
ontrol and data hazards that wouldotherwise slow the simple
he
ker pipeline.Certain faults, espe
ially those a�e
ting
ore pro
essor
ontrol
ir
uitry,
an lo
k up the
ore pro
essor or put it into a deadlo
k or livelo
k state where no instru
tions attempt toretire. For example, if an energeti
 parti
le strike
hanges an input tag in a reservationstation to the result tag of the same instru
tion, the pro
essor
ore s
heduler will deadlo
k.To dete
t these faults, a wat
hdog timer (WT) is added. After ea
h instru
tion
ommits,the wat
hdog timer is reset to the maximum laten
y for any single instru
tion to
omplete.If the timer expires, the pro
essor
ore is no longer making forward progress and the
ore isrestarted. To ensure that the pro
essor
ore
ontinues making forward progress in the eventof an unre
overable design fault, the
he
ker is able to
omplete exe
ution of the
urrentinstru
tion before restarting the
ore pro
essor.On the surfa
e, it may seem super
uous to add hardware to perform a veri�
ationfun
tion that is today a

omplished at design time. However, there are at least four powerfuladvantages of dynami
 veri�
ation:� The approa
h
on
entrates fun
tional and ele
tri
al veri�
ation into the
he
ker unit.As a result, the
ore pro
essor has no burden of fun
tional or ele
tri
al
orre
tness,and no requirement of forward progress - it need only be
orre
t often enough to meetperforman
e goals. If the
he
ker design is kept simple, the approa
h
an redu
e the
ost and improve the overall quality of pro
essor veri�
ation.� Transistors outside of the
he
ker unit
an s
ale to smaller sizes without fear of naturalradiation interferen
e. If these transistors experien
e an energeti
 parti
le strike andprodu
e in
orre
t results, the
he
ker will dete
t and
orre
t any errant
omputation.� The fault-avoidan
e te
hniques used to produ
e ele
tri
ally robust designs are very
onservative. By leveraging a dynami
 veri�
ation approa
h, voltage and timing mar-5

Austingins in the
ore
an be signi�
antly tightened, resulting in faster and
ooler imple-mentations.� As long as
he
ker fault rates are kept in
he
k, it be
omes possible to simplify thepro
essor by eliminating infrequently used fun
tionality. For example, rarely used
ir
uits
an be eliminated to improve the speed or redu
e the size of
riti
al
ir
uitpaths.In the remainder of this paper, we present and evaluate the DIVA
he
ker ar
hite
ture.In Se
tion 2, we detail the ar
hite
ture and operation of the DIVA
he
ker unit. We alsopresent arguments why the DIVA
he
ker should be inexpensive to build and lend itself tofun
tional and ele
tri
al veri�
ation, more so than the
omplex
ore pro
essor it monitors.In Se
tion 3, we present analyses of the runtime impa
ts of dynami
 veri�
ation. Throughdetailed timing simulation, we examine the performan
e impa
ts of various DIVA
he
kerar
hite
tures. We also study the e�e
t of fault rates on
ore pro
essor performan
e. Se
tion4 des
ribes related work, and Se
tion 5 suggests other appli
ations of dynami
 veri�
ation.Finally, Se
tion 6 gives
on
lusions.2. The DIVA Che
ker Ar
hite
tureThe DIVA
he
ker ar
hite
ture presented in this se
tion makes a number of importantassumptions
on
erning the underlying mi
roar
hite
ture. First, it is assumed that allar
hite
ted registers and memory employ an appropriate
oding te
hnique (e.g., ECC) todete
t and
orre
t any storage-related faults. As a result, any value the DIVA
he
kerreads or writes to a register or memory will
omplete without error. Se
ond, it is assumedthat the re
ord of instru
tions fet
hed by the DIVA
ore are
orre
tly
ommuni
ated tothe DIVA
he
ker. On
e again,
oding te
hniques
an be used to dete
t and
orre
t errorsin this
ommuni
ation. (Note that it is not assumed that a

esses to instru
tion or datastorage o

urred in the right order or to the
orre
t address, the DIVA
he
ker will verifythese requirements.) Finally, it is assumed that the
ore and the
he
ker share the samear
hite
ted state (register and memory system). Later, we examine the impli
ations thishas on
ore pro
essor performan
e.2.1 The Invariants of Serial Program Semanti
sTo ensure that the
ore pro
essor is fun
tioning
orre
tly, the
he
ker unit veri�es fourar
hite
tural invariants on the exe
ution of ea
h instru
tion. These ar
hite
tural invariantsare:Corre
t Computation All operations produ
e a
orre
t result given their inputs.Corre
t Communi
ation The last write of storage is visible by the next read of the sameaddress.Corre
t Control Pro
essor
ontrol
hanges as per the semanti
s of bran
h instru
tions.Forward Progress The pro
essor is making progress toward
ompletion of the next in-stru
tion to retire. 6

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation

C
H
K

R
D

C
T

stage
CHK

ALU/
AGEN/
BR

ST

CT

reg/mem bypass

 WB result
or
 exception

 ST mem
or
 exception

a) b)

<success?>

<success?>

read src1
read src2

check src1
check src2
wait for
 CHKcomp

read addr
read st data

 WB result
or
 exception

LD

RD

E
X’

C
M
P

inst
class

check addr
check mem

read addr
read mem

check addr
check st data

<inst,result>
speculative
computation
from DIVA
core

<inst,result,src1,src2>

<inst,result,src1,src2>

Communication pipeline

Computation pipeline

Figure 2: A Dynami
 Implementation Veri�
ation Ar
hite
ture (DIVA). Figure a) illustratesthe DIVA ar
hite
ture and its interfa
e to the
ore pro
essor. Figure b) details the DIVA
ommuni
ation pipeline operation for ea
h instru
tion
lass.If ea
h of these invariants hold for a parti
ular instru
tion, it may safely retire its result.This simple approa
h to veri�
ation is possible be
ause the underlying mi
roar
hite
ture,although
omplex and a great
hallenge to verify dire
tly, implements a relatively simpleinterfa
e at the instru
tion set. In other words, the
omplexity in the
ore pro
essor isprimarily the result of ar
hite
turally invisible performan
e optimizations. For example, ifrenaming o

urs, it does not a�e
t whether or not writes to an address are visible to thenext read. This property also serves to strengthen the
he
kers ability to dete
t designerrors, sin
e errors in the spe
i�
ation of the mi
roar
hite
ture
annot a�e
t the
orre
tnessof the
he
ker.2.2 Basi
 OperationFigure 2a details the ar
hite
ture of the DIVA
he
ker. The DIVA
ore pro
essor sends
ompleted instru
tions in program order to the DIVA
he
ker. With ea
h instru
tion, italso sends the operands (inputs) and result (output) values as
omputed by the DIVA
orepro
essor. The
he
ker veri�es the instru
tion result using two parallel and independentveri�
ation pipelines. The
omputation pipeline veri�es the integrity of all
ore pro
essor
omputation and
ontrol. The
ommuni
ation pipeline ensures that register and memory
ommuni
ation between
ore pro
essor instru
tions o

urred without error. If both pipelinesreport
orre
t operations (and no earlier instru
tion de
lared an error), the
ore
omputationsu

eeded with the
orre
t inputs. Hen
e, the instru
tion result is
orre
t and it
an besafely retired to ar
hite
ted storage in the
ommit stage (CT) of the pipeline. In the eventforward progress is lost in the
ore (e.g., due to a deadlo
k or livelo
k), the wat
hdog timerwill expire and restart the
he
ker pipeline with the next instru
tion.7

