
International Journal of Parallel Programming, Vol. 22, No. 3, 1994

Code Scheduling
for Multiple Instruction
Stream Architectures

Gary Tyson I and Matthew Farrens

Received June 24, 1993

Extensive research has been done on extracting parallelism from single instruction
stream processors. This paper presents our investigation into ways to modify
MIMD architectures to allow them to extract the instruction level parallelism
achieved by current superscalar and VLIW machines. A new architecture is
proposed which utilizes the advantages of a multiple instruction stream design
while addressing some of the limitations that have prevented MIMD architec-
tures from performing ILP operation. A new code scheduling mechanism is
described to support this new architecture by partitioning instructions across
multiple processing elements in order to exploit this level of parallelism.

KEY WORDS: Compiler scheduling; instruction level parallelism; stream
processing; decoupled design; multi-issue architecture.

1. I N T R O D U C T I O N

The compi le r and code scheduler for a multi-issue archi tecture requires a
high degree of sophis t ica t ion in o rder to realize the full po ten t ia l for
para l le l execution. I t must be able to assign independen t ins t ruct ions to
ope ra t iona l units in a manne r that minimizes the n u m b e r of cycles in which
no ins t ruct ions can be issued. The task of the scheduler in a mul t i - i ssue
system is further compl ica ted by the fact tha t while the la tency of ope ra -
t ional units and m e m o r y remain fixed, the number of ins t ruct ions tha t
mus t be scheduled in a per iod is increased by the width of the issue stage.

Computer Science Department, University of California, Davis, California 95616. (e-mail:
tyson @cs.ucdavis.edu, farrens@ cs.ucdavis.edu).

243

0885-7458/94/0600-0243507.00/0 �9 t994 Plenum Publishing Corporation

244 Tyson and Farrens

Several studies "'2) indicate that compilers using simple scheduling
techniques are capable of identifying 2-3 independent instructions per cycle.
Other studies t3'4) suggest that even more parallelism can be found if the
compiler's scheduler is capable of performing extensive code motion.

In this paper, we will present a brief overview of single and multiple
instruction stream approaches to multiple issue processor design. We will
then introduce the basics of a multiple instruction stream/multiple issue
architecture we have developed, show how code is scheduled for several
loops, and present an analysis of the performance of this architecture.

2. M U L T I P L E I N S T R U C T I O N ISSUE A R C H I T E C T U R E S

Several distinct approaches have been taken in the development of
multiple issue architectures. The Very Long Instruction Word (VLIW)
approach increases the resources available to (and the demands on) the
compiler. It is responsible for all scheduling, including the assignment of
null operations to functional units that cannot be assigned a useful task
during a given cycle. Since the compiler has the most complete information
about the entire program, it is well suited to deal with the inclusion of
additional resources (e.g., ALUs, FPUs, and I/O units) and is able to
increase instruction execution bandwidth in areas of the code that were
previously performance limited by resource constraints. However, VLIW
does not support out-of-order execution well, and any change of the
hardware description requires all code to be recompiled in order for the
program to work correctly.

Superscalar architectures employ a hardware scheduler that uses
dynamic run-time information in order to efficiently allocate resources to
the list of instructions ready for execution. However, the hardware
implementation of the scheduler is restricted to selecting instructions from
a fixed-size window of available instructions, and thus does not have the
breadth of information available to it that the compiler does at compile
time.

A third approach to issuing multiple instructions takes advantage of the
characteristics found in the Von Neumann computational model. Decoupled
architectures attempt to exploit the independent nature of control flow,
memory access, and data manipulation operations that comprise conventional
computations by splitting a task into distinct pieces and executing them on
separate pieces of hardware. Since these hardware units communicate via
FIFO queues, the instruction streams are allowed to slip with respect to
one another, providing dynamic support for out-of-order execution. This
approach attempts to take advantage of the best that VLIW and super-
scalar have to offer; the compiler partitions the tasks in a manner similar

Instruction Level Parallelism on M I M D Architectures 245

to VLIW, and the queues provide the same dynamic scheduling benefits
found in superscalar.

These decoupled systems differ from VLIW and superscalar designs in
the manner which the independently issued instructions interact. VLIW
and superscalar processors can be thought of as very tightly coupled shared
memory systems; they share not only addressable memory but also register
space. This shared register approach differs from the explicit message
passing (via FIFO ordered queues) found in decoupled machines. Further-
more, in order to transmit data. among operational units by writing and
then reading the contents of a register, the clocks on VLIW and super-
scalar processors must be synchronized. This requirement is relaxed with
an explicit message passing approach, tS~

The greater flexibility found in a decoupled design allows both single
and multiple instruction stream descriptions of a task. The ZS-I (6) and
WM ~7~ systems operate in a decoupled manner while receiving instructions
from a single instruction stream. Their architectural component descrip-
tionsare similar to those of Split Register superscalar designs, t8"9) The PIPE
machine] lm in contrast, consists of two PIPE processors t'l) which run
asynchronously, each with their own instruction stream, and cooperate on
the execution of a single task.

3. E X P L O I T I N G ILP O N A M I M D A R C H I T E C T U R E

Parallelism in a single instruction stream architecture resides primarily
at the instruction level and is a well-studied problem."'! 2) Extracting
parallelism on a MIMD architecture, on the other hand, has traditionally
been accomplished by partitioning the program into data independent
portions and assigning them to separate processing elements, ignoring
any other parallelism that might exist. Little research has been done on
exploiting instruction level parallelism across processors on a multiple
instruction stream machine.

There are a number of reasons why this approach merits further
investigation, however. Superscalar machines do not scale well---expanding
the number of processing elements available necessitates a corresponding
increase in the size of the hardware window over which code scheduling
occurs, significantly increasing the scheduling complexity. Compilers for
VLIW machines can help circumvent this problem, but do not support
out-of-order execution well.

Exploiting instruction level parallelism on MIMD architectures can
overcome both these problems. The instruction issue stage of each pro-
cessor can perform in a simple single-issue, in-order manner, avoiding
much of the hardware complexity required to support out-of-order issue in

246 Tyson and Farrens

a single instruction stream approach. Out-of-order issue is also supported
on an MIMD because the processors are run independently; therefore, any
independent instructions executed on different processors can issue in any
order without necessitating any hardware support. This is fundamentally
different from multiple issue in a VLIW machine because a strict ordering
of instructions is not imposed by the compiler unless a dependence
exists. Furthermore, by incorporating multiple program counters, a MIMD
machine provides the architecture with more dataflow information by
enriching the specification of the object language; taken to its extreme this
would allow a dataflow machine description of the program.

Separating a program into multiple single issue instruction streams
additionally allows the decentralization of the hardware resources, since
there is no central instruction window from which instructions are issued.
Similarly, there is no central register file to be overloaded with contention
among the processing elements, which allows for easier expandability in a
MIMD approach.

While a MIMD approach to code scheduling clearly possesses certain
advantages, historically these architectures have suffered from severe limita-
tions. Data transfer latencies have been high, and the bandwidth required
to support high-throughput, low contention data transfer has been
unavailable because of pin limitations and/or board-level interconnects.
Even if maximum data transfer rates can be made acceptable, the need to
provide synchronization points can cause u6acceptable performance loss.
Using main memory to handle data transfers between processors can also
lead to an unacceptable dependence on memory latency. These problems
help explain why current MIMD designs do not exploit ILP.

