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Extensive research has been done on extracting parallelism from single instruction 
stream processors. This paper presents our investigation into ways to modify 
MIMD architectures to allow them to extract the instruction level parallelism 
achieved by current superscalar and VLIW machines. A new architecture is 
proposed which utilizes the advantages of a multiple instruction stream design 
while addressing some of the limitations that have prevented MIMD architec- 
tures from performing ILP operation. A new code scheduling mechanism is 
described to support this new architecture by partitioning instructions across 
multiple processing elements in order to exploit this level of parallelism. 
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1. I N T R O D U C T I O N  

The compi le r  and  code scheduler  for a multi-issue archi tecture  requires  a 
high degree of sophis t ica t ion  in o rder  to realize the full po ten t ia l  for 
para l le l  execution.  I t  must  be able to assign independen t  ins t ruct ions  to 
ope ra t iona l  units in a manne r  that  minimizes  the n u m b e r  of cycles in which 
no ins t ruct ions  can be issued. The task of the scheduler  in a mul t i - i ssue  
system is further  compl ica ted  by the fact tha t  while the la tency of  ope ra -  
t ional  units and  m e m o r y  remain fixed, the number  of  ins t ruct ions  tha t  
mus t  be scheduled in a per iod  is increased by the width  of the issue stage. 
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Several studies "'2) indicate that compilers using simple scheduling 
techniques are capable of identifying 2-3 independent instructions per cycle. 
Other studies t3'4) suggest that even more parallelism can be found if the 
compiler's scheduler is capable of performing extensive code motion. 

In this paper, we will present a brief overview of single and multiple 
instruction stream approaches to multiple issue processor design. We will 
then introduce the basics of a multiple instruction stream/multiple issue 
architecture we have developed, show how code is scheduled for several 
loops, and present an analysis of the performance of this architecture. 

2. M U L T I P L E  I N S T R U C T I O N  ISSUE A R C H I T E C T U R E S  

Several distinct approaches have been taken in the development of 
multiple issue architectures. The Very Long Instruction Word (VLIW) 
approach increases the resources available to (and the demands on) the 
compiler. It is responsible for all scheduling, including the assignment of 
null operations to functional units that cannot be assigned a useful task 
during a given cycle. Since the compiler has the most complete information 
about the entire program, it is well suited to deal with the inclusion of 
additional resources (e.g., ALUs, FPUs, and I/O units) and is able to 
increase instruction execution bandwidth in areas of the code that were 
previously performance limited by resource constraints. However, VLIW 
does not support out-of-order execution well, and any change of the 
hardware description requires all code to be recompiled in order for the 
program to work correctly. 

Superscalar architectures employ a hardware scheduler that uses 
dynamic run-time information in order to efficiently allocate resources to 
the list of instructions ready for execution. However, the hardware 
implementation of the scheduler is restricted to selecting instructions from 
a fixed-size window of available instructions, and thus does not have the 
breadth of information available to it that the compiler does at compile 
time. 

A third approach to issuing multiple instructions takes advantage of the 
characteristics found in the Von Neumann computational model. Decoupled 
architectures attempt to exploit the independent nature of control flow, 
memory access, and data manipulation operations that comprise conventional 
computations by splitting a task into distinct pieces and executing them on 
separate pieces of hardware. Since these hardware units communicate via 
FIFO queues, the instruction streams are allowed to slip with respect to 
one another, providing dynamic support for out-of-order execution. This 
approach attempts to take advantage of the best that VLIW and super- 
scalar have to offer; the compiler partitions the tasks in a manner similar 
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to VLIW, and the queues provide the same dynamic scheduling benefits 
found in superscalar. 

These decoupled systems differ from VLIW and superscalar designs in 
the manner which the independently issued instructions interact. VLIW 
and superscalar processors can be thought of as very tightly coupled shared 
memory systems; they share not only addressable memory but also register 
space. This shared register approach differs from the explicit message 
passing (via FIFO ordered queues) found in decoupled machines. Further- 
more, in order to transmit data. among operational units by writing and 
then reading the contents of a register, the clocks on VLIW and super- 
scalar processors must be synchronized. This requirement is relaxed with 
an explicit message passing approach, tS~ 

The greater flexibility found in a decoupled design allows both single 
and multiple instruction stream descriptions of a task. The ZS-I (6) and 
WM ~7~ systems operate in a decoupled manner while receiving instructions 
from a single instruction stream. Their architectural component descrip- 
tionsare similar to those of Split Register superscalar designs, t8"9) The PIPE 
machine] lm in contrast, consists of two PIPE processors t'l) which run 
asynchronously, each with their own instruction stream, and cooperate on 
the execution of a single task. 

3. E X P L O I T I N G  ILP O N  A M I M D  A R C H I T E C T U R E  

Parallelism in a single instruction stream architecture resides primarily 
at the instruction level and is a well-studied problem."'! 2) Extracting 
parallelism on a MIMD architecture, on the other hand, has traditionally 
been accomplished by partitioning the program into data independent 
portions and assigning them to separate processing elements, ignoring 
any other parallelism that might exist. Little research has been done on 
exploiting instruction level parallelism across processors on a multiple 
instruction stream machine. 