AustinComputation Pipeline The
omputation pipeline veri�es the integrity of all fun
tionalunit
omputation. In the EX' stage of the
omputation pipeline, the result of the instru
tionis re-
omputed. In the CMP stage, the re-
omputed result is
ompared to the fun
tionalunit result delivered by the
ore pro
essor. If the two results di�er, the DIVA
he
kerraises an ex
eption whi
h will
orre
t the errant
ore result with the value
omputed inthe EX' stage. Control is also
he
ked in this pipeline. Bran
hes
ompute their a
tualtarget addresses, and
ompare this to the predi
ted address from the
ore (the result of thebran
h) - if they do not mat
h, an ex
eption is de
lared to �x program
ontrol.Be
ause instru
tions are delivered by the DIVA
ore to the
omputation pipeline withpre-
omputed inputs and outputs, there are no inter-instru
tion dependen
ies to slow pipelineprogress. For example, if a long laten
y divide enters the
he
ker followed by a dependentadd, the dependent operation may start in same
y
le (before
ompletion of the divide) usingthe inputs values supplied by the
ore. As long as instru
tions are
he
ked in program order,any in
orre
t input predi
tions will be dete
ted and
orre
ted. Core input value predi
tions
reate a tremendous amount of ILP, as a result,
he
ker bypass datapaths are not requiredand pipeline
ontrol logi
 is trivial. The resulting
he
ker pipeline is both simple and fast.It may seem redundant to exe
ute the instru
tion twi
e: on
e in the fun
tional unitand again in the
omputation pipeline, however, there is good reason for this approa
h.First, the implementation of the
omputation pipeline
an take advantage of a simpleralgorithm to redu
e fun
tional unit veri�
ation
osts. Se
ond, it
an be implemented withlarge transistors (that
arry ample
harge) and large timing and voltage margins, makingit resistant to natural radiation interferen
e and noise-related faults.Communi
ation Pipeline Figure 2b details operation of the
ommuni
ation pipelinefor ea
h instru
tion
lass. For the purpose of demonstration, it is assumed that the un-derlying ar
hite
ture is a simple load/store instru
tion set (although this is not required).In addition, load and store operations are de
omposed into two sub-operations: an addressgeneration operation (AGEN) whi
h adds a register and
onstant to produ
e an e�e
tiveaddress, and a
orresponding load (LD) or store (ST) primitive that a

epts the e�e
tiveaddress. This de
omposition simpli�es the mapping of load and store operations onto the
ommuni
ation pipeline.The
ommuni
ation pipeline veri�es that the pro
essor
ore produ
ed the
orre
t reg-ister and memory input operands for ea
h instru
tion. We observe that at retirement, the
orre
t inputs for an instru
tion reside in ar
hite
ted registers and memory. By probingthis state just before retirement, it is possible to
he
k if the
ore pro
essor produ
ed the
orre
t register and memory inputs. This simple
he
k works independent of the underlyingme
hanism used to implement
ommuni
ation in the
ore pro
essor pipeline, e.g., registerrenaming, dependen
e spe
ulation, or dynami
 s
heduling will not a�e
t this invariant.As shown in Figure 2b, the
ommuni
ation pipeline re-exe
utes all
ommuni
ation inprogram order just prior to instru
tion retirement. In the RD stage of the
ommuni
ationpipeline, the register and memory operands of instru
tions are read from ar
hite
ted storage.In the CHK stage of the pipeline, these values are
ompared to the input values deliveredby the
ore pro
essor. If the operands delivered by the
ore pro
essor mat
h those readby the RD stage, the pro
essor
ore su

essfully implemented instru
tion
ommuni
ationand pro
essing may
ontinue. Otherwise, the DIVA
he
ker raises a register or memory8

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation
Exception
Priority

DIVA
Exception

Recovery
Mechanism

CHKcomm
(register value)

Watchdog Timer
Expiration

0 (highest)

1

2CHKcomm
(memory value)

3 (lowest)CHKcomp

How the Exception
is Corrected by DIVA

1) reset DIVA pipes
 with next inst
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

1) reset DIVA pipes
 with correct register input
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

1) reset DIVA pipes
 with correct memory input
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

1) reset DIVA pipes
 with correct register result
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

Watchdog exception
jumpstarts DIVA checker
and core at next instruction

CHKcomm RD stage register
value (always correct) is injected
into DIVA verification

CHKcomm RD stage memory
value (always correct) is injected
into DIVA verification

CHKcomp EX’ result (correct
if no other exceptions) is
injected into DIVA verificationFigure 3: Fault Handling in the DIVA Che
ker.ex
eption whi
h will restore the
orre
t input operand with the operand value read in theRD stage. A single bypass exists a
ross the CHK stage to handle the
ase of an instru
tion
he
king an input written by the immediately previous instru
tion. Sin
e this value is notvisible until the CT stage of the pipeline (when the value is written to ar
hite
ted state), asingle bypass is provided to eliminate any stalls.It may seem super
uous to re-exe
ute all storage operations in the
ommuni
ationpipeline, espe
ially given the assumption that all storage is prote
ted from faults using
oding te
hniques su
h as ECC. However,
oding te
hniques are insuÆ
ient to dete
t all
ommuni
ation errors. While
oding
an dete
t storage values that were damaged by tran-sient errors, it
annot dete
t failed or misdire
ted
ommuni
ation in the pro
essor
ore. Forexample, if the register renamer points an operand to an in
orre
t physi
al storage lo
ation,or if the store forward bu�ers miss a
ommuni
ation through aliased virtual memory,
odingte
hniques will not dete
t these errors. These errors are, however, dete
ted by the
ommu-ni
ation pipeline as it re-exe
utes register and memory
ommuni
ation. Instru
tion fet
ha

esses, on the other hand, do not need to be re-exe
uted be
ause the order of a

esses tothis storage is not important (save self-modifying
ode writes).2.3 Fault HandlingIn the event a fault is dete
ted in the DIVA
ore
omputation, the DIVA
he
ker will raisean ex
eption to
orre
t the errant
ondition and restart the pro
essor. Figure 3 shows theDIVA ex
eptions that
an o

ur, their priority, and the spe
i�
 method used to re
overma
hine state.Ex
eptions are handled in program order at the
ommit (CT) stage of the pipeline. Ifan instru
tion de
lares multiple ex
eptions in the same
y
le, the ex
eption with the highestpriority is always handled �rst. When any ex
eption is taken, the DIVA
he
ker �xes theerrant instru
tion with the
orre
t value (returned by either
he
ker pipelines),
ushes thepro
essor pipeline, and then restarts the DIVA
he
ker and pro
essor
ore.9

Austin# instr # instr % ld % st Base RUU Mem BPProgram Input fwd (M) exe
 (M) exe exe CPI O

 Util A

ompress ref.in 0 93 26.7 9.4 0.60 84.2 0.41 90.2GCC 1stmt.i 100 100 24.6 11.5 0.64 25.5 0.32 85.4go 2stone9.in 100 100 30.7 8.2 0.61 23.3 0.42 76.1ijpeg vigo.ppm 100 100 18.5 5.6 0.38 132.0 0.39 88.6li boyer.lsp 100 100 25.8 15.1 0.47 52.9 0.44 93.1perl s
rabble.pl 100 100 22.7 12.2 0.48 55.0 0.39 93.7hydro2D hydro2D.in 100 100 20.7 8.7 0.46 106.4 0.37 96.3tom
atv tom
atv.in 100 100 20.4 8.7 0.42 50.2 0.40 95.6turbo3D turbo3D.in 100 100 23.6 16.2 0.38 149.7 0.42 94.9Table 1: Program statisti
s for the baseline ar
hite
ture.It is
ru
ial that the DIVA
he
ker be able to
orre
t whatever
ondition resulted ina DIVA ex
eption. If the DIVA
he
ker were not able to
orre
t a parti
ular ex
eption
ondition, it would not be able to guarantee program forward progress in the presen
e ofa permanent
ore fault (e.g., a design error or stu
k-at fault). As shown in Figure 3, allex
eption
onditions are
orre
ted. In fa
t, the DIVA
he
ker is suÆ
iently robust thatit
an
ompletely take over exe
ution of the program in the event of a total
ore failure.However, its performan
e would be very poor, espe
ially if it had to rely on the wat
hdogtimer to expire before starting ea
h instru
tion.There is slightly di�erent handling of the wat
hdog timer ex
eption. When the wat
hdogtimer expires, the DIVA
he
ker fet
hes the next instru
tion to exe
ute and inje
ts it intothe DIVA pipe with zero value inputs and outputs. The
he
ker then restarts the pro
essor.The
he
ker pipelines will
orre
t these operands and results as in
orre
t values are dete
ted,eventually
ompleting exe
ution of the stalled instru
tion.2.4 Working ExamplesFigure 4 shows two examples of the DIVA
he
ker in operation. In Figure 4a, an AGENoperation produ
es an in
orre
t result that it forwards to a LD operation. The
omputationpipeline dete
ts the in
orre
t result in the CMP stage and then de
lares an ex
eption whi
h
orre
ts the result of the AGEN operation, allowing it to retire three
y
les later.Figure 4b shows the operation of the DIVA
he
ker in the event of a
atastrophi