Increasing the number of transistors that can be fabricated per square
centimeter provides the means by which many of the interprocessor com-
munication problems can be eliminated. Placing several of these processing
elements on the same die circumvents the pin limitations on bandwidth and
supports high on-chip data transfer rates. In addition, using FIFO queues
in a manner similar to that used by decoupled machines provides a clean
way to handle synchronization. If transistor densities continue to increase
as they have over the last decade, by the middle of this decade such a
design will be realizable. One study ~13~ indicates that as tens of millions of
transistors become available, something more than simply increasing
on-chip cache sizes must be done. These facts led to the design of the MISC
architecture, a decoupled MIMD machine that is designed to support and
exploit instruction level parallelism.

Instruction Level Parallelism on MIMD Architectures 247

4. T H E M U L T I P L E I N S T R U C T I O N S T R E A M
C O M P U T E R (M I S C)

The MISC architecture was designed to handle many of the dynamic
characteristics of program execution by allowing the compiler to convey
more information to the hardware during code translation. Variable opera-
tional unit latencies (primarily memory loads) create difficulties for code
scheduling in VLIW and superscalar processors, due to the sequential
instruction flow imposed by translating a dataflow intermediate representa-
tion to a single instruction stream architecture. Superscalar designs can
remove some of the restrictions imposed by single stream scheduling by
regenerating some the dataflow information at the issue stage of the
pipeline, but not without considerable hardware issue logic. Furthermore,
software pipelining ~14) and loop unrolling schemes 1~SJ have difficulty in
efficiently scheduling instructions with variable latency dependencies.

MISC avoids these scheduling problems by allowing operations with
indeterminate latencies to transfer data between PEs. The inherent asyn-
chronous relationship among the PEs can compensate for the variability
of the latency without affecting the execution rate of nondependent
instructions.

The MISC processor has been described in detail in Ref. 16. A brief
overview of MISC will be presented here, focusing on aspects of the
architecture that will be featured in the code scheduling discussion later in
the paper. MISC is a direct descendant of the PIPE project, but unlike the
two processor PIPE design, the MISC system is capable of balancing the
processor load of instructions performing control flow, memory access, and
execute operations among multiple processors. As its name indicates,
MISC is composed of multiple Processing Elements (PEs) which cooperate
in the execution of a task.

The example MISC configuration used throughout this paper consists
of four processing elements, a bank selected data cache (DCache), and a
set of internal data .paths used to transmit data among PEs and the
DCache. The component design of this MISC configuration is illustrated in
Fig. 1. Each PE executes in an asynchronous manner from other PEs and
the DCache. The internal data paths are used to facilitate communication
between elements (PEs and/or DCache). Each data path is controlled by a
single element; for instance, the internal data path labeled PBUS1 is
controlled (written) solely by PE1. Each PE has its own bus (PBUS{ 1--4}),
and the data cache controls two busses (CBUSI and CBUS2). Two
separate bank selected I/O channels support the transmission of data
between the MISC chip and the rest of the system (main memory). These
channels are controlled by the DCache. Each PE is capable of transmitting

248 Tyson and Farrens

L

� 9

�9

~J

. . . . ___~! iiil ~ ~ - - - i
- - - i

i '

._=

C~

r~3

E
:J

I ns t ruc t ion Level Para l le l ism on M I M D Arch i tec tures 249

a message directly to any other processor (including itself), or of broad-
casting a message to all processors.

The processing elements (Fig. 1) are collectively responsible for the
execution of a single task, with each PE having its own independent
instruction stream and its own instruction cache. Each PE is identical and
maintains all state inforhaation required to function as an independent
processor--in fact, the MISC hardware is capable of running four com-
pletely unrelated tasks in parallel. However, it is assumed that a single task
will be partitioned (by the compiler) into four instruction streams that
cooperate in the execution of that task. Each PE contains a 5-stage
pipeline, 32 General Purpose Registers (GPRs) which are available for
data storage that persists over multiple references, a F IFO processor queue
(PQ) for each PE in the system (including itself) to store data transfers
between PEs, a Program Counter (PC), a Vector Register (VREG), and 2
memory queues (MQs) which contain data requested from memory. (The
size of each of the queues (PQs and MQs) is not given here; however, their
size is an architecturally visible component. The compiler must know the
size of each queue (they need not all be the same size) in order to schedule
code correctly and avoid deadlocks due to resource depletion.)

All instructions in MISC are 32 bits in length and have three 6-bit
source operand fields and a 6-bit destination operand field. In addition,
many instructions allow for two of the source fields to be replaced by a
12-bit constant. Each source field can address any of the 32 GPRs, a PQ,
a MQ, the PC, the VREG, or a small signed constant (- 1 6 to 15). The
destination specifier may address a GPR or routing information for a data
transfer onto the PE's PBUS, At the instruction issue stage, if a queue is
specified as a source input and that queue is currently empty, that instruc-
tion is delayed until all required input operands are available.

Since MISC uses a decoupled approach to memory operations, the
load and store instructions are different from those in a conventional
machine. Invoking a memory read operation provides the DCache with the
memory address to be read, the set of destination PEs that are to receive
the data, and which CBUS (and therefore MQ) will receive the data. In a
Load Address Queue (LAQ) instruction, the dest field contains the set of
PEs that are to receive the data: the dest field should not specify a register.
The address requested is the sum of the srcl and src2 operands. There are
both LAQ and LAQ2 instructions, in order to specify which MQ of the
destination PEs should receive the data. The store request (SAQ) instruc-
tion operates in a similar manner, except that the dest operand specifies a
single PE from which the DCache should receive data to be written to
memory.

There are three types of MISC instructions: predicated operations, ILT)

250 Tyson and Farrens

vector operations, and sentinel operations (which use a sentinel value to
terminate iterations of the instruction). Predicated ALU/FPU operations
perform all scalar operations as well as allow conditional operations to be
specified concisely. A predicate operation uses the third source field to
determine whether or not the operation will complete (and thereby change
the state of the machine). This allows the issue logic to proceed without
interrupt through short segments of conditionally executed code by condi-
tionally completing instead of branching around code.

In the case of control flow operations, the dest field is used as a
constant to determine the number of delayed branch slots ~s) to be filled.
The address of the branch is calculated as the sum of the src l and src2
operands, and the src3 operand specifies the register to be tested.

Vector instructions use the third source operand (src3) to specify a
vector count. When a vector instruction arrives at the issue stage of the
instruction pipeline, the vector register (VREG) is cleared and a vector
count register (VCOUNT) is loaded from src3. The scalar version of the
vector instruction is then executed and the VREG is incremented until the
contents of VREG are equal to V CO U NT. Once the VREG equals
V C O U N T normal instruction pipeline function continues.

In a sentinel instruction, the src3 field specifies a register whose
contents are compared to the sentinel value (assumed to be zero in the
initial design). If the contents of the register do not match the sentinel,
the scalar version of the instruction is allowed to issue. This pattern of
compare and issue is repeated until the comparison produces a match.

5. R E L A T E D W O R K

There have been several decoupled compilers that have been developed.
These include the original PIPE compiler, ~9~ the WM streams compiler, ~2~
and the compiler for the Briarcliff Multiprocessor. ~2~

The PIPE compiler separates code into access and execute instruction
streams. This is accomplished by assigning each branch and memory access
operation to the access processor, then examining a Program Dependence
Graph (PDG) ~22~ to determine which additional branch control calculation
operations and address calculation operations should also be assigned the
access processor. All remaining instructions, as well as duplicate branch
operations, are then assigned to the execute processor. Once this separation
is accomplished, register allocation and other optimization transformations
can be applied to each instruction stream.

The WM compiler is more conventional in its use of a single instruc-
tion stream. Dataflow analysis and many of the optimization transfor-
mations performed are unchanged from standard RISC architectures.

Ins t ruc t ion Level Para l le l ism on M I M D Arch i tec tu res 251

Additional restrictions must be placed on the register allocation method
to allow for the nature of the memory queues found in this decoupled
architecture. The decoupled nature of this processor is found in the
dynamic separation of the instruction stream performed during execution.

