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DIVA: A Dynami Approah to Miroproessor Veri�ationTodd M. Austin taustin�ees.umih.eduAdvaned Computer Arhiteture LaboratoryUniversity of Mihigan1301 Beal AvenueAnn Arbor, MI 48109 USA AbstratBuilding a high-performane miroproessor presents many reliability hallenges. De-signers must verify the orretness of large omplex systems and onstrut implementationsthat work reliably in varied (and oasionally adverse) operating onditions. To furtherompliate this task, deep submiron fabriation tehnologies present new reliability hal-lenges in the form of degraded signal quality and logi failures aused by natural radiationinterferene.In this paper, we introdue dynami veri�ation, a novel miroarhitetural tehniquethat an signi�antly redue the burden of orretness in miroproessor designs. The ap-proah works by augmenting the ommit phase of the proessor pipeline with a funtionalheker unit. The funtional heker veri�es the orretness of the ore proessor's ompu-tation, permitting only orret results to ommit. In the event of an inorret result, theheker �xes the error and ushes any inorret results from the ore using the existingspeulation reovery mehanism. Overall design osts an be dramatially redued beausedesigners need only verify the orretness of the heker unit. The ore proessor need notbe fully orret, only suÆiently orret that its errors do not adversely a�et performane.We detail the DIVA heker arhiteture, a design optimized for simpliity and low ost.Using detailed timing simulation, we show that even resoure-frugal DIVA hekers havelittle impat on ore proessor performane. To make the ase for redued veri�ation osts,we argue that the DIVA heker should lend itself to funtional and eletrial veri�ationbetter than a omplex ore proessor. Finally, future appliations of dynami veri�ationare suggested.1. IntrodutionReliable operation is perhaps the single most important attribute of any omputer system,followed losely by performane and ost. Users need to be able to trust that when theproessor is put to a task the results it renders are orret. If this is not the ase, therean be serious reperussions, ranging from disgruntled users to �nanial damage to lossof life. There have been a number of high-pro�le examples of faulty proessor designs.Perhaps the most publiized ase was the Intel Pentium FDIV bug in whih an infrequentlyourring error aused erroneous results in some oating point divides [1℄. More reently, theMIPS R10000 miroproessor was realled early in its introdution due to implementationproblems [2℄. These faulty parts resulted in bad press, lawsuits, and redued ustomeron�dene. In most ases, the manufaturers replaed the faulty parts with �xed ones, butonly at great expense. For example, Intel made available replaement Pentium proessors



Austinto any ustomer that had a faulty part and requested a replaement, at an estimated ostof $475 million [3℄.1.1 Designing Corret ProessorsTo avoid reliability hazards, hip designers spend onsiderable resoures at design andfabriation time to verify the orret operation of parts. They do this by applying funtionaland eletrial veri�ation to their designs. 1Funtional Veri�ation Funtional veri�ation ours at design time. The proessstrives to guarantee that a design is orret, i.e., for any starting state and inputs, thedesign will transition to the orret next state. It is quite diÆult to make this guaranteedue to the immense size of the test spae for modern miroproessors. For example, amiroproessor with 32 32-bit registers, 8k-byte instrution and data ahes, and 300 pinswould have a test spae with at least 2132396 starting states and up to 2300 transition edgesemanating from eah state. Moreover, muh of the behavior in this test spae is not fullyde�ned, leaving in question what onstitutes a orret design.Funtional veri�ation is often implemented with simulation-based testing. A model ofthe proessor being designed exeutes a series of tests and ompares the model's results tothe expeted results. Tests are onstruted to provide good overage of the proessor testspae. Unfortunately, design errors sometimes slip through this testing proess due to theimmense size of the test spae. To minimize the probability of this happening, designersemploy various tehniques to improve the quality of veri�ation inluding o-simulation [4℄,overage analysis [4℄, random test generation [5℄, and model-driven test generation [6℄.A reent development alled formal veri�ation [7℄ works to inrease test spae overageby using formal methods to prove that a design is orret. Due to the large number ofstates that an be tested with a single proof, the approah an be muh more eÆientthan simulation-based testing. In some ases it is even possible to ompletely verify adesign. However, this level of suess is usually reserved for in-order issue pipelines orsimple out-of-order pipelines with small window sizes. Complete formal veri�ation ofomplex modern miroproessors with out-of-order issue, speulation, and large instrutionwindows is urrently an intratable problem [8, 9℄.Eletrial Veri�ation Funtional veri�ation only veri�es the orretness of a proes-sor's funtion at the logi level, it annot verify the orretness of the logi implementationin silion. This task is performed during eletrial veri�ation. Eletrial veri�ation oursat design time and fabriation time (to speed bin parts). Parts are stress-tested at extremeoperating onditions, e.g., low voltage, high temperature, high frequeny, and slow proess,until they fail to operate.2 The allowed maximum (or minimum) for eah of these operatingonditions is then redued by a safe operating margin (typially 10-20%) to ensure thatthe part provides robust operation at the most extreme operating onditions. If after this1. Often the term \validation" is used to refer to the proess of verifying the orretness of a design. Inthis paper we adopt the nomenlature used in the formal veri�ation literature, i.e., veri�ation is theproess of determining if a design is orret, and validation is the proess of determining if a design meetsustomers' needs. In other words, veri�ation answers the question, \Did we build the hip right?", andvalidation answers the question, \Did we build the right hip?".2. Or fail to meet a ritial design onstraint suh as power dissipation or mean time to failure (MTTF).2