orepro
essor failure. In this example the
ore is not attempting to retire instru
tions, thusthe DIVA
he
ker must
ompletely exe
ute ea
h instru
tion. The example starts out witha wat
hdog timer reset that for
es insertion of the next instru
tion with zero value inputsand outputs. The instru
tion �rst dete
ts in the
ommuni
ation pipeline that its inputsare in
orre
t whi
h results in a register value ex
eption that �xes the inputs. Next, the
omputation pipeline dete
ts that the result is in
orre
t whi
h de
lares an ex
eption that�xes the result. Finally, the instru
tion
ompletes without an ex
eption and retires itsresults to the ar
hite
ted register �le. 10

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation
time (in cycles)

add r4,r4,8

agen t1,r4,4

bnz r1,loop

agen t1,r4,4

 EX
<?,8,4>

 RD
<12,8,4>

 EX’
<12,8,4>

 CMP
<12,8,4>

 CHK
<12,8,4>

ld r1,(t1) EX
<?,12>

 EX’
<10,12>

 RD
<10,12>

 CMP
<10,12>

 CHK
<10,12>

 EX
<?,8,8>

 EX’
<16,8,8>

 CMP
<16,8,8>

 RD
<16,8,8>

 CHK
<16,8,8>

in
st

ru
ct

io
ns

 EX
<?,16,4>

 CMP
<12,16,4>

 RD
<12,16,4>

 CHK
<12,16,4>

 EX’
<12,16,4>

 EX’
<20,16,4>

 exception!
<12,16,4>

agen t1,r4,4

in
st

ru
ct

io
ns EX’

<0,0,0>
 CMP
<0,0,0>

 RD
<0,0,0>

 CHK
<0,0,0>

exception!
<0,0,0>

 EX’
<0,8,4>

 RD
<0,8,4>

 CMP
<0,8,4>

 CHK
<0,8,4>

exception!
<0,8,4>

 EX’
<12,8,4>

 RD
<12,8,4>

 CMP
<12,8,4>

 CHK
<12,8,4>

should be 8 and 4, declare
CHKcomm exception

b)

 CT
<12,8,4>

 CT
<10,12>

 CT
<16,8,8>

 CT
<12,8,4>

ld r1,(t1)

 EX
<?,10,0>

 EX’
<1,10,0>

 CMP
<1,10,0>

 CT
<1,10,0>

 RD
<1,10,0>

 CHK
<1,10,0>

pipeline
restarted

 fault
 detected

fault
fixed

should be 12, declare
CHKcomp exception

time (in cycles)

a)

 faulty
computation

watchdog timer
exception

 CMP
<20,16,4>

 CT
<20,16,4>

 RD
<20,16,4>

 CHK
<20,16,4>

 EX
<?,12>

 EX’
<12,12>

 RD
<12,12>

 EX
<?,20>

Figure 4: Example Operation of the DIVA
he
ker. Two working pipeline examples are shownin Figures a) and b). In the pipeline diagrams, program exe
ution runs from top to bottom,the instru
tion exe
uted is shown to the left of the pipeline. Time runs from left to right;instru
tions list whi
h pipeline stage they are in for ea
h
y
le they are a
tive. Below thepipeline stage designators are listed the one output and two input values for ea
h instru
tion.The verti
al bars represent de
larations of DIVA
he
ker ex
eptions.
11

Austin2.5 Veri�
ation of the DIVA Che
kerParamount to the su

ess of dynami
 veri�
ation is a fun
tionally
orre
t and ele
tri
allyrobust DIVA
he
ker implementation. It had better work
orre
tly all the time, otherwise,it may impair
orre
t operation of the pro
essor
ore. Moreover, the
ost of DIVA
he
kerveri�
ation should be lower than the
ost of verifying a traditional pro
essor design, oth-erwise, there is no overall gain to the employing dynami
 veri�
ation. It is diÆ
ult toquantitatively assess the ease (or diÆ
ulty) in building a
orre
t DIVA
he
ker in a paperdesign su
h as this. To a

urately assess these
osts would require the
onstru
tion of a realDIVA
he
ker in VLSI. In lieu of this level of detail, we des
ribe the attributes of the DIVA
he
ker design that we feel will lend the approa
h to high-quality and low-
ost fun
tionaland ele
tri
al veri�
ation.Simple: The DIVA
he
ker is inherently simpler than a traditional pro
essor
ore. It
on-tains only the me
hanisms ne
essary to
he
k the fun
tion of the program, and it la
ks all ofthe me
hanisms used to speed
omputation, e.g., predi
tors, renamers, dynami
 s
hedulers,et
. In addition, the pre-
omputed inputs and outputs from the
ore pro
essor eliminatethe inter-instru
tion dependen
ies and stall
onditions that
ompli
ate traditional high-performan
e pipeline designs.Laten
y-Insensitive: With suÆ
ient bu�ering of spe
ulative
ore results, the laten
y ofthe DIVA
he
ker will not impa
t
ore pro
essor performan
e. As a result, wide and deeplypipelined implementations are possible. These designs will permit
he
ker implementationswith large timing margins and large (and slow) transistors, a�ording the
he
ker high resis-tan
e to transient faults and natural radiation interferen
e. Sin
e there are few dependen
iesbetween instru
tions, widening or lengthening the DIVA pipeline is quite straightforward.S
alable: The DIVA
he
ker design is more reusable than traditional pro
essor
ores,making it possible to leverage
orre
tness established in previous designs. Sin
e the
he
kersits at retirement, new designs need only s
ale with the retirement bandwidth of the new
ore it is
he
king. Retirement bandwidth s
ales very slowly from generation to generation,any additional bandwidth requirements
an be a

ommodated by simply lengthening orwidening the DIVA
he
ker pipelines. Moreover, the design of the
he
ker is independentof the
ore mi
roar
hite
ture (as it
he
ks ar
hite
tural invariants), as a result, its design
an be
ompletely de
oupled from the
ore design.In addition to these attributes, we are
urrently investigating formal veri�
ation of theDIVA
he
ker. The DIVA
he
ker resembles a simple in-order pro
essor with little mi
roar-
hite
tural state and few inter-instru
tion dependen
ies { properties that simplify formalveri�
ation [8, 9℄. We believe the DIVA
he
ker will also lend itself to formal veri�
ation,making it possible to formally verify large
omplex mi
roar
hite
tures by only verifying the
orre
tness of the DIVA
he
ker.3. Experimental EvaluationIn this se
tion, we examine the impa
t of dynami
 veri�
ation on pro
essor
ore perfor-man
e. Core slowdowns are measured, using detailed timing simulation for DIVA
he
kerswith varied resour
e
on�gurations,
he
ker laten
y, and fault rates.12