The compiler used in the Briarcliff Multiprocessor performs in a much
different manner from the previous two compilers. This compiler is far
more aggressive in separating code into multiple instruction streams. This
machine shares many characteristics of a restricted dataflow architec-
ture. t23) Instructions are partitioned equally over the available processing
elements with those data dependencies that exist between PEs being
allocated a register channelJ 2t) Optimization is then performed to reduce
the number of channels required without degrading code performance.
'Memory operations can also be performed on register channels. This
allows for decoupled memory access in which one PE performs the address
calculation and memory request for data that is destined for a different
processor. The Briarcliff design bears more resemblance to a VLIW
architecture than a decoupled architecture in its treatment of control flow
operations. PEs synchronize on branch operations by generating a global
condition code used to determine whether to branch or not. While each PE
may reach the actual branch instruction on different cycles, no PE can con-
tinue to process the next branch operation until each PE has completed its
branch decision on the original branch. This fi~zzy barrier 124~ mechanism
allows more flexibility than a VLIW implementation but fails to provide
the flexibility found in true MIMD approaches like PIPE and MISC.

There are several other designs that attempt to exploit ILP on a
MIMD. The XIMD processor ~25~ adds control logic to each functional unit
of a VLIW in order to transform it into a MIMD. However, since it is a
VLIW at the core, it requires a high-performance, completely orthogonal,
global register file in order to support inter-process communication. The
coMP approach ~6~ is a communication oriented multi-processor that can
be operated in VLIW mode. However, it does not allow dynamic slip
between processing elements, and the communication ports between pro-
cessors are only depth 1. The work by Keckler and Dally ~27) is similar to
XIMD in that a 4-ALU machine is augmented to allow it to run in a
MIMD fashion. PEs can write to each other's register files, but no mention
of queues is given, and multi-ported register files are still required.

These machines all differ from MISC primarily in that MISC was
designed to be latency-tolerant, and MISC does not require global clock-
ing. We feel that distributing a synchronized clock is going to continue to
be more and more difficult, and by featuring queues at all the I/O interfaces
the MISC design by nature allows different processing elements to run
correctly at different rates.

252 Tyson and Farrens

6. THE M I S C COMPILER

The very portable C compiler (vpcc) ~2~ under development at the
University of Virginia serves as the base compiler for MISC. Existing
optimization techniques are used whenever possible; for those optimiza-
tions that are unique to MISC, or where existing techniques require
modification (e.g., register allocation incorporating queues), care has been
taken to maintain the same level of complexity found in current optimizers.
The front end of vpcc translates C code into Register Transfer List (RTL)
form for a single processor MISC machine. This code is highly unop-
timized, but is correct and will run on any MISC configuration.

The code generator translates this RTL description of a program into
parallel machine code for the MISC machine. An overview of the optimiza-
tion algorithm is described in Fig. 2.

Once the RTL description of a function has been loaded, many
standard transformations (e.g., common sub-expression elimination, code
motion, dead code removal) can be performed. It is best to do these trans-
formations at this point, before the complexity of inter-PE dependencies
must be considered. Similarly, if-conversion ~zS) can also be performed at
this point in order to simplify the control flow. Global dataflow analysis
can then be performed, and a PDG built.

The code separation phase partitions the operations required by the
program onto multiple (virtual) processing elements in a manner that max-
imizes the number of processing elements utilized. Processor load balancing
then repartitions the schedule to evenly distribute the operations onto the
number of physical processing elements available on the target machine.
Once the instructions have all been allocated to the PEs, more code

foreach function
load initial RTL description provided by front end
perform standard single stream transformations and register allocation
perform if.conversion
buiM program dependence graph
separate code
balance code
foreach PE

perform if conversion
perform loop optimizations
schedule code

output MISC machine code for function

Fig. 2. An overview of the optimization algorithm.

I n s t r u c t i o n Level Para l le l i sm on M I M D A r c h i t e c t u r e s 253

int inner_productO [
int k, q=O;
for(k=O; k<I024 ; k++)

q = q + z[k] * x[kl;

1

Fig. 3. Livermore loop 3 (inner product).

optimizations can be applied to each of the PE instruction streams. Many
of the standard transformations described previously can be reapplied
to each individual stream (with new restrictions to maintain interPE
dependences added). Finally, each instruction stream is scheduled and the
MISC machine code is generated.

The code scheduling method used on MISC uses the asynchronous
behavior of the processing elements to provide many of the characteristics
found in software pipelining. Individual PEs can be executing instructions
originating from different iterations, while the PE queues perform a sim-
plified form of register renaming. Variable latency poses no problem
because any instructions dependent on the data can be issued to a trailing
PE.

A detailed description of this process follows in the remainder of this
section. To illustrate each phase of the code generation process, a simple
example (Lawrence Livermore Loop 3) will be used (see Fig. 3).

6.1. Register Allocation

Standard register allocation methods can be used, with one exception:
MISC has a large number of register classes, unlike most architectures
(which have only 2 register classes, integer and floating point). Since each
PE has a general purpose register class, two separate memory input
queues, and a complete interconnection of interPE transfer queues, a
four processor MISC machine would have 28 different register classes
(1 GP x 4 + 2 MQ x 4 + 4 PEQ x4). In addition to the large number of
register classes, all but the general purpose registers are FIFO queues. This
necessitates some restrictions on standard register allocation methods in
order to provide correct FIFO ordering of queue use. If the allocation of
a new register instance would violate the FIFO ordering of the queue, for
example, the allocation is disallowed and the architectural register
dependency remains.

In order to provide a compact 2 byte representation of any machine
register, the intermediate RTL format employed by the vpcc compiler
reserves 4 bits to identify one of 16 different classes and 12 bits to identify
the register within that class. Since this format is incapable of accurately

254 Tyson and Farrens

representing a full MISC machine, the MISC register class model must be
modified. The modified model supports only unidirectional communication
between PEs through the PE transfer queues--PEl can send data though
queues to PE2-PE4, PE2 can send data to PE3 and PE4, and PE3 can
send data to PE4. The queues to send data back cannot be represented in
the existing RTL format. Fortunately, the code transformation" strategy
employed in MISC rarely requires data to be transmitted "back" to PE1,
and in those cases a transfer through memory can be performed.

Function calls pose an interesting problem within a tightly coupled
MIMD architecture. When a function call is made, any variable may be
passed as a parameter to the function. One standard compiler technique
to improve the performance of function calls is to place the first few
parameters in registers before executing the call. However, in MISC
variables are distributed among the PEs. How should parameters be passed
in MISC during a function call? We chose to place all parameters on the
stack--while this does not provide the best performance, it simplifies a
number of problems with incomplete dataflow analysis between functions.

6.2. M e m o r y Operat ion

Memory operations must be carefully scheduled in MISC. Since each
PE executes its instruction stream independent of all others (in the absence
of a data dependence), memory operations initiated from two separate PE
can execute in any order. This poses two distinct problems to the generated
schedule:

6.2. 1. Two PEs Cannot Initiate Read Memory Operations Destined for
the Same PE

It is common to require both operands of an operation (e.g., addition)
to come from memory. Data sent directly from one PE to another uses
dedicated interPE transfer queues; however, data arriving from memory
uses the destination PEs memory queue. Since only a single read is allowed
per cycle for each queue, both memory operands cannot be processed in a
cycle (a similar problem was discovered in the PIPE compiler). In MISC
this problem is solved by providing a second memory queue for each PE.
When checking FIFO ordering of memory operations, this second queue is
used to alleviate these problems.