DIVA: A Dynami Approah to Miroproessor Verifiationproess the part fails to meet its operational goals (e.g., frequeny or voltage), diretedtesting is used to identify the ritial paths that are preventing the design from reahingthese targets [10℄.Oasionally, implementation errors slip through the eletrial veri�ation proess. Forexample, if an infrequently used ritial path is not exerised during eletrial veri�ation,any implementation errors in this iruit will not be deteted. Data-dependent implementa-tion errors are perhaps the most diÆult to �nd beause they require very spei� diretedtesting to loate. Examples of these types of errors inlude parasiti rosstalk on buses [11℄,Miller e�ets on transistors [12℄, harge sharing in dynami logi [12℄, and supply voltagenoise due to dIdt spikes [13℄.1.2 Deep Submiron Reliability ChallengesTo further heighten the importane of high-quality veri�ation, new reliability hallengesare materializing in deep submiron fabriation tehnologies (i.e., proess tehnologies withminimum feature sizes below 0.25�m). Finer feature sizes result in an inreased likelihoodof noise-related faults, interferene from natural radiation soures, and huge veri�ationburdens brought on by inreasingly omplex designs. If designers annot meet these newreliability hallenges, they may not be able to enjoy the ost and speed advantages of thesedenser tehnologies.Noise-Related Faults Noise related faults are the result of eletrial disturbanes in thelogi values held in iruits and wires. As proess feature sizes shrink, interonnet beomesinreasingly suseptible to noise indued by other wires [11, 14℄. This e�et, often alledrosstalk, is the result of inreased apaitane and indutane due to densely paked wires[15℄. At the same time, designs employ lower supply voltages to derease power dissipation,resulting in even more suseptibility to noise as voltage margins are dereased.Natural Radiation Interferene There are a number of natural radiation soures thatan a�et the operation of eletroni iruits. The two most prevalent radiation soures aregamma rays and alpha partiles. Gamma rays arrive from spae. While most are �lteredout by the atmosphere, some oasionally reah the surfae of the earth, espeially at higheraltitudes [16℄. Alpha partiles are reated when atomi impurities (found in all materials)deay [17℄. When these energeti partiles strike a very small transistor, they an depositor remove suÆient harge to temporarily turn the devie on or o�, possibly reating a logierror [18, 14℄. Energeti partiles strikes, sometimes alled single-event radiation (SER),have been a problem for DRAM designs sine the late 1970's when DRAM apaitors beamesuÆiently small to be a�eted by energeti partiles [17℄.It is diÆult to shield against natural radiation soures. Gamma rays that reah thesurfae of the earth have suÆiently high momentum that they an only be stopped withthik, dense materials [16℄. Alpha partiles an be stopped with thin shields, but anye�etive shield would have to be free of atomi impurities, otherwise, the shield itself wouldbe an additional soure of natural radiation. Neither shielding approah is ost e�etivefor most system designs. As a result, designers will likely be fored to adopt fault-tolerantdesign solutions to protet against SER-related upsets.3
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Figure 1: Dynami Veri�ation. Figure a) shows a traditional out-of-order proessor ore. Figure b)shows the ore augmented with a heker stage (labeled CHK). The shaded omponents in eah�gure indiate the part of the proessor that must be veri�ed orret to ensure orret programexeution.Inreased Complexity With denser feature sizes, there is an opportunity to reatedesigns with many millions and soon billions of transistors. While many of these transistorswill be invested in simple regular strutures like ahe and preditor arrays, others will�nd their way into omplex omponents suh as dynami shedulers, new funtional units,and other yet-to-be-invented gadgets. There is no shortage of testimonials from industryleaders warning that inreasing omplexity is perhaps the most pressing problem faingfuture miroproessor designs [19, 20, 21, 22℄. Without improved veri�ation tehniques,future designs will likely be more ostly, take longer to design, and inlude more undeteteddesign errors.1.3 Dynami Veri�ationToday, most ommerial miroproessor designs employ fault-avoidane tehniques to ensureorret operation. Design faults are avoided by putting parts through extensive funtionalveri�ation. To ensure designs are eletrially robust, frequeny and voltage margins areinserted into aeptable operating ranges. These tehniques, however, are beoming lessattrative for future designs due to inreasing omplexity, degraded signal integrity, andnatural radiation interferene.Traditional fault-tolerane tehniques ould address some of the reliability hallengesin future designs, but only at great ost. System-level tehniques suh as triple modularredundany (TMR) [23℄ an detet and orret a single transient fault in the system at theexpense of three times the hardware plus voting logi. Logi-level fault-tolerant solutions,suh as self-heking iruits [24℄, often have lower ost (typially only twie as muh hard-ware), but they are still ostly and an slow ritial iruits. Moreover, these approahesonly address transient errors, i.e., errors whih manifest temporarily (suh as energetipartile strikes). They annot address design errors if the error ours within eah of theredundant omponents - the redundant units will simply agree to take the wrong ation.4



DIVA: A Dynami Approah to Miroproessor VerifiationIn this paper, we introdue dynami veri�ation, a novel miroarhiteture-based teh-nique that permits detetion and reovery of all funtional and eletrial faults in theproessor ore, both permanent and transient. A Dynami Implementation Veri�ationArhiteture (DIVA) extends the speulation mehanism of a modern miroproessor to de-tet errors in the omputation of the proessor ore. As shown in Figure 1, a DIVA proessoris reated by splitting a traditional proessor design into two parts: the deeply speulativeDIVA ore and the funtionally and eletrially robust DIVA heker. The DIVA ore isomposed of the entire miroproessor design exept the retirement stage. The ore fethes,deodes, and exeutes instrutions, holding their speulative results in the re-order bu�er(ROB). When instrutions omplete, their input operands and results are sent in programorder to the DIVA heker. The DIVA heker ontains a funtional heker stage (CHK)that veri�es the orretness of all ore omputation, permitting only orret results to passthrough to the ommit stage (CT) where they are written to arhiteted storage. If any er-rors are deteted in the ore omputation, the heker �xes the errant omputation, ushesthe proessor pipeline, and then restarts the proessor at the next instrution.The DIVA heker detets and orret errors in the ore proessor by re-exeuting thenon-speulative instrution stream (observable at ore retirement). It does this using asimple (but omplete) pipeline that leverages a stream of high-quality branh preditions,input value preditions, and ahe prefethes from the ore proessor. Operating in thewake of the omplex ore proessor eliminates the ontrol and data hazards that wouldotherwise slow the simple heker pipeline.Certain faults, espeially those a�eting ore proessor ontrol iruitry, an lok up theore proessor or put it into a deadlok or livelok state where no instrutions attempt toretire. For example, if an energeti partile strike hanges an input tag in a reservationstation to the result tag of the same instrution, the proessor ore sheduler will deadlok.To detet these faults, a wathdog timer (WT) is added. After eah instrution ommits,the wathdog timer is reset to the maximum lateny for any single instrution to omplete.If the timer expires, the proessor ore is no longer making forward progress and the ore isrestarted. To ensure that the proessor ore ontinues making forward progress in the eventof an unreoverable design fault, the heker is able to omplete exeution of the urrentinstrution before restarting the ore proessor.On the surfae, it may seem superuous to add hardware to perform a veri�ationfuntion that is today aomplished at design time. However, there are at least four powerfuladvantages of dynami veri�ation:� The approah onentrates funtional and eletrial veri�ation into the heker unit.As a result, the ore proessor has no burden of funtional or eletrial orretness,and no requirement of forward progress - it need only be orret often enough to meetperformane goals. If the heker design is kept simple, the approah an redue theost and improve the overall quality of proessor veri�ation.� Transistors outside of the heker unit an sale to smaller sizes without fear of naturalradiation interferene. If these transistors experiene an energeti partile strike andprodue inorret results, the heker will detet and orret any errant omputation.� The fault-avoidane tehniques used to produe eletrially robust designs are veryonservative. By leveraging a dynami veri�ation approah, voltage and timing mar-5