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation3.1 MethodologyThe simulators used in this study are derived from the SimpleS
alar/Alpha 3.0 tool set[25℄, a suite of fun
tional and timing simulation tools for the Alpha AXP ISA. The timingsimulator exe
utes only user-level instru
tions, performing a detailed timing simulation ofan aggressive 4-way dynami
ally s
heduled mi
ropro
essor with two levels of instru
tionand data
a
he memory. Simulation is exe
ution-driven, in
luding exe
ution down anyspe
ulative path until the dete
tion of a fault, TLB miss, or bran
h mispredi
tion.To perform our evaluation, we
olle
ted results for nine of the SPEC95 ben
hmarks[26℄. All programs were
ompiled on a DEC Alpha AXP-21164 pro
essor using the DEC Cand Fortran
ompilers under OSF/1 V4.0 operating system using full
ompiler optimization(-O4 -ifo). Table 1 shows the data set we used in gathering results for ea
h program, thenumber of instru
tions that were exe
uted (fast forwarded) before a
tual simulation began,and the number of instru
tions simulated for ea
h program (up to 100 million). Also shownare the per
ent of dynami
 instru
tions that were loads and stores, the baseline ma
hineCPI, the average number of entries in the instru
tion window (RUU), the fra
tion of timethe memory ports were in use, and the bran
h predi
tor a

ura
y for ea
h program.3.2 Baseline Ar
hite
tureOur baseline simulation
on�guration models a future generation out-of-order pro
essormi
roar
hite
ture. We've sele
ted the parameters to
apture underlying trends in mi
roar-
hite
ture design. The pro
essor has a large window of exe
ution; it
an fet
h and issue upto 4 instru
tions per
y
le. It has a 256 entry re-order bu�er with a 64 entry load/storebu�er. Loads
an only exe
ute when all prior store addresses are known. In addition, allstores are issued in program order with respe
t to prior stores. There is an 8
y
le minimumbran
h mispredi
tion penalty. The pro
essor has 4 integer ALU units, 2-load/store units,2-FP adders, 1-integer MULT/DIV, and 1-FP MULT/DIV. The laten
ies are: ALU 1
y
le,MULT 3
y
les, Integer DIV 12
y
les, FP Adder 2
y
les, FP Mult 4
y
les, and FP DIV12
y
les. All fun
tional units, ex
ept the divide units, are fully pipelined allowing a newinstru
tion to initiate exe
ution ea
h
y
le.The pro
essor we simulated has a 32k 2-way set-asso
iative instru
tion and data
a
hes.Both
a
hes have blo
k sizes of 32 bytes. The data
a
he is write-ba
k, write-allo
ate, andis non-blo
king with 2 ports. The data
a
he a

ess laten
y is one
y
le (for a total loadlaten
y of two
y
les). There is a uni�ed se
ond-level 512k 4-way set-asso
iative
a
he with32 byte blo
ks, with a 10
y
le
a
he hit laten
y. If there is a se
ond-level
a
he miss ittakes a total of 60
y
les to make the round trip a

ess to main memory. We model the buslaten
y to main memory with a 10
y
le bus o

upan
y per request. There is a 32 entry8-way asso
iative instru
tion TLB and a 32 entry 8-way asso
iative data TLB, ea
h with a30
y
le miss penalty.3.3 DIVA Che
ker Baseline Ar
hite
tureThe DIVA
he
ker in all experiments is a four instru
tion wide pipeline that instru
tionsenter when they have
ompleted and are the oldest instru
tion in the ma
hine that has notyet entered the DIVA
he
ker pipeline. Instru
tions are pro
essed in-order, any instru
tion13

Austinthat stalls
auses later instru
tions to also stall. In the baseline
on�guration, the
ompu-tation pipeline laten
y is one
y
le longer than the fun
tional unit it
he
ks (for the result
omparison). It is assumed that there is a
omputation pipeline for ea
h of the fun
tionalunits, as a result, there are no stru
tural hazards introdu
ed. The baseline
ommuni
ationpipeline takes two
y
les (for RD and CHK) unless there are stru
tural hazards in a

essingregister �le and
a
he ports. In the baseline
he
ker ar
hite
ture, the RD stage
ompeteswith the
ore pro
essor for four ar
hite
ted register �le ports and two
a
he ports, with pri-ority given to the DIVA
he
ker a

esses. The
ore pro
essor only a

esses the ar
hite
tedregister �le when an operand is not found in the physi
al register �le (i.e., it is not in
ight).Re-order bu�er entries are not deallo
ated until instru
tions exit the
ommit (CT) stage ofthe pipeline, after the DIVA
he
ker veri�es the operation. The wat
hdog timer
ountdownis reset to 60
y
les (the round trip laten
y to memory) whenever an instru
tion
ommits.3.4 DIVA Che
ker Impa
t on Core Pro
essor Performan
eIn Figure 5, we show the impa
t of the DIVA
he
ker on
ore pro
essor performan
e. Allperforman
e numbers are normalized to the CPI of an un
he
ked
ore pro
essor. Results areshown with varied register and memory storage bandwidth. Experiment (+0) has no extraregister �le or
a
he ports (
ompared to the baseline un
he
ked mi
roar
hite
ture). Withoutdedi
ated ports into the ar
hite
ted register �le and data
a
he, the DIVA
he
ker must
ompete for bandwidth with the
ore pro
essor. This
ompetition
an
reate stru
turalhazards whi
h
an slow
ore pro
essing. Experiment are also shown with with 4 extraregister �le ports dedi
ated to the DIVA
he
ker (+R), with one extra dedi
ated memoryport (+M), and with 4 extra register �le ports and one extra memory port (+R+M).Even without extra storage bandwidth, i.e., experiment (+0), the
ost of employingthe DIVA
he
ker is quite low. Average program slowdown was only 3%. In general,there was a high
orrelation between pipeline utilization (e.g., bran
h predi
tion a

ura
y,RUU o

upan
y, and memory port utilization) and slowdown. When the pro
essor pipelineis eÆ
iently utilized, any additional DIVA
he
ker register �le and
a
he a

esses
reatestru
tural hazards that slow
ore pro
essing. Turbo3D had the largest slowdown of 14%without additional resour
es. This ben
hmark is highly eÆ
ient, it has high bran
h predi
tora

ura
y, high RUU o

upan
y and high memory utilization. GCC and and GO, on theother hand, have poor bran
h predi
tion and thus poor pipeline utilization; additionalDIVA
he
ker resour
e usage has little impa
t on the
ore pro
essor performan
e of theseprograms.By in
reasing the bandwidth to the register �le and
a
hes, we
an redu
e the impa
t ofstru
tural hazards on
ore pro
essor performan
e. Experiment (+R) adds four more readports to the ar
hite
ted register �le for use by the DIVA
he
ker
ommuni
ation pipeline.These additional register ports eliminate most stru
tural hazards into the ar
hite
ted reg-ister �le. This
hange had little impa
t on overall performan
e (at most an improvement of0.9% for Hydro2D). Sin
e many of the register a

esses are satis�ed by the physi
al register�le (whi
h has its own a

ess ports), there appears to be suÆ
ient bandwidth left into thear
hite
ted register �le for DIVA
he
ker a

esses.Experiment (+M) adds one more read port to the data
a
he for use by the DIVA
he
ker
ommuni
ation pipeline. This additional
a
he port eliminates nearly all stru
tural14