6.2.2. Memory Aliasing Cannot Be Resolved i f an Ordering of Memory
Operations Cannot Be Established

There is no execution order imposed on instructions from different
PEs unless a data dependence exists between the instructions. (This differs

Instruct ion Level Parallel ism on MIMD Architectures 255

from a processor that allows out-of-order execution of memory operations
- - o n such a machine an ordering exists, but is ignored when the memory
operations do not conflict.) The code separation phase of the MISC com-
piler imposes an ordering on memory operations that may conflict by
assigning those operations to a single PE. Conflict Buffers ~29~ can then be
used to reorder these memory operations during execution to maximize
memory throughput. All memory operations that the compiler can guaran-
tee do not conflict can be assigned to alternate PEs, which allows the con-
flict buffers to ignore these memory requests when issuing the (potentially)
aliased memory operations.

6.3. Code Separation

The task of the code separator is to partition the task across process-
ing elements, with the goal of minimizing the effects of high memory
latency and high functional unit latency for operations like multiply and
divide by decoupling the definition of the data item from its use. Much like
initial register allocation strategies, code separation assumes an infinite
number of processing elements. The mapping of operations to the physical
processing elements available on the target architecture is left to the pro-
cessor load balancing phase.

The first step in code separation is to perform global data flow
analysis and construct a definition-use chain for the RTLs in each function.
This chain can then be used to partition RTLs into dependent groups. The
primary grouping, referred to as the control group, contains all branch
operations and the RTLs required to calculate branch conditions and
targets (i.e., branch instructions and the instructions on which they depend).
The branch instructions are duplicated for each PE in order to maintain a
consistent control flow through the code. Later transformations may relax
this condition if no data is being manipulated in a block by some PE(s).

Branch condition calculations are assigned to the lead PE. The results
of these calculations (a simple boolean condition) are then transmitted to
the other PEs executing the branch. Branch target calculations are dis-
tributed among all PEs performing the branch; however, most of these
branch targets can be specified in the branch instruction and therefore do
not contribute to code expansion.

The concept of a leading (or lead) processing element is central to the
understanding of code separation. In a MIMD architecture, each of the
instruction streams executes independently (ignoring for a moment any
data dependences). Therefore, if operations are scheduled carefully, some of
the streams can be allowed to proceed farther ahead in the computation
than others. Staggering the relative entry cycles for the execution of a

828/22/3-4

256 Tyson and Farrens

section of code provides a perfect method for hiding the delay imposed by
high latency operations. For example, if the instruction that issues a high
latency operation is scheduled on a processor that enters that section of
code a sufficient number of cycles before the processor that uses the item,
the effects of the latency will be hidden. In such a case it is possible for the
leader PE will be executing instructions in a new section of code while
trailing PEs are still completing previous sections.

The scheduling of the control group determines a minimum cost
traversal through the instruction sequence. Each PE must either follow this
control path, or at some later point in the code wait for the lead PE to
provide a branch condition. Other dependencies in the unscheduled code
may (and likely will) further increase the time required to complete execu-
tion on some PEs, but the control group time is the only limitation on all
PEs in the machine. It should be pointed out, however, that the lead PE
must transmit branch condition information to the other PEs through the
interPE FIFO registers, and thus may stall if one or more of these queues
are full (and therefore incapable of accepting more data). It is therefore
important that all PEs have approximately the same traversal time through
their instruction schedule.

Once the control group is scheduled, the code separation phase deter-
mines how to partition the remaining RTLs. There are several different
strategies that can be employed at this point, with each strategy having
strengths and weaknesses in generating efficient code and simplifying the
task of the later phases. Two strategies will be discussed here: Latency
Removal and Group Separation.

In the Latency Removal strategy, a program dependence graph is con-
structed augmented with latency information. A ready list of RTLs that
have no outstanding dependences is then examined, and any RTLs that can
be scheduled without generating pipeline stalls are assigned to the current
PE. Dependency loops (due to loop recurrence variables) are exposed
when no items are available in the ready list. These dependency loop
operations must be scheduled on a single PE and determine a minimum
cost (Initiation Interval) for this PE. Once all RTLs that do not generate
stalls are assigned, scheduling continues on the following PE. This
technique generates a schedule that minimizes pipeline stalls and tends to
separate code into access/execute streams due to the high latency of
memory operations.

An alternative approach, Group Separation, tries to maximize the
number of PEs that are scheduled. Again, a dependency graph is con-
structed. RTLs are then partitioned into dependence groups which contain
only mutually dependent RTLs. Each group is assigned to different PEs,
with any remaining interPE dependencies forming a Directed Acyclic

Instruct ion Level Parallelism on M I M D Architectures 257

Graph (DAG) from l e a d i n g PEs to t r a i l i n g PEs. This representation of the
schedule forms a hybrid dataflow representation with control flow shared
and interPE data having unidirection flow.

The partitioning algorithm processes the program dependency graph
from the r o o t (first operation) to the l e a v e s (dependent operations). Infor-
mation concerning operational latency and register use is examined and
operations are assigned to processing elements in a bottom-up or depend-
ent-first order. This leads to a reverse schedule in which the final operations
for a block are scheduled first and those instructions that use data items
that are not available (due to operational latencies) are scheduled on a
different processing element.

Branching is handled slightly differently. Branch instructions are
duplicated across all processing elements to ensure that each processing
element conforms to the same control flow, and all instructions that
calculate branch conditions are assigned to the processing element that has
no instructions containing data dependencies; this allows a single processor
to l e a d the execution.

The algorithm for Code Separation is described in Fig. 4.
The following example shows how the code separation process works

using the L a t e n c y R e m o v a l strategy. (For this example, both strategies lead
to the same resulting code.)

The RTL representation of the intermediate code prior to code
scheduling appears in Fig. 5. Each line of the RTL description either
defines a label or describes an operation to be performed in the resulting

get RTL description
calculate control group
foreach RTL calculate

dependence group
recurrence data dependencies
resource constraints (memory FIFO queue ordering)
memory address disambiguation

if (approach is Latency Removal) then
foreach group in the DAG with no remaining unscheduled dependencies
assign to "leading" PE that does not create pipeline stall in the
PE schedule.

elseif (approach is Group Separation) then
assign each dependence group to a separate virtual PE

convert inter group dependencies into queue transfers
return modified RTL description

Fig. 4. Algorithm code for code separation.

258 Tyson and Farrens

[1] tl = 0 ; q=O
[2] t2 = 0 ; k=O
[3] t3 = 1024 ; set register for test
[4] t4 = LOC[_z] ; t4 = base of array z
[5] t5 = LOC[_x] ; t5 = base of array x

[6] LI:
[7] t6 = (t2>=t3) ; calculate branch cond
[8] PC = t6, L2 ; branch if true
[9] t7 = M[t4+t2] ; load t7= z[k]

[10] t8 = M[t5+t2] ; load t8= x[k]
[11] t9 = t7 * t8 ; (z[k] * x[k])
[12] tl = t l +t9 ; q = q + (z[k]* x[k])
[13] t2 = t2 + 1 ; k++
[14] PC = L1
[15] L2:

Fig. 5. RTL representation of LLL3 prior to code
separation.

code. Each R T L line shown throughout this section will contain a com-
ment (delimited by " ; ") to explain its operat ion. Virtual register labels
(specified as t l , t2, t3, etc.) define intermediate points in the calculat ion
and may or may not map to physical registers or queues. To avoid confu-
sion the actual register mapp ing has been omitted.

As referred to previously, the code scheduler can use the knowledge
that basic blocks are entered by successive processing elements on different
cycles to hide the latency of long latency instructions. For example, if an
instruct ion with a comple t ion latency of 5 cycles can be issued by a leading
PE with the result destined for a PE trailing by 5 or more cycles, the effects
of the opera t ional latency are completely subsumed.