Austingins in the ore an be signi�antly tightened, resulting in faster and ooler imple-mentations.� As long as heker fault rates are kept in hek, it beomes possible to simplify theproessor by eliminating infrequently used funtionality. For example, rarely usediruits an be eliminated to improve the speed or redue the size of ritial iruitpaths.In the remainder of this paper, we present and evaluate the DIVA heker arhiteture.In Setion 2, we detail the arhiteture and operation of the DIVA heker unit. We alsopresent arguments why the DIVA heker should be inexpensive to build and lend itself tofuntional and eletrial veri�ation, more so than the omplex ore proessor it monitors.In Setion 3, we present analyses of the runtime impats of dynami veri�ation. Throughdetailed timing simulation, we examine the performane impats of various DIVA hekerarhitetures. We also study the e�et of fault rates on ore proessor performane. Setion4 desribes related work, and Setion 5 suggests other appliations of dynami veri�ation.Finally, Setion 6 gives onlusions.2. The DIVA Cheker ArhitetureThe DIVA heker arhiteture presented in this setion makes a number of importantassumptions onerning the underlying miroarhiteture. First, it is assumed that allarhiteted registers and memory employ an appropriate oding tehnique (e.g., ECC) todetet and orret any storage-related faults. As a result, any value the DIVA hekerreads or writes to a register or memory will omplete without error. Seond, it is assumedthat the reord of instrutions fethed by the DIVA ore are orretly ommuniated tothe DIVA heker. One again, oding tehniques an be used to detet and orret errorsin this ommuniation. (Note that it is not assumed that aesses to instrution or datastorage ourred in the right order or to the orret address, the DIVA heker will verifythese requirements.) Finally, it is assumed that the ore and the heker share the samearhiteted state (register and memory system). Later, we examine the impliations thishas on ore proessor performane.2.1 The Invariants of Serial Program SemantisTo ensure that the ore proessor is funtioning orretly, the heker unit veri�es fourarhitetural invariants on the exeution of eah instrution. These arhitetural invariantsare:Corret Computation All operations produe a orret result given their inputs.Corret Communiation The last write of storage is visible by the next read of the sameaddress.Corret Control Proessor ontrol hanges as per the semantis of branh instrutions.Forward Progress The proessor is making progress toward ompletion of the next in-strution to retire. 6
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Figure 2: A Dynami Implementation Veri�ation Arhiteture (DIVA). Figure a) illustratesthe DIVA arhiteture and its interfae to the ore proessor. Figure b) details the DIVAommuniation pipeline operation for eah instrution lass.If eah of these invariants hold for a partiular instrution, it may safely retire its result.This simple approah to veri�ation is possible beause the underlying miroarhiteture,although omplex and a great hallenge to verify diretly, implements a relatively simpleinterfae at the instrution set. In other words, the omplexity in the ore proessor isprimarily the result of arhiteturally invisible performane optimizations. For example, ifrenaming ours, it does not a�et whether or not writes to an address are visible to thenext read. This property also serves to strengthen the hekers ability to detet designerrors, sine errors in the spei�ation of the miroarhiteture annot a�et the orretnessof the heker.2.2 Basi OperationFigure 2a details the arhiteture of the DIVA heker. The DIVA ore proessor sendsompleted instrutions in program order to the DIVA heker. With eah instrution, italso sends the operands (inputs) and result (output) values as omputed by the DIVA oreproessor. The heker veri�es the instrution result using two parallel and independentveri�ation pipelines. The omputation pipeline veri�es the integrity of all ore proessoromputation and ontrol. The ommuniation pipeline ensures that register and memoryommuniation between ore proessor instrutions ourred without error. If both pipelinesreport orret operations (and no earlier instrution delared an error), the ore omputationsueeded with the orret inputs. Hene, the instrution result is orret and it an besafely retired to arhiteted storage in the ommit stage (CT) of the pipeline. In the eventforward progress is lost in the ore (e.g., due to a deadlok or livelok), the wathdog timerwill expire and restart the heker pipeline with the next instrution.7



AustinComputation Pipeline The omputation pipeline veri�es the integrity of all funtionalunit omputation. In the EX' stage of the omputation pipeline, the result of the instrutionis re-omputed. In the CMP stage, the re-omputed result is ompared to the funtionalunit result delivered by the ore proessor. If the two results di�er, the DIVA hekerraises an exeption whih will orret the errant ore result with the value omputed inthe EX' stage. Control is also heked in this pipeline. Branhes ompute their atualtarget addresses, and ompare this to the predited address from the ore (the result of thebranh) - if they do not math, an exeption is delared to �x program ontrol.Beause instrutions are delivered by the DIVA ore to the omputation pipeline withpre-omputed inputs and outputs, there are no inter-instrution dependenies to slow pipelineprogress. For example, if a long lateny divide enters the heker followed by a dependentadd, the dependent operation may start in same yle (before ompletion of the divide) usingthe inputs values supplied by the ore. As long as instrutions are heked in program order,any inorret input preditions will be deteted and orreted. Core input value preditionsreate a tremendous amount of ILP, as a result, heker bypass datapaths are not requiredand pipeline ontrol logi is trivial. The resulting heker pipeline is both simple and fast.It may seem redundant to exeute the instrution twie: one in the funtional unitand again in the omputation pipeline, however, there is good reason for this approah.First, the implementation of the omputation pipeline an take advantage of a simpleralgorithm to redue funtional unit veri�ation osts. Seond, it an be implemented withlarge transistors (that arry ample harge) and large timing and voltage margins, makingit resistant to natural radiation interferene and noise-related faults.Communiation Pipeline Figure 2b details operation of the ommuniation pipelinefor eah instrution lass. For the purpose of demonstration, it is assumed that the un-derlying arhiteture is a simple load/store instrution set (although this is not required).In addition, load and store operations are deomposed into two sub-operations: an addressgeneration operation (AGEN) whih adds a register and onstant to produe an e�etiveaddress, and a orresponding load (LD) or store (ST) primitive that aepts the e�etiveaddress. This deomposition simpli�es the mapping of load and store operations onto theommuniation pipeline.The ommuniation pipeline veri�es that the proessor ore produed the orret reg-ister and memory input operands for eah instrution. We observe that at retirement, theorret inputs for an instrution reside in arhiteted registers and memory. By probingthis state just before retirement, it is possible to hek if the ore proessor produed theorret register and memory inputs. This simple hek works independent of the underlyingmehanism used to implement ommuniation in the ore proessor pipeline, e.g., registerrenaming, dependene speulation, or dynami sheduling will not a�et this invariant.As shown in Figure 2b, the ommuniation pipeline re-exeutes all ommuniation inprogram order just prior to instrution retirement. In the RD stage of the ommuniationpipeline, the register and memory operands of instrutions are read from arhiteted storage.In the CHK stage of the pipeline, these values are ompared to the input values deliveredby the ore proessor. If the operands delivered by the ore proessor math those readby the RD stage, the proessor ore suessfully implemented instrution ommuniationand proessing may ontinue. Otherwise, the DIVA heker raises a register or memory8
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Austin# instr # instr % ld % st Base RUU Mem BPProgram Input fwd (M) exe (M) exe exe CPI O Util Aompress ref.in 0 93 26.7 9.4 0.60 84.2 0.41 90.2GCC 1stmt.i 100 100 24.6 11.5 0.64 25.5 0.32 85.4go 2stone9.in 100 100 30.7 8.2 0.61 23.3 0.42 76.1ijpeg vigo.ppm 100 100 18.5 5.6 0.38 132.0 0.39 88.6li boyer.lsp 100 100 25.8 15.1 0.47 52.9 0.44 93.1perl srabble.pl 100 100 22.7 12.2 0.48 55.0 0.39 93.7hydro2D hydro2D.in 100 100 20.7 8.7 0.46 106.4 0.37 96.3tomatv tomatv.in 100 100 20.4 8.7 0.42 50.2 0.40 95.6turbo3D turbo3D.in 100 100 23.6 16.2 0.38 149.7 0.42 94.9Table 1: Program statistis for the baseline arhiteture.It is ruial that the DIVA heker be able to orret whatever ondition resulted ina DIVA exeption. If the DIVA heker were not able to orret a partiular exeptionondition, it would not be able to guarantee program forward progress in the presene ofa permanent ore fault (e.g., a design error or stuk-at fault). As shown in Figure 3, allexeption onditions are orreted. In fat, the DIVA heker is suÆiently robust thatit an ompletely take over exeution of the program in the event of a total ore failure.However, its performane would be very poor, espeially if it had to rely on the wathdogtimer to expire before starting eah instrution.There is slightly di�erent handling of the wathdog timer exeption. When the wathdogtimer expires, the DIVA heker fethes the next instrution to exeute and injets it intothe DIVA pipe with zero value inputs and outputs. The heker then restarts the proessor.The heker pipelines will orret these operands and results as inorret values are deteted,eventually ompleting exeution of the stalled instrution.2.4 Working ExamplesFigure 4 shows two examples of the DIVA heker in operation. In Figure 4a, an AGENoperation produes an inorret result that it forwards to a LD operation. The omputationpipeline detets the inorret result in the CMP stage and then delares an exeption whihorrets the result of the AGEN operation, allowing it to retire three yles later.Figure 4b shows the operation of the DIVA heker in the event of a atastrophi oreproessor failure. In this example the ore is not attempting to retire instrutions, thusthe DIVA heker must ompletely exeute eah instrution. The example starts out witha wathdog timer reset that fores insertion of the next instrution with zero value inputsand outputs. The instrution �rst detets in the ommuniation pipeline that its inputsare inorret whih results in a register value exeption that �xes the inputs. Next, theomputation pipeline detets that the result is inorret whih delares an exeption that�xes the result. Finally, the instrution ompletes without an exeption and retires itsresults to the arhiteted register �le. 10
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Figure 4: Example Operation of the DIVA heker. Two working pipeline examples are shownin Figures a) and b). In the pipeline diagrams, program exeution runs from top to bottom,the instrution exeuted is shown to the left of the pipeline. Time runs from left to right;instrutions list whih pipeline stage they are in for eah yle they are ative. Below thepipeline stage designators are listed the one output and two input values for eah instrution.The vertial bars represent delarations of DIVA heker exeptions.
11