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation

0.90

0.95

1.00

1.05

1.10

1.15

1.20

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e C
P

I

+0 +R +M +R+M

Figure 5: DIVA Che
ker Impa
t on Core Pro
essor Performan
e for Varied Register Fileand Ca
he Bandwidth. All performan
e numbers are normalized to the CPI of an un
he
ked
ore pro
essor. Results are shown with no extra register �le or
a
he ports (+0), with 4 extraregister �le ports (+R), with one extra memory port (+M), and with 4 extra register �le portsand one extra memory port (+R+M).hazards into the data
a
he. Adding this port has a noti
eable impa
t on
ore pro
essorperforman
e. Most
ore pro
essor performan
e impa
ts are eliminated and overall slowdowndrops to only 0.1%. Finally, in experiment (+R+M), four register ports and two memoryports are added for DIVA
he
ker use. With an additional memory port, the extra register�le ports provide little bene�t, and overall slowdown drops to 0.03%.In addition to stru
tural hazards on ar
hite
ted storage resour
es, we observed thatretirement delays
ould slow the
ore pro
essor. Delays in the retirement of an instru
tionin
rease pressure on
ore pro
essor spe
ulative storage, e.g., re-order bu�er (ROB) andload/store queue (LSQ) entries. If these stru
tures be
ome full, they
an stall the de
odeand issue of instru
tions in the
ore pro
essor, resulting in redu
ed ILP and de
reasedprogram performan
e. During normal
he
ker pipeline operation,
he
king only extends thelaten
y of retirement by a few
y
les. But as eviden
ed by the small slowdowns (espe
iallywhen storage hazards were eliminated), these e�e
ts were minimal. We believe that whilein
reased spe
ulative storage pressure does stall
ore progress, it only stalls the issue ofinstru
tions that would likely not retire. In other words, the probability that instru
tionsthat would �ll the spe
ulative state resour
es would retire is very low due to the largedegree of spe
ulation required to rea
h these instru
tions. As a result, in
reased pressureon spe
ulative state has little e�e
t on overall performan
e.Data
a
he misses in the
he
ker pipeline
an greatly extend the laten
y of instru
tionretirement as the
he
ker pipeline
ompletely blo
ks on data
a
he misses. These misseswill qui
kly stop the progress of the
ore pro
essor pipeline, however, we observed virtuallyno data
a
he misses in the
he
ker pipeline. Sin
e the
he
ker follows in the wake of the15

Austin

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e C
P

I

2x 4x

Figure 6: DIVA Che
ker Impa
t on Core Pro
essor Performan
e with Varied DIVA Che
kerLaten
y. All performan
e numbers are normalized to the CPI of the baseline DIVA
he
ker
on�guration (+0). Results are shown for a
he
ker with two times the laten
y (2x), and a
he
ker with four times the laten
y (4x).
ore pro
essor, the
ore pro
essor serves a prefet
h me
hanism for the
he
ker pipeline,eliminating nearly all data
a
he misses. We are
urrently developing re�ned DIVA
he
kerdesigns that do not delay the release of spe
ulative storage in the
ore pro
essor pipeline,virtually eliminating
ore pro
essor stalls due to instru
tion
he
king.3.5 E�e
ts of In
reased DIVA Che
ker Laten
yIn an e�ort to build an ele
tri
ally robust implementation of the DIVA
he
ker, it may bene
essary to
onstru
t it with large timing margins and large transistors (to resist noise andtolerate natural radiation interferen
e, respe
tively). The most straightforward approa
hto a
hieve this is to deeply pipeline the DIVA
he
ker. Deeply pipelining the DIVA
he
ker,however, will in
rease its laten
y whi
h
an delay retirement of instru
tions. These delaysmay
ause
ongestion in the instru
tion window, e�e
tively redu
ing the instru
tion windowsize and amount of ILP that
an be exploited. Figure 6 shows the impa
t of DIVA
he
kerlaten
y of
ore pro
essor performan
e. All performan
e numbers are normalized to the CPIof a DIVA
he
ker
on�guration with no extra register �le or
a
he port resour
es, i.e.,experiment (+0) from Figure 5.3 Results are shown for a
he
ker with two times as manystages (2x), and a
he
ker with four times as many stages (4x)Overall, the impa
t of
he
ker laten
y on
ore performan
e is quite low. At two times thelaten
y slowdowns in
rease by 0.7%, and with four times the
he
ker laten
y, slowdowns only3. We
ompare to this
on�guration be
ause it was the worst performing DIVA
he
ker
on�guration, thusit will have the most instru
tion window
ongestion to start with and be most sensitive to DIVA
he
kerlaten
y. 16

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ationin
rease by 0.8%. Even the programs with high bran
h predi
tor a

ura
y. e.g., Hydro2D,
annot get suÆ
iently far ahead of the exe
ution
ore to keep the instru
tion window full,as a result, adding extra
he
ker laten
y has little impa
t on
ore performan
e.3.6 E�e
ts of DIVA Che
ker Ex
eptionsIn the event that the DIVA
he
ker dete
ts a failed
omputation or
ommuni
ation, itwill de
lare a DIVA ex
eption and reset the
he
ker and pro
essor
ore. The performan
epenalty for ex
eption handling is quite large, at least 8
y
les for the experiments simulated,more if the faulty instru
tion takes a while to rea
h retirement. To gauge the performan
eimpa
t of DIVA ex
eptions, we ran experiments with random ex
eptions inje
ted at randomtimes but with a �xed ex
eption interval (in
ore pro
essor
y
les). The results are shownin Figure 7. All performan
e numbers are normalized to the CPI of the baseline DIVA
he
ker
on�guration (+0). Results are shown on a log s
ale for ex
eption rates of oneper one million
ore pro
essor
y
les (1M), one per 1000 pro
essor
y
les (1k), and oneevery pro
essor
y
le (1). The experiment labeled (Core Lo
k) examined the performan
eimpa
ts of a
atastrophi

ore failure in whi
h the
ore is no longer attempting to
ommitinstru
tions,
onsequently, instru
tions are not fet
hed until the wat
hdog timer
ounterexpires (on
e every 60
y
les).At an ex
eption rate of one ex
eption every one million
y
les (an average of one ex
ep-tion every 2 mse
 on a 500 MHz pro
essor), there was virtually no impa
t on
ore pro
essorperforman
e. At intervals of 1000
y
les (an average of one ex
eption every 2 use
 on a500 MHz pro
essor), impa
ts were higher but still small, with an overall slowdown of only2.6%. With an ex
eption every
y
le (as would be the
ase for a
atastrophi

ore pro
essorfailure), performan
e impa
ts rise dramati
ally. Overall, performan
e is 114th normal speed.In this experiment, the DIVA
he
ker is
ompletely exe
uting the program. When the
orepro
essor is lo
ked up, performan
e is quite low, on average 1120 th the performan
e of theun
he
ked
ore. In Se
tion 5, we suggest a simple
hange to dete
t this
ase and providemore gra
eful degradation in pro
essor performan
e.It should be possible to keep fault rates well below the point where they have anyper
eivable e�e
t on performan
e. The rate of faults
aused by design errors should bequite low as the
ore will undergo some level of veri�
ation to ex
ise frequently o

urringdesign errors. The remaining design errors will be those that o

ur infrequently and thusare diÆ
ult to �nd and �x. These infrequent errors should not
reate performan
e
on
erns.Transient faults su
h as SER have been shown to be quite infrequent as well. For example,SER fault rates in adverse
onditions (high altitudes) were measured at rates of one everyfew hours [18℄, nothing
lose to the rates that would be required to a�e
t
ore pro
essorperforman
e.3.7 Dis
ussionCore pro
essor slowdowns (due to stru
tural hazards,
he
ker laten
y, and ex
eption han-dling) are not the only
osts asso
iated with the DIVA
he
ker, other
osts in
lude sili
onarea, power
onsumption, and more. While it is diÆ
ult to gauge these
osts without build-ing an a
tual DIVA
he
ker implementation, we feel overall DIVA
he
ker
osts should below for at least two reasons. 17