A simple approach the scheduler can take is to assume a fixed latency
period between processing element block entries and enforce a strict order-
ing on PE leadership. Thi.s approach can be used to get reasonable perfor-
mance f rom the scheduler; however, greater benefit can be found f rom
calculating the expected stagger in relative basic block entry/exit cycles.
This can be accomplished by augment ing the s tandard dataf low analysis
ga thered in the code separa t ion phase with expected comple t ion times for
each of the processing elements in the virtual machine.

It is possible that a constant value for the entry t ime stagger will be
grossly erroneous; this is the case when a loop containing a recurrence is
scheduled such that only one processing element is delayed by a recurrence
relat ion while the remaining processing elements proceed to the next itera-
t ion (and finally to the loop complet ion). In this situation, the processing

Instruct ion Level Parallelism on M I M D Architectures 259

element delayed by the recurrence (and any processing elements dependent
on that one) will enter the basic block following the loop termination many
cycles later than the lead processing elements. If the code scheduler can
recognize when this occurs, a normally less efficient schedule can be created
for the basic block succeeding the loop that avoids any use of the process-
ing elements that are lagging far behind. This has the effect of concurrently
executing the successor blocks and the loop containing the recurrence. The
MISC code scheduler incorporates this augmentation to the dataflow
analysis, and the benefits of this approach are discussed in the analysis in
Section 6.

In order to determine which operations should migrate to a new pro-
cessing element, the scheduler locates all data dependencies that have laten-
cies that cannot be hidden with a simple reordering of instructions. From
this list of candidate operations, ones that are involved in a dependency
circuit are scheduled to a single processing element. This tends to negate
the transmission time penalties between processing elements as well as
greatly simplifying the deadlock detection scheme in the code generator.
Unfortunately, migrating the operation to another processing element may
create new hardware dependencies, which may conflict with others. For
example, if migrating a multiply operation requires that the destination for
the product be a FIFO ordered queue (since queues are used to transfer
data between processing elements), a conflict may arise if that queue is
already allocated to a previously existing instruction. In these cases, the
migration cannot proceed unless that conflict can be resolved in a later
optimization step.

This separation tends to identify operations by function: flow control,
memory access or data manipulation, with the leader PE performing control
flow operations, and trailing PEs supporting memory access and data
manipulation. This creates a dependency between the PE that generates the
data and a trailing PE which consumes the data, which tends to separate
code into memory access and data manipulation functions due to the long
latency of memory loads. A graph of these inter-PE dependencies is con-
structed to aid in the scheduling process, and the scheduler attempts to
avoid circuits in the dependency graph to simplify deadlock elimination
and to ensure that the ordering of PE execution is maintained (i.e., PE
leadership does not transfer).

Code separation provides a model which is capable of balancing PE
loads in applications that contain little balance between memory access
and data manipulation. It also provides the flexibility to handle code
generation for a variable number of processing elements. It should be noted
that unlike more coarsely grained parallel computations, the separation of
instructions on MISC tends to be between dependent operations.

260 Tyson and Farrens

[1] [PE3] t l = 0 ;q=O
[21 [PE1] t2 = 0 ; k=0
[3] [PEI] t3 = 1024 ; set register for test
[4] [PE1] t4 = LOCI_z] ; t4 = base of array z
[5] [PEll t5 = LOC[x] ; t5 = base of array x

[6] [PE1-3] LI:
[7] [PE1] t6 = (t2>=t3) ; PEI calcs branch cond
[8] [PEI-3] PC = t6, L2 ; branch if true
[9] [PE1] t7 = M[t4+t2] ; load t7= z[k]

[10] [PE1] t8 = M[t5+t2] ; load t8= x[k]
[11] [PE2] t9 = t7 * t8 ; (z[k] * x[k])
[12] [PE3] tl = tl + t9 ; q = q + (z[k] * x[k])
[131 [PE1] t2 = t2 + 1 ; k++
[14] [PEI-3] PC=E1
[15] [PEI-3] L2:

Fig. 6. RTL for LLL3 after code separation.

Applying the code parti t ioning strategy to the example code in Fig. 5
results in the specification in Fig. 6. A second column has been inserted
after each line number to indicate which processing element(s) process this
RTL line. For instance, the first line ([1]) initializes the variable q to zero.
Since the only use of q is in code allocated to PE3, the initialization
of q is allocated to PE3. Notice also that branch operat ions (lines [8]
and [1 4]) are allocated across all active processing elements. The separa-
tion of operat ions occurs in lines [9] through [12] . Since line [1 2] has a
high latency dependency (due to the multiplication) to line [11] they are
parti t ioned to different PEs. Similarly, the memory latency between lines
[9] and ['11], and lines [1 0] and [I 1] require a third PE to be included
in the schedule. Lines [9] and [10] can be issued to the same PE because
no dependency exists between them; loop control variable calculation also
are issued to the lead PE. .

6.4. Processor Load Balancing

The schedule generated by the code separator is incomplete in two
areas. First, the parti t ioning is performed on virtual processors, which
may not be equal to the actual number of physical processors. Second, no
considerat ion has been given to equally distributing operat ions a m o n g the
processors. The goal of the load balancing phase is to remedy these
deficiencies.

Instruction Level Parallelisrr~ on M I M D Architectures 261

There are two aspects to load balancing: instruction balancing and
register pressure balancing. In a machine with 128 general purpose registers
(as a 4-processor MISC configuration has), register pressure is not a
significant problem. In the initial register allocation, prior to code separa-
tion, 128 registers are assumed available to the single PE stream. This does
not correspond to the actual architecture, but provides a good heuristic on
the final variable assignment. During the code separation phase register
limitations are ignored, leaving the final task of register assignment to the
load balancing phase. The goal is to minimize the need to spill register con-
tents to memory, and when spills are required, maintain the performance
of the lead PEs. This can be accomplished by scheduling the instructions
that require spills on trailing PEs.

The desire to balance the instructions over the PEs is far more impor-
tant. During code separation, groups of instructions were constructed.
From this dependence groups can be obtained (directly, if the Group
Separation strategy was used). These groups are then scheduled onto a set
of PEs minimizing the variance in instruction count. This problem is
similar to bin-packing, and a variant of the bin-packing algorithm could be
used. We chose to use a greedy method. The method we chose builds a
Directed Acyclic Graph (DAG) of dependence groups with each arc of the
graph corresponding to an interPE dependence and weighted with the
latency of that dependence operation. A ready set of dependence groups is
then determined and considered for scheduling on the leading PE. If the
size of this group (in instruction count) does not exceed the available
instructions on the lead PE, and a pipeline stall does not occur, then the
group can be assigned to the lead PE. This process continues until a PE
is found for the group. The last PE accepts all remaining (unscheduled)
groups. The greedy method has the advantage of allocating memory access

get RTL desc.ription
construct DA G of dependence groups
while DAG is not empty
foreach group in the DAG with no remaining unscheduled dependencies

assign to "leading" PE that:
1) does not place the number of instruction of the block(s) associated

with this group to total instruction for block(s)/number of PEs
2) does not generate an interPE dependency from a trailing PE.
3) does not create pipeline stall in the PE schedule.
4) does not force a register spill to occur

Fig. 7. The load balancing algorithm.