Austin2.5 Veri�ation of the DIVA ChekerParamount to the suess of dynami veri�ation is a funtionally orret and eletriallyrobust DIVA heker implementation. It had better work orretly all the time, otherwise,it may impair orret operation of the proessor ore. Moreover, the ost of DIVA hekerveri�ation should be lower than the ost of verifying a traditional proessor design, oth-erwise, there is no overall gain to the employing dynami veri�ation. It is diÆult toquantitatively assess the ease (or diÆulty) in building a orret DIVA heker in a paperdesign suh as this. To aurately assess these osts would require the onstrution of a realDIVA heker in VLSI. In lieu of this level of detail, we desribe the attributes of the DIVAheker design that we feel will lend the approah to high-quality and low-ost funtionaland eletrial veri�ation.Simple: The DIVA heker is inherently simpler than a traditional proessor ore. It on-tains only the mehanisms neessary to hek the funtion of the program, and it laks all ofthe mehanisms used to speed omputation, e.g., preditors, renamers, dynami shedulers,et. In addition, the pre-omputed inputs and outputs from the ore proessor eliminatethe inter-instrution dependenies and stall onditions that ompliate traditional high-performane pipeline designs.Lateny-Insensitive: With suÆient bu�ering of speulative ore results, the lateny ofthe DIVA heker will not impat ore proessor performane. As a result, wide and deeplypipelined implementations are possible. These designs will permit heker implementationswith large timing margins and large (and slow) transistors, a�ording the heker high resis-tane to transient faults and natural radiation interferene. Sine there are few dependeniesbetween instrutions, widening or lengthening the DIVA pipeline is quite straightforward.Salable: The DIVA heker design is more reusable than traditional proessor ores,making it possible to leverage orretness established in previous designs. Sine the hekersits at retirement, new designs need only sale with the retirement bandwidth of the newore it is heking. Retirement bandwidth sales very slowly from generation to generation,any additional bandwidth requirements an be aommodated by simply lengthening orwidening the DIVA heker pipelines. Moreover, the design of the heker is independentof the ore miroarhiteture (as it heks arhitetural invariants), as a result, its designan be ompletely deoupled from the ore design.In addition to these attributes, we are urrently investigating formal veri�ation of theDIVA heker. The DIVA heker resembles a simple in-order proessor with little miroar-hitetural state and few inter-instrution dependenies { properties that simplify formalveri�ation [8, 9℄. We believe the DIVA heker will also lend itself to formal veri�ation,making it possible to formally verify large omplex miroarhitetures by only verifying theorretness of the DIVA heker.3. Experimental EvaluationIn this setion, we examine the impat of dynami veri�ation on proessor ore perfor-mane. Core slowdowns are measured, using detailed timing simulation for DIVA hekerswith varied resoure on�gurations, heker lateny, and fault rates.12