Austin

1.031.021.031.041.031.031.031.021.021.03

152 141 136130121 124 120

1

10

100

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e C
P

I

1M 1k 1 Core Lock

Figure 7: Performan
e Impa
t of Varied Ex
eption Rates. All performan
e numbers are nor-malized to the CPI of the baseline DIVA
he
ker
on�guration (+0). Results are shown on alog s
ale for ex
eption rates of one per one million
ore pro
essor
y
les (1M), 1000 pro
essor
y
les (1k), and every pro
essor
y
le (1). The experiment labeled (Core Lo
k) examines theperforman
e of a
atastrophi

ore failure in whi
h the
ore is no longer attempting to
ommitinstru
tions. Bar values are shown for the (Core Lo
k) and (1k) experiments.First, the DIVA
he
ker only repli
ates the part of
ore pertaining to a
tual fun
tion. All
ore pro
essing stru
tures related to program performan
e (e.g., predi
tors and s
hedulers)need not be represented in the DIVA
he
ker. In addition, the DIVA
he
ker design is avery simple pipeline. It uses in-order instru
tion pro
essing and has few inter-instru
tiondependen
ies. These advantages make the DIVA
he
ker signi�
antly simpler than the
orepro
essor pipeline, and they should serve to redu
e its size and
ost.Se
ond, the
omputation pipeline
an be implemented with simple, area-eÆ
ient algo-rithms. For example, if the
ore uses a
arry-sele
t
arry-lookahead adder for fast addition,the DIVA
he
ker
an instead use a pipelined ripple
arry adder to redu
e implementa-tion
osts. The pipeline will be slower, but as shown earlier,
ore performan
e is mostlyinsensitive to DIVA
he
ker laten
y, making this a good tradeo�.Ultimately, a more quantitative assessment of DIVA
he
ker area and power
osts willhave to be made, �rst through
ir
uit level simulation and later through an a
tual sili
onimplementation. We are
urrently working toward these goals.4. Related WorkThe idea of dynami
 veri�
ation at retirement was inspired by Brea
h's Multis
alar pro
es-sor simulator [27℄. During the programming and veri�
ation of this very
omplex simulator,a fun
tional veri�
ation stage was added at retirement. The approa
h was suÆ
iently robustthat it
ould mask fun
tional bugs that were introdu
ed during the simulator's development18

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ationpermitting its use for performan
e analysis before it was fully debugged. The DIVA
he
kerworks in pre
isely the same manner, but for a hardware system.Rotenberg's AR-SMT pro
essor [28℄ employs a time-redundant exe
ution te
hnique thatpermits an SMT pro
essor to tolerate some transient errors. We borrow on this work;the DIVA
he
ker leverages the idea of using an unreliable pro
essor's results to speedthe exe
ution of instru
tion
he
king. We improve upon Rotenberg's work in a numberof ways. Rotenberg's approa
h
he
ks all aspe
ts of exe
ution, in
lude program fun
tionand the me
hanisms used to optimize program performan
e. The DIVA
he
ker, on theother hand, only
he
ks program fun
tion, permitting a simpler
he
ker implementation.While Rotenberg's approa
h only dete
ts some transient errors, a fun
tionally
orre
t andele
tri
ally robust DIVA
he
ker
an re
over all permanent and transient
ore pro
essorfaults.A number of fault-tolerant pro
essor designs have been proposed and implemented,in general, they employ redundan
y to dete
t and/or
orre
t transient errors. IBM's G4pro
essor [29℄ is a highly reliable pro
essor design similar to the design in this paper in thatit
he
ks all instru
tions results before
ommitting them to ar
hite
ted state. Che
king isa

omplished by fully repli
ating the pro
essor
ore. An R-Unit is added to
ompare allinstru
tion results, permitting only identi
al results to
ommit. If a failure in the pro
essoris dete
ted, it is addressed at the system level through on-line re
on�guration. The ERC32is a reliable SPARC
ompatible pro
essor built for spa
e appli
ations [30℄. This designaugments the mi
roar
hite
ture with parity on all register and memory
ells, some self-
he
king
ontrol logi
, and
ontrol
ow
he
king. In the event a fault is dete
ted, a softwareinterrupt is generated and the host program initiates re
overy.Unlike these designs, the DIVA
he
ker
an keep
osts lower by only
he
king the fun
-tion of the program
omputation. The G4 and ERC32 designs
he
k both the fun
tion ofthe program and the me
hanisms used to optimize program performan
e. This results inmore expensive
he
kers, typi
ally 2 times as mu
h hardware in the
ore pro
essor. Ad-ditionally, the DIVA
he
ker
an dete
t design errors. Simple redundant designs
annotdete
t design errors if the error is found in ea
h of the redundant
omponents.Tamir and Tremblay [31℄ proposed the use of mi
ro rollba
k to re
over mi
roar
hite
turestate in the event of a dete
ted fault. The approa
h uses FIFO queues to
he
kpoint a few
y
les of mi
roar
hite
tural state. In this work, we use a similar parallel
he
king approa
h,but employ a global
he
king strategy to redu
e
he
ker
ost. In addition, we use theexisting
ontrol spe
ulation me
hanism to restore
orre
t program state.5. Other DIVA Appli
ationsThe fault-toleran
e
reate by dynami
 veri�
ation
ould allow designers to revisit manyof the fundamental assumptions of
omputer design - assumptions grounded in a fault-avoidan
e design methodology. We believe that a transition to a fault-tolerant design stylewould break many of these venerable assumptions -
reating signi�
ant opportunity at alllevels of the design. In this se
tion, we suggest a number of possible optimizations.19

Austin5.1 Beta-Release HardwareToday, when parts are fully veri�ed and released to the �eld, the pro
ess of veri�
ation(for the most part) is over. If
ustomers �nd bugs, it may be ne
essary to implement ex-pensive re
alls of
ostly
omponents. With dynami
 veri�
ation, it be
omes possible tosafely release \beta" versions of the hardware to
ustomers in the �eld (on
e the
he
keris fully veri�ed). This early release of hardware will enable widespread in-�eld ele
tri
alveri�
ation,
on
urrent with initial deployment of the part. If any
ore pro
essor errorso

ur during this testing phase, the
he
ker will ensure that they only manifest as per-forman
e divots. As problems are identi�ed and �xed, steppings of the hardware
an bemade without ne
essitating a repla
ement of earlier hardware { the new release of the partwill simply be slightly faster be
ause it will experien
e fewer
ore pro
essor design errors.To fa
ilitate this pro
ess, e�e
tive system monitoring me
hanisms
ould be developed thatbetter identify the sour
e of
ore design errors, and
ommuni
ate this information ba
k tothe manufa
turer.5.2 S
alable Low-Cost SER Prote
tionSingle event radiation (SER) poses a signi�
ant threat to the reliability of deep submi
ronlogi
 implementations. Dynami
 veri�
ation provides natural prote
tion from these prob-lems, sin
e SER-indu
ed faults in the
ore pro
essor will manifest as
omputation errorsthat are �xed by the
he
ker. To prevent SER from a�e
ting the
he
ker, it
an be madewith larger transistor with ample
harge to tolerate strikes, thus providing 100%
overage forSER by simply addressing the problem in the
he
ker. As fabri
ation te
hnology
ontinueto s
ale to smaller feature sizes, it eventually be
omes more area eÆ
ient to implement two
opies of the
he
ker logi
. Sin
e SER upsets are temporally and spatially sparse, it will behighly improbably that both
he
kers
ould be a�e
ted by SER in the same or subsequent
y
les. A

ordingly, if the
he
kers disagree on the
orre
tness of an instru
tion one of the
he
kers has experien
ed an SER upset. In this event, the ma
hine
an be restarted atthe same instru
tion and the
he
kers should on
e again agree as to the
orre
tness of theinstru
tion result. This approa
h is a
ompletely s
alable low-
ost and low-impa
t (to theoverall design) solution, and it provides
omplete
overage of all SER-related faults.5.3 Self-Tuned Mi
ropro
essor SystemsThe te
hniques used to provide reliability in VLSI logi
 implementations are very
on-servative. Systems are designed with frequen
y and voltage margins that ensure reliableoperation in even the most adverse environments (e.g., high temperature, high
lo
k skew,slow transistors). This is one of the reasons why hobbyists
an over
lo
k [32℄ produ
tionparts for more performan
e. It should be possible to use the DIVA
he
ker to re
laim mu
hof the power and performan
e
onsumed by operating margins.In a self-tuned system [33℄,
lo
k frequen
y and voltage levels are tuned to the systemoperating environment, e.g., temperature. The approa
h minimizes timing and voltagemargins whi
h
an improve performan
e and redu
e power
onsumption. Using the DIVA
he
ker, a self-tuned system
ould be
onstru
ted by introdu
ing a voltage and frequen
y
ontrol system into the pro
essor, as shown in Figure 8. The
ontrol system de
reases volt-20