262 Tyson and Farrens

[1] [PE4] t l = 0 ;q=0
[2] [PE1] t2=0 ;k=O
[3] [PEI] t3 = 1024 ; set register for test
[4] [PE1] t4 = LOC[__z] ; t4 = base of array z
[5] [PE2] t5=LOC[_x] ; t5=baseofar rayx

[6] [PE1-4] LI:
[7] [PEI] t6 = (t2>=t3) ; PE1 calcs branch cond
[8] [PE1-4] PC=t6, L2 ; branch if true
[9] [PEI] t7 = M[t4+t2] ; load t7= z[k]

[10] [PE2] t8 = M[t5+t2] ; load t8= x[k]
[11] [PE3] t9 = t7 * t8 ; (z[k] * x[k])
[12] [PE4] tl = tl + t9 ; q = q + (z[k] * x[k])
[13] [PE1-2] t 2 = t 2 + l ;k++
[14] [PEI-4] PC=L1
[15] [PE1-4] L2:

Fig. 8. RTL for LLL3 after load balancing.

consistently to the lead PEs, simplifying m e m o r y aliasing analysis. Fig. 7
describes the load-balancing algori thm.

In the example p rog ram (Fig. 6) the code separa t ion phase allocates
only three processing elements while the physical target machine contains
four processing elements. Therefore, the two independent m e m o r y opera-
tions (the vector loads for x and z) are split onto two processing elements.
This leads to a schedule that utilizes the full capabilities of the target
architecture. The modified schedule is show in Fig. 8.

6.5. Loop Trans la t ion

Of par t icular impor tance is the opt imizat ion of inner loops. Two
opt imiza t ion techniques are applied to loops in this compiler--branch
reduction and induction .variable calculation. These two opt imiza t ions
a t t empt to el iminate instructions in inner loops, which can lead to signifi-
cant pe r fo rmance improvement s when these loop i terations account for a
large por t ion of the execution time.

6.5. 1. Branch Reduction

One ramificat ion of having multiple processors coopera t ing on the
execution of a task is that m a n y more branch instructions are required in
order to keep the instruction flows synchronized. This dupl ica t ion of
branch instruct ions in each s t ream can lead to a significant increase in
the total n u m b e r of instructions required to perform a task. The code

instruction Level Parallelism on M I M D Architectures

Table I. Code Expansion Due to Branch Replication"

263

bench inst count branch expand pred loop

awk 12211251 2164041 18703374 17693006 17547358
compress 16672328 2651705 24627443 23234851 23216415
grep 13590761 3056768 22761065 21372373 20630417
nroff 12806704 2773837 21128215 19706583 19704251
troff 10302886 2037759 16416163 15224263 15203607
linpacks 73957172 4134742 86361398 85229646 74884782

= bench = name of the benchmark program examined
inst count = the total number of instructions executed
.branch = the total number of branch instruction executed
expand = the total number of instructions executed/predicted after code has been separated

(and balanced)
pred = the total # of instr executed after balancing if predicate transformations were applied
loop = the total # of instr executed after balancing and loop transformations

expansion due to branch duplication for a set of 6 benchmark programs is
shown in Table I.

The MISC architecture provides two mechanisms to reduce the need
for branch duplication: VLOOP/SLOOP instructions and predicated
execution. The vector loop (VLOOP) instruction uses the vector register in
conjunction with a Delay Register (DREG) to realize a very simple branch
hiding (or zero cycle branch) instruction. It is used in cases where the
number of times a basic block will execute is known at the initial entry into
the loop (either as a constant or register variable).

The sentinel loop (SLOOP) instruction provides branch hiding
capability to more generalized (while) loops. SLOOP operates in a manner
similar to the VLOOP except that a sentinel comparison is made instead
of a VREG calculation. When a SLOOP instruction reaches the issue stage
of the pipeline, the src3 operand is tested to see if the first iteration of the
loop should be executed. The src3 operand specifier is then saved to allow
for additional sentinel tests to be performed during the last instruction
issued each time through the loop body. Loop iteration continues until the
sentinel marker is reached.

Conventional wisdom holds that instruction level implementations of
higher level semantics seldom lead to performance improvements because
of the complexity of implementation and the scarcity of application. While
this may be true for a standard sequential processor, the vector and
sentinel instructions defined in MISC can be implemented with minimal
hardware modification to the issue logic and the existence of multiple
instruction streams leads to a greater potential for application of these

264 Tyson and Farrens

instructions. Often the application of a complex construct (e.g., a while
loop) is virtually impossible in a single instruction stream design because
of the complexity of evaluating the test condition. The need both to
evaluate a complex test condition and perform the control flow operation
cannot be reduced to a single instruction. However, in a multiple instruc-
tion stream machine such as MISC, a single PE can evaluate the test con-
dition and broadcast the boolean result to all PEs, increasing the number
of simple boolean tests evaluated during the execution of these loop
semantics. The reduction figures for the benchmark programs are shown in
Table I.

If-conversion (zS) also reduces the effects of branching by eliminating
branching operations in favor of predicated execution. One problem with
if-conversion is that while it may be useful to eliminate a branch to allow
more efficient use of some operational units (e.g., load/store operations),
the necessity of translating all instructions affected by the branch into a
predicated form can lead to an overall decrease in execution performance.
Converting these branches in MISC code can be performed for each PE in
an independent manner. This allows PEs that can benefit from the removal
of a branch operation to proceed with the hyperblock transformation while
other PEs may more efficiently schedule instructions by retaining that
branch. This also allows the application of VLOOP and SLOOP on a
greater number of inner loops (containing small segments of conditionally
executed code), since loop operations cannot contain branches, but can
contain predicated instructions. The reduction figures for the benchmarks
are also shown in Table I.

During branch reduction, a form of if-conversion is used to convert
jumps around short segments of conditionally executed code into
predicated instructions. After this has been accomplished, inner loops are
again examined to determine whether the VLOOP or SLOOP operations
can be inserted in place of the explicit branching operations. For loops
containing no remaining branch operations (other than a single branch exit
and the backward branch at the end of the loop), the VLOOP or SLOOP
operator is inserted.

In the example of Fig. 8 it is a simple matter to determine that a
VLOOP operation provides the required loop control operation. The
effects of applying the loop translation along with induction variable
calculation can be seen in Fig. 9.

6.5.2. Induction Variable Calculation

An induction variable is a variable whose value is consistently
modified (incremented or decremented) by a constant value on each itera-
tion of a loop. These variables are often used to determine the number of

Instruction Level Parallelism on M I M D Architectures 265

[1] [PE4] t l = 0 ;q=0
[21
[3] [PE1-4] t3 = 1024 ; set register for test
[4] [PE1] t4 = LOC[_z] ; t4 = base of array z
[5] [PE2] t5 = LOC[__x] ; t5 = base of array x

[6]
[71
[8] [PEI-4] VLOOP 1,0,t3 ;cee = 1, dee = 0
[9] [PE1] t7 = M[t4+VREG] ; load t7=z[k]

[10] [PE2] t8 = M[t5+VREG] ; load t8=x[k]
[11] [PE3] t9 = t7 * t8 ; (z[k] * x[k])
[12] [PE4] t l = t l + t 9 ;q=q+(z[k]*x[k])
[131
[14] [PE1-4] VLOOP_END
[15] [PEI-4] L2:

Fig. 9. RTL for LLL3 after loop translation.

iterations. Furthermore, induction variables are often used to index array
data items or manipulate memory pointers. Induct ion variables can be
defined in terms of an induction expression. While a number of expressions
are possible, a useful induction expression is:

IVi l l=dee, IVu+~)=IVu~+cee for all i> l

where i is the iteration count (value 1 on the first i teration)

The detection of induction variables is a well unders tood problem. The
algori thm used in this compiler is derived from Ref. 30 (Algori thm 10.9).

Once the control state of the machine has been modified to suppor t
loop operations, it is a simple modification to handle the calculation of
induction variables used in the loop. The srcl and src2 fields of the loop
instructions are free to contain the cee and dee values; V R E G will maintain
the induct ion value and src3 will control loop termination as described
above.