DIVA: A Dynami Approah to Miroproessor Verifiation3.1 MethodologyThe simulators used in this study are derived from the SimpleSalar/Alpha 3.0 tool set[25℄, a suite of funtional and timing simulation tools for the Alpha AXP ISA. The timingsimulator exeutes only user-level instrutions, performing a detailed timing simulation ofan aggressive 4-way dynamially sheduled miroproessor with two levels of instrutionand data ahe memory. Simulation is exeution-driven, inluding exeution down anyspeulative path until the detetion of a fault, TLB miss, or branh mispredition.To perform our evaluation, we olleted results for nine of the SPEC95 benhmarks[26℄. All programs were ompiled on a DEC Alpha AXP-21164 proessor using the DEC Cand Fortran ompilers under OSF/1 V4.0 operating system using full ompiler optimization(-O4 -ifo). Table 1 shows the data set we used in gathering results for eah program, thenumber of instrutions that were exeuted (fast forwarded) before atual simulation began,and the number of instrutions simulated for eah program (up to 100 million). Also shownare the perent of dynami instrutions that were loads and stores, the baseline mahineCPI, the average number of entries in the instrution window (RUU), the fration of timethe memory ports were in use, and the branh preditor auray for eah program.3.2 Baseline ArhitetureOur baseline simulation on�guration models a future generation out-of-order proessormiroarhiteture. We've seleted the parameters to apture underlying trends in miroar-hiteture design. The proessor has a large window of exeution; it an feth and issue upto 4 instrutions per yle. It has a 256 entry re-order bu�er with a 64 entry load/storebu�er. Loads an only exeute when all prior store addresses are known. In addition, allstores are issued in program order with respet to prior stores. There is an 8 yle minimumbranh mispredition penalty. The proessor has 4 integer ALU units, 2-load/store units,2-FP adders, 1-integer MULT/DIV, and 1-FP MULT/DIV. The latenies are: ALU 1 yle,MULT 3 yles, Integer DIV 12 yles, FP Adder 2 yles, FP Mult 4 yles, and FP DIV12 yles. All funtional units, exept the divide units, are fully pipelined allowing a newinstrution to initiate exeution eah yle.The proessor we simulated has a 32k 2-way set-assoiative instrution and data ahes.Both ahes have blok sizes of 32 bytes. The data ahe is write-bak, write-alloate, andis non-bloking with 2 ports. The data ahe aess lateny is one yle (for a total loadlateny of two yles). There is a uni�ed seond-level 512k 4-way set-assoiative ahe with32 byte bloks, with a 10 yle ahe hit lateny. If there is a seond-level ahe miss ittakes a total of 60 yles to make the round trip aess to main memory. We model the buslateny to main memory with a 10 yle bus oupany per request. There is a 32 entry8-way assoiative instrution TLB and a 32 entry 8-way assoiative data TLB, eah with a30 yle miss penalty.3.3 DIVA Cheker Baseline ArhitetureThe DIVA heker in all experiments is a four instrution wide pipeline that instrutionsenter when they have ompleted and are the oldest instrution in the mahine that has notyet entered the DIVA heker pipeline. Instrutions are proessed in-order, any instrution13



Austinthat stalls auses later instrutions to also stall. In the baseline on�guration, the ompu-tation pipeline lateny is one yle longer than the funtional unit it heks (for the resultomparison). It is assumed that there is a omputation pipeline for eah of the funtionalunits, as a result, there are no strutural hazards introdued. The baseline ommuniationpipeline takes two yles (for RD and CHK) unless there are strutural hazards in aessingregister �le and ahe ports. In the baseline heker arhiteture, the RD stage ompeteswith the ore proessor for four arhiteted register �le ports and two ahe ports, with pri-ority given to the DIVA heker aesses. The ore proessor only aesses the arhitetedregister �le when an operand is not found in the physial register �le (i.e., it is not in ight).Re-order bu�er entries are not dealloated until instrutions exit the ommit (CT) stage ofthe pipeline, after the DIVA heker veri�es the operation. The wathdog timer ountdownis reset to 60 yles (the round trip lateny to memory) whenever an instrution ommits.3.4 DIVA Cheker Impat on Core Proessor PerformaneIn Figure 5, we show the impat of the DIVA heker on ore proessor performane. Allperformane numbers are normalized to the CPI of an unheked ore proessor. Results areshown with varied register and memory storage bandwidth. Experiment (+0) has no extraregister �le or ahe ports (ompared to the baseline unheked miroarhiteture). Withoutdediated ports into the arhiteted register �le and data ahe, the DIVA heker mustompete for bandwidth with the ore proessor. This ompetition an reate struturalhazards whih an slow ore proessing. Experiment are also shown with with 4 extraregister �le ports dediated to the DIVA heker (+R), with one extra dediated memoryport (+M), and with 4 extra register �le ports and one extra memory port (+R+M).Even without extra storage bandwidth, i.e., experiment (+0), the ost of employingthe DIVA heker is quite low. Average program slowdown was only 3%. In general,there was a high orrelation between pipeline utilization (e.g., branh predition auray,RUU oupany, and memory port utilization) and slowdown. When the proessor pipelineis eÆiently utilized, any additional DIVA heker register �le and ahe aesses reatestrutural hazards that slow ore proessing. Turbo3D had the largest slowdown of 14%without additional resoures. This benhmark is highly eÆient, it has high branh preditorauray, high RUU oupany and high memory utilization. GCC and and GO, on theother hand, have poor branh predition and thus poor pipeline utilization; additionalDIVA heker resoure usage has little impat on the ore proessor performane of theseprograms.By inreasing the bandwidth to the register �le and ahes, we an redue the impat ofstrutural hazards on ore proessor performane. Experiment (+R) adds four more readports to the arhiteted register �le for use by the DIVA heker ommuniation pipeline.These additional register ports eliminate most strutural hazards into the arhiteted reg-ister �le. This hange had little impat on overall performane (at most an improvement of0.9% for Hydro2D). Sine many of the register aesses are satis�ed by the physial register�le (whih has its own aess ports), there appears to be suÆient bandwidth left into thearhiteted register �le for DIVA heker aesses.Experiment (+M) adds one more read port to the data ahe for use by the DIVAheker ommuniation pipeline. This additional ahe port eliminates nearly all strutural14
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Figure 5: DIVA Cheker Impat on Core Proessor Performane for Varied Register Fileand Cahe Bandwidth. All performane numbers are normalized to the CPI of an unhekedore proessor. Results are shown with no extra register �le or ahe ports (+0), with 4 extraregister �le ports (+R), with one extra memory port (+M), and with 4 extra register �le portsand one extra memory port (+R+M).hazards into the data ahe. Adding this port has a notieable impat on ore proessorperformane. Most ore proessor performane impats are eliminated and overall slowdowndrops to only 0.1%. Finally, in experiment (+R+M), four register ports and two memoryports are added for DIVA heker use. With an additional memory port, the extra register�le ports provide little bene�t, and overall slowdown drops to 0.03%.In addition to strutural hazards on arhiteted storage resoures, we observed thatretirement delays ould slow the ore proessor. Delays in the retirement of an instrutioninrease pressure on ore proessor speulative storage, e.g., re-order bu�er (ROB) andload/store queue (LSQ) entries. If these strutures beome full, they an stall the deodeand issue of instrutions in the ore proessor, resulting in redued ILP and dereasedprogram performane. During normal heker pipeline operation, heking only extends thelateny of retirement by a few yles. But as evidened by the small slowdowns (espeiallywhen storage hazards were eliminated), these e�ets were minimal. We believe that whileinreased speulative storage pressure does stall ore progress, it only stalls the issue ofinstrutions that would likely not retire. In other words, the probability that instrutionsthat would �ll the speulative state resoures would retire is very low due to the largedegree of speulation required to reah these instrutions. As a result, inreased pressureon speulative state has little e�et on overall performane.Data ahe misses in the heker pipeline an greatly extend the lateny of instrutionretirement as the heker pipeline ompletely bloks on data ahe misses. These misseswill quikly stop the progress of the ore proessor pipeline, however, we observed virtuallyno data ahe misses in the heker pipeline. Sine the heker follows in the wake of the15
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Figure 6: DIVA Cheker Impat on Core Proessor Performane with Varied DIVA ChekerLateny. All performane numbers are normalized to the CPI of the baseline DIVA hekeron�guration (+0). Results are shown for a heker with two times the lateny (2x), and aheker with four times the lateny (4x).ore proessor, the ore proessor serves a prefeth mehanism for the heker pipeline,eliminating nearly all data ahe misses. We are urrently developing re�ned DIVA hekerdesigns that do not delay the release of speulative storage in the ore proessor pipeline,virtually eliminating ore proessor stalls due to instrution heking.3.5 E�ets of Inreased DIVA Cheker LatenyIn an e�ort to build an eletrially robust implementation of the DIVA heker, it may beneessary to onstrut it with large timing margins and large transistors (to resist noise andtolerate natural radiation interferene, respetively). The most straightforward approahto ahieve this is to deeply pipeline the DIVA heker. Deeply pipelining the DIVA heker,however, will inrease its lateny whih an delay retirement of instrutions. These delaysmay ause ongestion in the instrution window, e�etively reduing the instrution windowsize and amount of ILP that an be exploited. Figure 6 shows the impat of DIVA hekerlateny of ore proessor performane. All performane numbers are normalized to the CPIof a DIVA heker on�guration with no extra register �le or ahe port resoures, i.e.,experiment (+0) from Figure 5.3 Results are shown for a heker with two times as manystages (2x), and a heker with four times as many stages (4x)Overall, the impat of heker lateny on ore performane is quite low. At two times thelateny slowdowns inrease by 0.7%, and with four times the heker lateny, slowdowns only3. We ompare to this on�guration beause it was the worst performing DIVA heker on�guration, thusit will have the most instrution window ongestion to start with and be most sensitive to DIVA hekerlateny. 16