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation
DIVA
Checker

Clock Gen
Voltage Gen

error
rate

Vdd
clk

clk’
Vdd’

DIVA Core

insts to verify
and commit

core temperature

Figure 8: A Self-Tuned Mi
ropro
essor System.age and/or in
reases frequen
y while monitoring system temperature and error rates untilthe desired system performan
e-power
hara
teristi
s are attained. If the
ontrol systemover steps the bounds of
orre
t operation in the
ore, the DIVA
he
ker will
orre
t theerror, reset the
ore pro
essor, and notify the
ontrol system. To ensure
orre
t operationof the DIVA
he
ker, it is sour
ed by a �xed voltage and frequen
y that ensures reliableoperation under all operating
onditions (or
onversely, it is design to operate reliably underthe varied frequen
ies and voltages applied to the
ore pro
essor).5.4 Complexity-E�e
tive Mi
roar
hite
ture DesignsIn the work of Pala
harla et. al. [34℄, it was shown how redu
ing the
omplexity of a design
ould improve its performan
e by shortening
riti
al
ir
uit paths. We
ould leverage the
he
ker to further redu
e
omplexity in the
ore pro
essor by eliminating any
omplexitythat did not dire
tly lead to performan
e improvements. Sin
e the
he
ker
overs the
omplete semanti
s of the ISA, we
an delete any
ore fun
tionality to optimize performan
e,area, or design
onvenien
e. As long as that fun
tionality is infrequently exer
ised (inwhi
h
ase the
he
ker will dete
t an error and reset the pipelines), it will not have asigni�
ant impa
t on performan
e. This approa
h provides designers the option to eliminatethe un
ommon
ase. Consider how this might be used to streamline the design of of theload/store queue (LSQ):� eliminate infrequently used support for partial forwards through memory� eliminate rarely used support for store forwarding through virtual address synonyms� eliminate the address
he
k on the infrequently
hanging upper bits of virtual ad-dressesTaking this approa
h to its extreme, it be
omes possible to design two ma
hines: the simple
he
ker pipeline whi
h
overs the entire fun
tionality of the ma
hine, and a de-featured
orethat implements a performan
e-oriented subset of the ISA. For an iA32 ma
hine, the
he
kerwould implement all instru
tions, and the
ore would implement only the instru
tions andtheir semanti
s that were expe
ted to a
hieve good performan
e, e.g., register-register in-stru
tions, aligned memory a

esses, and no partial register or memory de�nitions.21

Austin

1

10

100

1000

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e C
P

I

Core Lock GD

Figure 9: Gra
eful Degradation in the Presen
e of a Catastrophi
 Core Pro
essor Failure.All performan
e numbers are normalized to the CPI of an un
he
ked
ore pro
essor. Resultsare shown on a log s
ale for the baseline DIVA
he
ker with a lo
ked
ore (Core Lo
k), and fora DIVA
he
ker with gra
eful degradation (GD).5.5 Highly Available Mi
ropro
essor DesignsAs shown earlier, if the
ore pro
essor
ompletely fails and no longer attempts to retireinstru
tions, pro
essor performan
e will be severely impa
ted. Without any instru
tionretiring, the DIVA
he
ker will have to wait for the wat
hdog timer to timeout before aninstru
tion
an be retired and the next instru
tion fet
hed. As a result, one instru
tion will
omplete for ea
h interval of the wat
hdog timer, one per 60
lo
k
y
les in the experimentspresented.It would be relatively straightforward to dete
t the
ase where the
ore pro
essor wasno longer
ontributing to the program exe
ution. For example, a
ounter
ould re
ordthe number of wat
hdog timer ex
eptions with no intervening instru
tion retirements. If asuitable threshold was rea
hed, it
ould be assumed that the
ore pro
essor has failed andthe DIVA
he
ker
ould take over exe
ution of the program. A simple
hange to the DIVAdesign would permit it to fet
h and exe
ute instru
tion mu
h qui
ker, simply by permittingit to exe
ute the next instru
tion without having to wait for the wat
hdog timer to expire.As shown in experiment (GD) in Figure 9, this gra
eful degradation approa
h improvespro
essor performan
e
onsiderably in the event of a
atastrophi

ore pro
essor failure.Program performan
e degrades to only 110 th the performan
e of the original working
orepro
essor. This is a marked improvement over the (Core Lo
k) experiment, in whi
h the
orepro
essor lo
ks and instru
tions pro
eed at wat
hdog timer ex
eptions, an average of 1120 ththe speed of the working
ore pro
essor. The gra
eful degradation mode also outperforms a
ore pro
essor that is still retiring instru
tions but always in
orre
t results, i.e., experiment(1) from Figure 7, with an overall performan
e of 114th the speed of the working
ore. In22

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ationthis
ase, the DIVA
he
ker bene�ts from not having to wait for the
ore pro
essor pipelineto �rst exe
ute the instru
tion in
orre
tly.In addition, the availability of a system using the DIVA
he
ker
ould be further im-proved by repli
ating the DIVA
he
ker to dete
t errors within its own
ir
uitry, or byapplying triple modular redundan
y (TMR) [23℄ to dete
t and
orre
t permanent faults inthe DIVA
he
ker.5.6 Dynami
 Simulator Veri�
ationNot only is dynami
 veri�
ation an e�e
tive te
hnique to lower the
ost of hardware veri�-
ation, it is also an e�e
tive te
hnique to lower the
ost of simulator software veri�
ation. Adetailed exe
ution-driven simulator that in
orporates dynami
 veri�
ation (i.e., a fun
tional
he
ker at retirement) will permit ar
hite
ts to qui
kly explore design tradeo�s without im-pairing the
orre
tness of the mi
roar
hite
tural simulator. The simulator
an report a
overage metri
 indi
ating what fra
tion of the time the simulator retired
orre
t results,giving the ar
hite
t a
lear indi
ation of the a

ura
y of their modi�
ations.6. Con
lusionsMany reliability
hallenges
onfront modern mi
ropro
essor designs. Fun
tional design er-rors and ele
tri
al faults
an impair the fun
tion of a part, rendering it useless. Whilefun
tional and ele
tri
al veri�
ation
an �nd most of the design errors, there are many ex-amples of non-trivial bugs that �nd their way into the �eld. Con
erns for reliability grow indeep submi
ron fabri
ation te
hnologies due to in
reased noise-related failure me
hanisms,natural radiation interferen
e, and more
hallenging veri�
ation due to in
reased design
omplexity.To
ounter these reliability
hallenges, we introdu
ed dynami
 veri�
ation, a te
hniquethat adds a fun
tional
he
ker to the retirement phase of a pro
essor pipeline. The fun
tional
he
ker ensures that all
ore pro
essor
omputation is
orre
t, and if not, the
he
ker �xesthe errant
omputation, and restarts the
ore pro
essor using the pro
essor's spe
ulationre
overy me
hanism. Dynami
 veri�
ation fo
uses the veri�
ation e�ort into the
he
kerunit, whose simple and
exible design lends itself to fun
tional and ele
tri
al veri�
ation.Using this approa
h, the
ore pro
essor
arries no burden of
orre
tness or any requirementfor forward progress. The DIVA
he
ker ar
hite
ture was presented as a
he
ker designoptimized for simpli
ity and low
ost.We showed through detailed timing simulation that the simple
he
ker is also veryfast. The design a
hieves high throughput be
ause the
ore pro
essor eliminates mostof the
ontrol and data hazards that might otherwise slow its progress. Control hazardsare
ompletely resolved in the fault-tolerant
ore pro
essor; the
he
ker need only verifythat the program
ounter is updated as per bran
h results. Data hazards,
aused by longlaten
y operations and long laten
y
ommuni
ations, are virtually eliminated. Long laten
yoperations exe
ute independent of ea
h other using the high-quality input value predi
tionsdelivered by the
ore pro
essor. And long laten
y
ommuni
ation delays (the result of data
a
he misses) are virtually non-existent as the
ore pro
essor serves as a prefet
her for the
he
ker, warming up its
a
hes in advan
e of instru
tion
he
ks.23