In the example in Fig. 8 both array index calculations can be
performed by the hardware. This leads to the RTL description after loop
translation show in Fig. 9.

6.6 . I n s t r u c t i o n S c h e d u l i n g

A least-cost schedule is developed that attempts to schedule all instruc-
tions in the shortest time. List scheduling on MISC operates on each of the

266 Tyson and Farrens

PBUS 1 J C B U S 1
J

DCache

CBU US 2

PE31
PE4 <- M1 * M2

~ BUS

PE41

q < - q + P E 3

Fig. 10. Execution flow for LLL3.

processing elements individually, scheduling to avoid wasted cycles (due to
latency). Simple list scheduling is complicated by the necessity to interpret
queue register specifications in the RTL and avoid reordering queueing
operations. Furthermore, the implementation of loop operations is left to
this phase of the code generation. In the example the VLOOP operations
for each of the processors can be replaced with the vector version since
each loop consist of a single instruction and the default induction calcula-
tion is used (or no induction variable is referenced in PE3 and PE4). A
flow graph representation of the MISC object code is shown in Fig. 10.

7. A N A L Y S I S

The Lawrence Livermore Loops were selected as the benchmarks,
because they are amenable to hand-coding and are representative of a large
class of scientific programs. The first 12 loops were compiled for both the
MIPS and MISC architectures. The MIPS code was compiled using the cc
compiler with optimization - 0 2 , and the MISC code was generated using

Instruction Level Parallelism on M I M D Architectures 267

the IAGO (31) compilation environment using the techniques discussed in
Section 5 of this paper.

In order to compare the performance of MISC to the MIPS processor
we examined the total number of cycles required to complete (Cmplet) a
given loop and the number of cycles required before the execution of
instructions after the loop can start (Next). The Next number is interesting
because, since MISC PEs operate independently, one PE can complete its
work on a given loop and begin execution of the code following the loop
prior to the official loop termination.

As can be seen in Table II, for a majority of the loops we see a three-
to four-fold decrease in the cycles required by the MISC machine over the
MIPS processor in completion of a loop. This demonstrates that MISC is
effectively extracting the parallelism available in the benchmark. In several
of these benchmarks there is less of a performance increase (most notably
in LLL6 and LLLI1); this is due to a recurrence constraint found in the
data manipulated by the loop. In these cases, adding more processors will
not increase performance regardless of the approach used, since the
parallelism is simply not available in the loop.

To provide a comparison with a similarly configured single instruction
stream/multiple issue architecture, the loops were also hand compiled
for a four-issue VLIW architecture based upon the version found in
Ref. 32. This VLIW machine allows four instructions to be issued per clock
cycle and places no limitations on the type of instructions that can be

Table II. Comparison of MIPS and MISC Cycle Counts
for Livermore Loops

MISC Improvement

Bnch MIPS Cmplet Next Cmpiet Next

LLL 1 5611. 1232 1205 4.55 4.65
LLL2 1112 256 201 4.34 5.53
LLL3 6664 2063 1025 3.23 6.50
LLL4 3011 753 385 3.99 7.82
LLL5 6979 1994 977 3.50 7.14
LLL6 7726 4982 0 1.55 oo
LLL7 4338 859 727 5.05 5.97
LLL8 3218 1476 586 2.18 5.49
LLL9 4081 813 609 5.02 6.70
LLL 10 3107 1007 506 3.08 6.14
LLL11 3049 2003 0 1.52 oo
LLL12 3759 1013 1002 3.71 3.75

268

Table III.

Tyson and Farrens

Comparison of Cycle Counts for MISC, VLIW, and
Ideal Machines

Bnch PE1 PE2 PE3 PE4 MISC VLIW Ideal

LLLI 1205 1215 1221 1232 1232 1236 1000
LLL2 201 201 211 256 256 228 200
LLL3 1025 1025 1035 2063 2063 2070 2048
LLL4 385 395 404 753 753 771 576
LLL5 997 999 1993 4982 4982 4984 4980
LLL6 0 997 1995 4982 4982 4984 4980
LLL7 727 846 736 859 859 863 780
LLL8 586 720 1240 1476 1476 - - 950
L L L9 609 707 712 813 813 708 700
LLLI0 506 506 1006 1007 1007 1014 750
LLL11 0 999 1000 2003 2003 2004 1998
LLL12 1002 1012 1013 1013 1013 1013 1000

issued. Furthermore, it assumes sufficient resources (e.g., register transfer
bandwidth) to sustain a fofir-instructions-per-cycle execution rate. The
"ideal" entry in Table III is derived by determining the total number of
instructions required to complete the program loop, exclusive of branches
(which can be removed by software or hardware techniques in any ideal
machine). Barring any recurrence relations, the total instruction count is
then divided by the issue bandwidth (four in this analysis).

The results in Table III show that the MISC approach and the VLIW
model are capable of extracting about 80 % to 99 % of the instruction level
parallelism available in these loops. However, as mentioned previously, the
MISC PEs that finish prior to the overall completion of the loop are
available to begin execution of the code following the loop exit. This
demonstrates an important point in the performance capabilities of a multi-
ple instruction stream processor; the MISC processor requires only those
processing elements necess.ary to perform the task to be allocated to the
loop while the unaUocated processing elements can proceed into the follow-
ing code blocks. In contrast, all functional units in the VLIW processor are
locked into the loop (even if they have nothing to do).

A superscalar design might be capable of allocating processing resour-
ces across loops, but only with a sufficiently large instruction window and
the ability to predict correctly many branches ahead in the instruction
stream. The MISC approach of separating instruction streams alleviates
these requirements.

To demonstrate the effects of this splitting of resources let us examine
two of the loops in more detail. If we look at the execution of LLL6 we

Instruction Level Parallelism on M I M D Architectures

Table IV. Comparison of Cycle Times for MISC and VLIW
Executing Two Loops Sequentially

269

Loop PE1 PE2 PE3 PE4 M I S C V L I W Improvement

6 0 997 1995 4982 4982 4984 co 1.00
It 999 1000 2003 0 2003 2004 co 1.00

6-11 999 1997 3998 4982 4982 6988 6.99 1.40

notice that only the final processing element is required to perform the
majority of the loop calculation. This is due to a tight recurrence relation
found in the loop equation. In the VLIW machine all functional units are
forced to sit idle in the loop body until the machine (as a whole) completes
calculation of the loop. In the MISC approach, the three processing
elements not involved in the recurrence calculation are free to continue
execution.

If we now assume that LLLI1 follows the execution of LLL6, we can
determine the different stagger rates on exit from LLL6 and reschedule
LLL11 to take advantage of the free processing elements. Table IV shows
the result of this rescheduling (done at compile time) and compares it to
the VLIW architecture. As seen in Table IV, the ability to overlap execu-
tion of the loops allows the MISC processor to perform both loops in the
time required by the VLIW architecture to perform the first alone.

We expect this final result to be demonstrative of the advantage that
the multiple instruction stream attains across basic blocks. Little dataflow
analysis is required to achieve this capability.

8. C O N C L U S I O N S / F U T U R E W O R K

In this paper we have examined the feasibility of using a MIMD
approach to extracting instruction level parallelism. Current MIMD
architectures suffer from various deficiencies which prevent their direct
application to instruction level parallel tasks. A new architecture has been
proposed which alleviates these deficiencies and provides both reduced
hardware complexity and simplified software scheduling compared to
conventional (single instruction stream) approaches. When supported with
a new code scheduling method, this architecture provides performance
equivalent to the most powerful VLIW and Superscalar architectures
proposed, while maintaining simple hardware and software schemes.