DIVA: A Dynami Approah to Miroproessor Verifiationinrease by 0.8%. Even the programs with high branh preditor auray. e.g., Hydro2D,annot get suÆiently far ahead of the exeution ore to keep the instrution window full,as a result, adding extra heker lateny has little impat on ore performane.3.6 E�ets of DIVA Cheker ExeptionsIn the event that the DIVA heker detets a failed omputation or ommuniation, itwill delare a DIVA exeption and reset the heker and proessor ore. The performanepenalty for exeption handling is quite large, at least 8 yles for the experiments simulated,more if the faulty instrution takes a while to reah retirement. To gauge the performaneimpat of DIVA exeptions, we ran experiments with random exeptions injeted at randomtimes but with a �xed exeption interval (in ore proessor yles). The results are shownin Figure 7. All performane numbers are normalized to the CPI of the baseline DIVAheker on�guration (+0). Results are shown on a log sale for exeption rates of oneper one million ore proessor yles (1M), one per 1000 proessor yles (1k), and oneevery proessor yle (1). The experiment labeled (Core Lok) examined the performaneimpats of a atastrophi ore failure in whih the ore is no longer attempting to ommitinstrutions, onsequently, instrutions are not fethed until the wathdog timer ounterexpires (one every 60 yles).At an exeption rate of one exeption every one million yles (an average of one exep-tion every 2 mse on a 500 MHz proessor), there was virtually no impat on ore proessorperformane. At intervals of 1000 yles (an average of one exeption every 2 use on a500 MHz proessor), impats were higher but still small, with an overall slowdown of only2.6%. With an exeption every yle (as would be the ase for a atastrophi ore proessorfailure), performane impats rise dramatially. Overall, performane is 114th normal speed.In this experiment, the DIVA heker is ompletely exeuting the program. When the oreproessor is loked up, performane is quite low, on average 1120 th the performane of theunheked ore. In Setion 5, we suggest a simple hange to detet this ase and providemore graeful degradation in proessor performane.It should be possible to keep fault rates well below the point where they have anypereivable e�et on performane. The rate of faults aused by design errors should bequite low as the ore will undergo some level of veri�ation to exise frequently ourringdesign errors. The remaining design errors will be those that our infrequently and thusare diÆult to �nd and �x. These infrequent errors should not reate performane onerns.Transient faults suh as SER have been shown to be quite infrequent as well. For example,SER fault rates in adverse onditions (high altitudes) were measured at rates of one everyfew hours [18℄, nothing lose to the rates that would be required to a�et ore proessorperformane.3.7 DisussionCore proessor slowdowns (due to strutural hazards, heker lateny, and exeption han-dling) are not the only osts assoiated with the DIVA heker, other osts inlude silionarea, power onsumption, and more. While it is diÆult to gauge these osts without build-ing an atual DIVA heker implementation, we feel overall DIVA heker osts should below for at least two reasons. 17



Austin

1.031.021.031.041.031.031.031.021.021.03

152 141 136130121 124 120

1

10

100

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e C
P

I

1M 1k 1 Core Lock

Figure 7: Performane Impat of Varied Exeption Rates. All performane numbers are nor-malized to the CPI of the baseline DIVA heker on�guration (+0). Results are shown on alog sale for exeption rates of one per one million ore proessor yles (1M), 1000 proessoryles (1k), and every proessor yle (1). The experiment labeled (Core Lok) examines theperformane of a atastrophi ore failure in whih the ore is no longer attempting to ommitinstrutions. Bar values are shown for the (Core Lok) and (1k) experiments.First, the DIVA heker only repliates the part of ore pertaining to atual funtion. Allore proessing strutures related to program performane (e.g., preditors and shedulers)need not be represented in the DIVA heker. In addition, the DIVA heker design is avery simple pipeline. It uses in-order instrution proessing and has few inter-instrutiondependenies. These advantages make the DIVA heker signi�antly simpler than the oreproessor pipeline, and they should serve to redue its size and ost.Seond, the omputation pipeline an be implemented with simple, area-eÆient algo-rithms. For example, if the ore uses a arry-selet arry-lookahead adder for fast addition,the DIVA heker an instead use a pipelined ripple arry adder to redue implementa-tion osts. The pipeline will be slower, but as shown earlier, ore performane is mostlyinsensitive to DIVA heker lateny, making this a good tradeo�.Ultimately, a more quantitative assessment of DIVA heker area and power osts willhave to be made, �rst through iruit level simulation and later through an atual silionimplementation. We are urrently working toward these goals.4. Related WorkThe idea of dynami veri�ation at retirement was inspired by Breah's Multisalar proes-sor simulator [27℄. During the programming and veri�ation of this very omplex simulator,a funtional veri�ation stage was added at retirement. The approah was suÆiently robustthat it ould mask funtional bugs that were introdued during the simulator's development18