AustinOverall, we have found that even resour
e-frugal
he
ker designs have little impa
t on
ore pro
essor performan
e. For SPEC95, overall simulated slowdown for a modern pipelinewas less than 3%, with most of the slowdown attributed to
oating point
odes that madevery eÆ
ient use of all pipeline resour
es. With the addition of a single memory port foruse by the DIVA
he
ker, slowdowns were negligible. Also, in
reased DIVA
he
ker laten
yhad only a small impa
t on
ore pro
essor performan
e. The DIVA
he
ker
an toleratevery high fault rates without signi�
antly impa
ting pro
essor
ore performan
e. At ratesof one fault per 1000 pro
essor
y
les, the
ore pro
essor only slowed by 2.6%; at intervalsof 1M
y
les, performan
e impa
ts were negligible.Finally, other appli
ations of dynami
 veri�
ation were proposed. A self-tuned
lo
k andvoltage s
heme was proposed in whi
h dynami
 veri�
ation is used to re
laim frequen
y andvoltage margins. A highly available
he
ker design was also proposed. The design providesmore gra
eful degradation in system performan
e in the event of a total
ore pro
essorfailure. Appli
ations to improve the quality and
omplexity of future designs were alsosuggested.We feel that dynami
 veri�
ation holds signi�
ant promise as a means to address the
ost and quality of veri�
ation for future mi
ropro
essors, while at the same time
reatingopportunities for faster,
ooler, and simpler designs. The next step in this work is to betterquantify the bene�ts and
osts of dynami
 veri�
ation, re�ne our initial design to furtherde
rease
ore pro
essor performan
e impa
ts, and further develop appli
ations of the faulttolerant pro
essor
ore.Referen
es[1℄ \Statisti
al analysis of
oating point
aw in the Pentium pro
essor." Intel Corporation,Nov. 1994.[2℄ M. Kane, \SGI sto
k falls following downgrade, re
all announ
ement." PC Week, Sept.1996.[3℄ A. Wolfe, \For Intel, it's a
ase of FPU all over again." EE Times, May 1997.[4℄ P. Bose, T. Conte, and T. Austin, \Challenges in pro
essor modeling and validation,"IEEE Mi
ro, pp. 2{7, June 1999.[5℄ A. Aharon, \Test program generation for fun
tional veri�
ation of PowerPC pro
es-sors in IBM," in Pro
eedings of the 32nd ACM/IEEE Design Automation Conferen
e,pp. 279{285, June 1995.[6℄ R. Grinwald, \User de�ned
overage { a tool supported methodology for design veri�
a-tion," in Pro
eedings of the 35nd ACM/IEEE Design Automation Conferen
e, pp. 1{6,June 1998.[7℄ W. Hunt, \Mi
ropro
essor design veri�
ation," Journal of Automated Reasoning, vol. 5,pp. 429{460, De
. 1989.[8℄ J. Bur
h and D. Dill, \Automati
 veri�
ation of pipelined mi
ropro
essors
ontrol,"Computer Aided Veri�
ation, pp. 68{80, 1994.24

DIVA: A Dynami
 Approa
h to Mi
ropro
essor Verifi
ation[9℄ J. Sawada, \A table based approa
h for pipelined mi
ropro
essor veri�
ation," in Pro-
eedings of the 9th International Conferen
e on Computer Aided Veri�
ation, June1997.[10℄ J. Bo
khaus, R. Bhatia, M. Ramsey, J. Butler, and D. Ljung, \Ele
tri
al veri�
ationof the HP PA-8000 pro
essor." Hewlett-Pa
kard Journal, Aug. 1997.[11℄ M. Bohr, \Inter
onne
t s
aling { the real limiter to high-performan
e ULSI," in Pro-
eedings of the International Ele
tron Devi
es Meeting, pp. 241{244, De
. 1995.[12℄ N. Weste and K. Eshragian, Prin
iples of Cmos VLSI Design: A Systems Perspe
tive.Addison-Wesley Publishing Co., 1982.[13℄ K. Seshan, T. Maloney, and K. Wu, \The quality and reliability of Intel's quartermi
ron pro
ess." Intel Te
hnology Journal, Sept. 1998.[14℄ P. Rubinfeld, \Managing problems at high speed," IEEE Computer, pp. 47{48, Jan.1998.[15℄ R. Anglada and A. Rubio, \An approa
h to
rosstalk e�e
t analyses and avoidan
ete
hniques in digital CMOS VLSI
ir
uits," International Journal of Ele
troni
s, vol. 6,no. 5, pp. 9{17, 1988.[16℄ J. Ziegler, \Terrestrial
osmi
 rays," IBM Journal of Resear
h and Development,vol. 40, pp. 19{39, Jan. 1996.[17℄ T. May and M. Woods, \Alpha-parti
le-indu
ed soft errors in dynami
 memories,"IEEE Transa
tions on Ele
troni
 Devi
es, vol. 26, no. 2, 1979.[18℄ J. Z. et al, \IBM experiments in soft fails in
omputer ele
troni
s," IBM Journal ofResear
h and Development, vol. 40, pp. 3{18, Jan. 1996.[19℄ P. Bose and T. Conte, \Performan
e analysis and its impa
t on design," IEEE Com-puter, vol. 31, pp. 41{49, May 1998.[20℄ M. Tremblay, \In
reasing work, pushing the
lo
k," IEEE Computer, pp. 47{48, Jan.1998.[21℄ G. Grohoski, \Reining in
omplexity," IEEE Computer, pp. 47{48, Jan. 1998.[22℄ B. Colwell, \Maintaining a leading position," IEEE Computer, pp. 47{48, Jan. 1998.[23℄ D. Siewiorek and R. Swarz, The Theory and Pra
ti
e of Reliable System Design. DigitalPress, 1982.[24℄ W. J, Self-Che
king Cir
uits and Appli
ations. New York: North{Holland, 1978.[25℄ D. C. Burger and T. M. Austin, \The SimpleS
alar tool set, version 2.0," Te
hni
alReport CS-TR-97-1342, University of Wis
onsin, Madison, June 1997.[26℄ \SPEC newsletter," Fairfax, Virginia, Sept. 1995.25

Austin[27℄ S. Brea
h, Design and Evaluation of a Multis
alar Pro
essor. PhD thesis, Universityof Wis
onsin, Madison, 1999.[28℄ E. Rotenberg, \AR-SMT: A mi
roar
hite
tural approa
h to fault toleran
e in mi
ro-pro
essors," in Pro
eedings of the 29th Fault-Tolerant Computing Symposium, June1999.[29℄ L. Spainhower and T. Gregg, \G4: A fault-tolerant CMOS mainframe," in Pro
eedingsof the 28th Fault-Tolerant Computing Symposium, June 1998.[30℄ J. Gaisler, \Evaluation of a 32-bit mi
ropro
essor with built-in
on
urrent error dete
-tion," in Pro
eedings of the 27th Fault-Tolerant Computing Symposium, June 1997.[31℄ Y. Tamir and M. Tremblay, \High-performan
e fault tolerant VLSI systems using mi
rorollba
k," IEEE Transa
tions on Computers, vol. 39, no. 4, pp. 548{554, 1990.[32℄ B. Ma
hrone, \You too
an be an over
lo
ker," PC Magazine, 1999.[33℄ T. Kehl, \Hardware self-tuning and
ir
uit performan
e monitoring," in Pro
eedings ofInternational Conferen
e on Computer Design, 1993.[34℄ S. Pala
harla, N. P. Jouppi, and J. E. Smith, \Complexity-e�e
tive supers
alar pro-
essors," in Pro
eedings of the 24th Annual International Symposium on ComputerAr
hite
ture, pp. 206{218, June 1997.

26