The ability to specify more information in the object language of the
MISC machine (by explicitly defining separate instruction streams) simpli-
fies the hardware mechanisms required to support out-of-order execution.

270 Tyson and Farrens

This provides a powerful combina t ion of software based control flow
opt imizat ions with the dynamic features found in out-of-order execution

models in a more cooperative way than that found in existing V L I W and
Superscalar designs, by increasing the informat ion conten t between the

two.
We believe these results will prove to be even more significant in non-

vectorizable code, because of the latency hiding effects inherent in the
decoupled model. We are currently refining the compi la t ion env i ronment ,
in order to examine a much wider range of benchmark programs.

A C K N O W L E D G M E N T S

This work was suported by the Nat iona l Science F o u n d a t i o n under
G r a n t MIP-9257259, and by a generous dona t ion from S U N Micro-

systems.

R E F E R E N C E S

1. N. P. Jouppi and D. W. Wall, Available instruction-level parallelism for superscalar and
superpipelined machines, Proc. of the Third Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Boston, Mass, pp. 272-282 (April 1989).

2. M. E. Benitez and J. W. Davidson, Code generation for streaming: an access/execute
mechanism, Proc. of the Fourth Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, CA, pp. 132-141 (April 1991).

3. T. Austin and G. Sohi, Dynamic dependency analysis of ordinary programs, Proc. o f the
19th Ann. Syrup. on Computer Architecture 20(2):342-351 (May 1992).

4. M. Butler, T. Yeh, and Y. Part, Single instruction stream parallelism is greater than two,
Proc. of the Eighteenth Ann. Int. Symp. on Computer Architecture, Toronto, Canada,
pp. 276-286 (May 1991).

5. J. E. Smith, Decoupled access/execute computer architectures. Trans. on Computer
Systems 2(4):289-308 (November 1984).

6. J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski, D. L.
Fowler, K. R. Scidmore, and J. P. Laudon, The ZS-I central processor, Proc. of the
Second Int. Conf. on Architectural Support for Programming Languages and Operating
Systems, Palo Alto, California, pp. 199-204 (October 1987).

7. W. Wulf, Evaluation of the WM architecture, Proc. of the 19th Ann. Symp. on Computer
Architecture 20(2):382-390 (May 1992).

8. R. L. Sites, Alpha AXP architecture, Comm. of the ACM 36(2):33-44 (February 1993).
9. C. Stephens, B. Cogswell, J. Heinlein, G. Palmer, and J. P. Shen, Instruction level profiling

and evaluation of the IBM RS/6000, Proc. of the 19th Ann. Syrup. on Computer Architec-
ture 20(2):180-189 (May 1992).

10. J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young,
PIPE: a VLSI decoupled architecture, Proc. of the Twelveth Ann. Int. Syrup. on Computer
Architecture, pp. 20-27 (June 1985).

11. G. L. Craig, J. R. Goodman, R. H. Katz, A. R. Pleszjun, K. Ramachandran, J. Sayah, and
J. E. Smith, PIPE: a high performance VLSI processor implementation, Journal o f VLSI
and Computer Systems, Vol. 2 (1987).

Ins t ruc t ion Level Para l le l ism on M I M D Arch i tec tu res 271

12. D. Wall, Limits of instruction-level parallelism, Proc. of the Fourth Int. Conf. on Architec-
tural Support for Programming Languages and Operating Systems, Santa Clara, California,
pp. 176-189 (April 1991).

13. M. Farrens, G. Tyson, and A. Pleszkun, A study of single-chip processor/cache organiza-
tions for large numbers of transistors, Proc. of the 21th Ann. Int. Syrup. on Computer
Architecture, Chicago, Illinois (April 1994).

14. M. S. Lam, Software pipelining: an effective scheduling technique for VLIW machines,
Proc. of the ACM SIGPLAN Notices 1988 Conf. on Programming Languages and
Implementations, pp. 318-328 (June 1988).

15. S. Weiss and J. E. Smith, A study of scalar compaction techniques for pipelined supercom-
puters, Proc. of the Second Int. Conf. on Architectural Support for Programming Languages
and Operating Systems, Palo Alto, California, pp. 105-109 (October 1987).

16. G. Tyson, M. Farrens, and A. Pleszkun, MISC: a multiple instruction stream com-
puter, Proc. of the 25th Ann. Int. Symp. on Computer Architecture, Portland, Oregon,
pp. 193-196 (December 1992).

17. J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, Conversion of control dependen-
cies to data dependencies, Proc. of the lOth ACM Syrup. on Principles of Programming
Languages, pp. 177-189 (January 1983).

18. M. Farrens and A. Pleszkun, Overview of the PIPE processor implementation, Proc. of
the 24th Ann. Hawaii Int. Conf. on System Sciences, Kapaa, Kauai, pp. 433--443 (January
1991).

19. H. C. Young, Evaluation of a Decoupled Computer Architecture and the Design o f a Vector
Extension, Ph.D. Thesis, University of Wisconsin-Madison (July 1985).

20. M. E. Benitez and J. W. Davidson, Code generation for streaming: an access/execute
mechanism, Proc. of the Fourth Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, California, pp. 132-141 (April 1991).

21. R. Gupta, A fine-grained MIMD architecture based upon register channels, Proc. of the
23rd Ann. Symp. and Workshop on Microprogramming and Microarchitectures, Orlando,
Florida, pp. 54-64 (November 1990).

22. F. Ferrante, K. Ottenstein, and J. Warren, The program dependence graph and its use in
optimization, ACM Trans. on Programming Languages and Systems, pp. 319-349 (July
1987).

23. R. A. lannucci, Toward a dataflow/von Neumann hybrid architecture, Proc. of the 15th
Ann. Symp. on Computer Architecture, pp. 131-140 (1988).

24. R. Gupta, The fuzzy barrier: a mechanism for high-speed synchronization of processors,
Proc. of the Third Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, pp. 54-64 (1989).

25. A. Wolfe and J. P. Shen, A variable instruction stream extension to the VLIW architec-
ture, Proc. of the Fourth Int. Conf. on Architectural Support for Programming Languages
and Operating Systems, Santa Clara, California, pp. 2-14 (April 1991).

26. M. Danelutto and M. Vanneschi, VLIW-in-the-large: a model for fine grain parallelism
exploitation on distributed memory multiprocessors, Proc. of the 23rd Ann. Syrup. and
Workshop on Microprogramming and Microarchiteetures, Orlando, Florida, pp. 7-16
(November 1990).

27. S. W. Keckler and W. J. Dally, Processor coupling: integrating compile time and runtime
scheduling for parallelism, Proc. of the 19th Ann. Int. Syrup. on Computer Architecture,
Queensland, Australia, pp. 202-213 (May 1992).

28. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, Effective com-
piler support for predicated execution using the hyperblock, Proc. of the 25th Ann. Int.
Symp. on Microarchitecture, Portland, Oregon, pp. 45-54 (December 1992).

828/22/3-5

272 Tyson and Farrens

29. J. E. Smith, Decoupled access/execute computer architectures, Proc. of the Ninth Ann. lnt.
Syrup. on Computer Architecture, Austin, Texas, pp. 112-119 (April 1982).

30. A. V. Aho, R. Sethi and J. D. Ullman, Compilers Principles, Techniques and Tools,
Addison-Wesley Publishing, pp. 644.

31. G. S. Tyson, R. Shaw, and M. Farrens, An interactive compiler development system,
Tcl/Tk Workshop (June 1993).

32. B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, Code generation schema for modulo
scheduled loops, Proc. of the 25th Ann. Int. Syrup. on Microarchitecture, Portland, Oregon,
pp. 158-169 (December 1992).