DIVA: A Dynami Approah to Miroproessor Verifiationpermitting its use for performane analysis before it was fully debugged. The DIVA hekerworks in preisely the same manner, but for a hardware system.Rotenberg's AR-SMT proessor [28℄ employs a time-redundant exeution tehnique thatpermits an SMT proessor to tolerate some transient errors. We borrow on this work;the DIVA heker leverages the idea of using an unreliable proessor's results to speedthe exeution of instrution heking. We improve upon Rotenberg's work in a numberof ways. Rotenberg's approah heks all aspets of exeution, inlude program funtionand the mehanisms used to optimize program performane. The DIVA heker, on theother hand, only heks program funtion, permitting a simpler heker implementation.While Rotenberg's approah only detets some transient errors, a funtionally orret andeletrially robust DIVA heker an reover all permanent and transient ore proessorfaults.A number of fault-tolerant proessor designs have been proposed and implemented,in general, they employ redundany to detet and/or orret transient errors. IBM's G4proessor [29℄ is a highly reliable proessor design similar to the design in this paper in thatit heks all instrutions results before ommitting them to arhiteted state. Cheking isaomplished by fully repliating the proessor ore. An R-Unit is added to ompare allinstrution results, permitting only idential results to ommit. If a failure in the proessoris deteted, it is addressed at the system level through on-line reon�guration. The ERC32is a reliable SPARC ompatible proessor built for spae appliations [30℄. This designaugments the miroarhiteture with parity on all register and memory ells, some self-heking ontrol logi, and ontrol ow heking. In the event a fault is deteted, a softwareinterrupt is generated and the host program initiates reovery.Unlike these designs, the DIVA heker an keep osts lower by only heking the fun-tion of the program omputation. The G4 and ERC32 designs hek both the funtion ofthe program and the mehanisms used to optimize program performane. This results inmore expensive hekers, typially 2 times as muh hardware in the ore proessor. Ad-ditionally, the DIVA heker an detet design errors. Simple redundant designs annotdetet design errors if the error is found in eah of the redundant omponents.Tamir and Tremblay [31℄ proposed the use of miro rollbak to reover miroarhiteturestate in the event of a deteted fault. The approah uses FIFO queues to hekpoint a fewyles of miroarhitetural state. In this work, we use a similar parallel heking approah,but employ a global heking strategy to redue heker ost. In addition, we use theexisting ontrol speulation mehanism to restore orret program state.5. Other DIVA AppliationsThe fault-tolerane reate by dynami veri�ation ould allow designers to revisit manyof the fundamental assumptions of omputer design - assumptions grounded in a fault-avoidane design methodology. We believe that a transition to a fault-tolerant design stylewould break many of these venerable assumptions - reating signi�ant opportunity at alllevels of the design. In this setion, we suggest a number of possible optimizations.19



Austin5.1 Beta-Release HardwareToday, when parts are fully veri�ed and released to the �eld, the proess of veri�ation(for the most part) is over. If ustomers �nd bugs, it may be neessary to implement ex-pensive realls of ostly omponents. With dynami veri�ation, it beomes possible tosafely release \beta" versions of the hardware to ustomers in the �eld (one the hekeris fully veri�ed). This early release of hardware will enable widespread in-�eld eletrialveri�ation, onurrent with initial deployment of the part. If any ore proessor errorsour during this testing phase, the heker will ensure that they only manifest as per-formane divots. As problems are identi�ed and �xed, steppings of the hardware an bemade without neessitating a replaement of earlier hardware { the new release of the partwill simply be slightly faster beause it will experiene fewer ore proessor design errors.To failitate this proess, e�etive system monitoring mehanisms ould be developed thatbetter identify the soure of ore design errors, and ommuniate this information bak tothe manufaturer.5.2 Salable Low-Cost SER ProtetionSingle event radiation (SER) poses a signi�ant threat to the reliability of deep submironlogi implementations. Dynami veri�ation provides natural protetion from these prob-lems, sine SER-indued faults in the ore proessor will manifest as omputation errorsthat are �xed by the heker. To prevent SER from a�eting the heker, it an be madewith larger transistor with ample harge to tolerate strikes, thus providing 100% overage forSER by simply addressing the problem in the heker. As fabriation tehnology ontinueto sale to smaller feature sizes, it eventually beomes more area eÆient to implement twoopies of the heker logi. Sine SER upsets are temporally and spatially sparse, it will behighly improbably that both hekers ould be a�eted by SER in the same or subsequentyles. Aordingly, if the hekers disagree on the orretness of an instrution one of thehekers has experiened an SER upset. In this event, the mahine an be restarted atthe same instrution and the hekers should one again agree as to the orretness of theinstrution result. This approah is a ompletely salable low-ost and low-impat (to theoverall design) solution, and it provides omplete overage of all SER-related faults.5.3 Self-Tuned Miroproessor SystemsThe tehniques used to provide reliability in VLSI logi implementations are very on-servative. Systems are designed with frequeny and voltage margins that ensure reliableoperation in even the most adverse environments (e.g., high temperature, high lok skew,slow transistors). This is one of the reasons why hobbyists an overlok [32℄ produtionparts for more performane. It should be possible to use the DIVA heker to relaim muhof the power and performane onsumed by operating margins.In a self-tuned system [33℄, lok frequeny and voltage levels are tuned to the systemoperating environment, e.g., temperature. The approah minimizes timing and voltagemargins whih an improve performane and redue power onsumption. Using the DIVAheker, a self-tuned system ould be onstruted by introduing a voltage and frequenyontrol system into the proessor, as shown in Figure 8. The ontrol system dereases volt-20
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Figure 8: A Self-Tuned Miroproessor System.age and/or inreases frequeny while monitoring system temperature and error rates untilthe desired system performane-power harateristis are attained. If the ontrol systemover steps the bounds of orret operation in the ore, the DIVA heker will orret theerror, reset the ore proessor, and notify the ontrol system. To ensure orret operationof the DIVA heker, it is soured by a �xed voltage and frequeny that ensures reliableoperation under all operating onditions (or onversely, it is design to operate reliably underthe varied frequenies and voltages applied to the ore proessor).5.4 Complexity-E�etive Miroarhiteture DesignsIn the work of Palaharla et. al. [34℄, it was shown how reduing the omplexity of a designould improve its performane by shortening ritial iruit paths. We ould leverage theheker to further redue omplexity in the ore proessor by eliminating any omplexitythat did not diretly lead to performane improvements. Sine the heker overs theomplete semantis of the ISA, we an delete any ore funtionality to optimize performane,area, or design onveniene. As long as that funtionality is infrequently exerised (inwhih ase the heker will detet an error and reset the pipelines), it will not have asigni�ant impat on performane. This approah provides designers the option to eliminatethe unommon ase. Consider how this might be used to streamline the design of of theload/store queue (LSQ):� eliminate infrequently used support for partial forwards through memory� eliminate rarely used support for store forwarding through virtual address synonyms� eliminate the address hek on the infrequently hanging upper bits of virtual ad-dressesTaking this approah to its extreme, it beomes possible to design two mahines: the simpleheker pipeline whih overs the entire funtionality of the mahine, and a de-featured orethat implements a performane-oriented subset of the ISA. For an iA32 mahine, the hekerwould implement all instrutions, and the ore would implement only the instrutions andtheir semantis that were expeted to ahieve good performane, e.g., register-register in-strutions, aligned memory aesses, and no partial register or memory de�nitions.21
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Figure 9: Graeful Degradation in the Presene of a Catastrophi Core Proessor Failure.All performane numbers are normalized to the CPI of an unheked ore proessor. Resultsare shown on a log sale for the baseline DIVA heker with a loked ore (Core Lok), and fora DIVA heker with graeful degradation (GD).5.5 Highly Available Miroproessor DesignsAs shown earlier, if the ore proessor ompletely fails and no longer attempts to retireinstrutions, proessor performane will be severely impated. Without any instrutionretiring, the DIVA heker will have to wait for the wathdog timer to timeout before aninstrution an be retired and the next instrution fethed. As a result, one instrution willomplete for eah interval of the wathdog timer, one per 60 lok yles in the experimentspresented.It would be relatively straightforward to detet the ase where the ore proessor wasno longer ontributing to the program exeution. For example, a ounter ould reordthe number of wathdog timer exeptions with no intervening instrution retirements. If asuitable threshold was reahed, it ould be assumed that the ore proessor has failed andthe DIVA heker ould take over exeution of the program. A simple hange to the DIVAdesign would permit it to feth and exeute instrution muh quiker, simply by permittingit to exeute the next instrution without having to wait for the wathdog timer to expire.As shown in experiment (GD) in Figure 9, this graeful degradation approah improvesproessor performane onsiderably in the event of a atastrophi ore proessor failure.Program performane degrades to only 110 th the performane of the original working oreproessor. This is a marked improvement over the (Core Lok) experiment, in whih the oreproessor loks and instrutions proeed at wathdog timer exeptions, an average of 1120 ththe speed of the working ore proessor. The graeful degradation mode also outperforms aore proessor that is still retiring instrutions but always inorret results, i.e., experiment(1) from Figure 7, with an overall performane of 114th the speed of the working ore. In22



DIVA: A Dynami Approah to Miroproessor Verifiationthis ase, the DIVA heker bene�ts from not having to wait for the ore proessor pipelineto �rst exeute the instrution inorretly.In addition, the availability of a system using the DIVA heker ould be further im-proved by repliating the DIVA heker to detet errors within its own iruitry, or byapplying triple modular redundany (TMR) [23℄ to detet and orret permanent faults inthe DIVA heker.5.6 Dynami Simulator Veri�ationNot only is dynami veri�ation an e�etive tehnique to lower the ost of hardware veri�-ation, it is also an e�etive tehnique to lower the ost of simulator software veri�ation. Adetailed exeution-driven simulator that inorporates dynami veri�ation (i.e., a funtionalheker at retirement) will permit arhitets to quikly explore design tradeo�s without im-pairing the orretness of the miroarhitetural simulator. The simulator an report aoverage metri indiating what fration of the time the simulator retired orret results,giving the arhitet a lear indiation of the auray of their modi�ations.6. ConlusionsMany reliability hallenges onfront modern miroproessor designs. Funtional design er-rors and eletrial faults an impair the funtion of a part, rendering it useless. Whilefuntional and eletrial veri�ation an �nd most of the design errors, there are many ex-amples of non-trivial bugs that �nd their way into the �eld. Conerns for reliability grow indeep submiron fabriation tehnologies due to inreased noise-related failure mehanisms,natural radiation interferene, and more hallenging veri�ation due to inreased designomplexity.To ounter these reliability hallenges, we introdued dynami veri�ation, a tehniquethat adds a funtional heker to the retirement phase of a proessor pipeline. The funtionalheker ensures that all ore proessor omputation is orret, and if not, the heker �xesthe errant omputation, and restarts the ore proessor using the proessor's speulationreovery mehanism. Dynami veri�ation fouses the veri�ation e�ort into the hekerunit, whose simple and exible design lends itself to funtional and eletrial veri�ation.Using this approah, the ore proessor arries no burden of orretness or any requirementfor forward progress. The DIVA heker arhiteture was presented as a heker designoptimized for simpliity and low ost.We showed through detailed timing simulation that the simple heker is also veryfast. The design ahieves high throughput beause the ore proessor eliminates mostof the ontrol and data hazards that might otherwise slow its progress. Control hazardsare ompletely resolved in the fault-tolerant ore proessor; the heker need only verifythat the program ounter is updated as per branh results. Data hazards, aused by longlateny operations and long lateny ommuniations, are virtually eliminated. Long latenyoperations exeute independent of eah other using the high-quality input value preditionsdelivered by the ore proessor. And long lateny ommuniation delays (the result of dataahe misses) are virtually non-existent as the ore proessor serves as a prefether for theheker, warming up its ahes in advane of instrution heks.23



AustinOverall, we have found that even resoure-frugal heker designs have little impat onore proessor performane. For SPEC95, overall simulated slowdown for a modern pipelinewas less than 3%, with most of the slowdown attributed to oating point odes that madevery eÆient use of all pipeline resoures. With the addition of a single memory port foruse by the DIVA heker, slowdowns were negligible. Also, inreased DIVA heker latenyhad only a small impat on ore proessor performane. The DIVA heker an toleratevery high fault rates without signi�antly impating proessor ore performane. At ratesof one fault per 1000 proessor yles, the ore proessor only slowed by 2.6%; at intervalsof 1M yles, performane impats were negligible.Finally, other appliations of dynami veri�ation were proposed. A self-tuned lok andvoltage sheme was proposed in whih dynami veri�ation is used to relaim frequeny andvoltage margins. A highly available heker design was also proposed. The design providesmore graeful degradation in system performane in the event of a total ore proessorfailure. Appliations to improve the quality and omplexity of future designs were alsosuggested.We feel that dynami veri�ation holds signi�ant promise as a means to address theost and quality of veri�ation for future miroproessors, while at the same time reatingopportunities for faster, ooler, and simpler designs. The next step in this work is to betterquantify the bene�ts and osts of dynami veri�ation, re�ne our initial design to furtherderease ore proessor performane impats, and further develop appliations of the faulttolerant proessor ore.Referenes[1℄ \Statistial analysis of oating point aw in the Pentium proessor." Intel Corporation,Nov. 1994.[2℄ M. Kane, \SGI stok falls following downgrade, reall announement." PC Week, Sept.1996.[3℄ A. Wolfe, \For Intel, it's a ase of FPU all over again." EE Times, May 1997.[4℄ P. Bose, T. Conte, and T. Austin, \Challenges in proessor modeling and validation,"IEEE Miro, pp. 2{7, June 1999.[5℄ A. Aharon, \Test program generation for funtional veri�ation of PowerPC proes-sors in IBM," in Proeedings of the 32nd ACM/IEEE Design Automation Conferene,pp. 279{285, June 1995.[6℄ R. Grinwald, \User de�ned overage { a tool supported methodology for design veri�a-tion," in Proeedings of the 35nd ACM/IEEE Design Automation Conferene, pp. 1{6,June 1998.[7℄ W. Hunt, \Miroproessor design veri�ation," Journal of Automated Reasoning, vol. 5,pp. 429{460, De. 1989.[8℄ J. Burh and D. Dill, \Automati veri�ation of pipelined miroproessors ontrol,"Computer Aided Veri�ation, pp. 68{80, 1994.24
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