There are a number of reasons why this approach merits further 
investigation, however. Superscalar machines do not scale well---expanding 
the number of processing elements available necessitates a corresponding 
increase in the size of the hardware window over which code scheduling 
occurs, significantly increasing the scheduling complexity. Compilers for 
VLIW machines can help circumvent this problem, but do not support 
out-of-order execution well. 

Exploiting instruction level parallelism on MIMD architectures can 
overcome both these problems. The instruction issue stage of each pro- 
cessor can perform in a simple single-issue, in-order manner, avoiding 
much of the hardware complexity required to support out-of-order issue in 
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a single instruction stream approach. Out-of-order issue is also supported 
on an MIMD because the processors are run independently; therefore, any 
independent instructions executed on different processors can issue in any 
order without necessitating any hardware support. This is fundamentally 
different from multiple issue in a VLIW machine because a strict ordering 
of instructions is not imposed by the compiler unless a dependence 
exists. Furthermore, by incorporating multiple program counters, a MIMD 
machine provides the architecture with more dataflow information by 
enriching the specification of the object language; taken to its extreme this 
would allow a dataflow machine description of the program. 

Separating a program into multiple single issue instruction streams 
additionally allows the decentralization of the hardware resources, since 
there is no central instruction window from which instructions are issued. 
Similarly, there is no central register file to be overloaded with contention 
among the processing elements, which allows for easier expandability in a 
MIMD approach. 

While a MIMD approach to code scheduling clearly possesses certain 
advantages, historically these architectures have suffered from severe limita- 
tions. Data transfer latencies have been high, and the bandwidth required 
to support high-throughput, low contention data transfer has been 
unavailable because of pin limitations and/or board-level interconnects. 
Even if maximum data transfer rates can be made acceptable, the need to 
provide synchronization points can cause u6acceptable performance loss. 
Using main memory to handle data transfers between processors can also 
lead to an unacceptable dependence on memory latency. These problems 
help explain why current MIMD designs do not exploit ILP. 

Increasing the number of transistors that can be fabricated per square 
centimeter provides the means by which many of the interprocessor com- 
munication problems can be eliminated. Placing several of these processing 
elements on the same die circumvents the pin limitations on bandwidth and 
supports high on-chip data transfer rates. In addition, using FIFO queues 
in a manner similar to that used by decoupled machines provides a clean 
way to handle synchronization. If transistor densities continue to increase 
as they have over the last decade, by the middle of this decade such a 
design will be realizable. One study ~13~ indicates that as tens of millions of 
transistors become available, something more than simply increasing 
on-chip cache sizes must be done. These facts led to the design of the MISC 
architecture, a decoupled MIMD machine that is designed to support and 
exploit instruction level parallelism. 
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4. T H E  M U L T I P L E  I N S T R U C T I O N  S T R E A M  
C O M P U T E R  ( M I S C )  

The MISC architecture was designed to handle many of the dynamic 
characteristics of program execution by allowing the compiler to convey 
more information to the hardware during code translation. Variable opera- 
tional unit latencies (primarily memory loads) create difficulties for code 
scheduling in VLIW and superscalar processors, due to the sequential 
instruction flow imposed by translating a dataflow intermediate representa- 
tion to a single instruction stream architecture. Superscalar designs can 
remove some of the restrictions imposed by single stream scheduling by 
regenerating some the dataflow information at the issue stage of the 
pipeline, but not without considerable hardware issue logic. Furthermore, 
software pipelining ~14) and loop unrolling schemes 1~SJ have difficulty in 
efficiently scheduling instructions with variable latency dependencies. 

MISC avoids these scheduling problems by allowing operations with 
indeterminate latencies to transfer data between PEs. The inherent asyn- 
chronous relationship among the PEs can compensate for the variability 
of the latency without affecting the execution rate of nondependent 
instructions. 

The MISC processor has been described in detail in Ref. 16. A brief 
overview of MISC will be presented here, focusing on aspects of the 
architecture that will be featured in the code scheduling discussion later in 
the paper. MISC is a direct descendant of the PIPE project, but unlike the 
two processor PIPE design, the MISC system is capable of balancing the 
processor load of instructions performing control flow, memory access, and 
execute operations among multiple processors. As its name indicates, 
MISC is composed of multiple Processing Elements (PEs) which cooperate 
in the execution of a task. 

The example MISC configuration used throughout this paper consists 
of four processing elements, a bank selected data cache (DCache), and a 
set of internal data .paths used to transmit data among PEs and the 
DCache. The component design of this MISC configuration is illustrated in 
Fig. 1. Each PE executes in an asynchronous manner from other PEs and 
the DCache. The internal data paths are used to facilitate communication 
between elements (PEs and/or DCache). Each data path is controlled by a 
single element; for instance, the internal data path labeled PBUS1 is 
controlled (written) solely by PE1. Each PE has its own bus (PBUS{ 1--4}), 
and the data cache controls two busses (CBUSI and CBUS2). Two 
separate bank selected I/O channels support the transmission of data 
between the MISC chip and the rest of the system (main memory). These 
channels are controlled by the DCache. Each PE is capable of transmitting 
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a message directly to any other processor (including itself), or of broad- 
casting a message to all processors. 

The processing elements (Fig. 1) are collectively responsible for the 
execution of a single task, with each PE having its own independent 
instruction stream and its own instruction cache. Each PE is identical and 
maintains all state inforhaation required to function as an independent 
processor--in fact, the MISC hardware is capable of running four com- 
pletely unrelated tasks in parallel. However, it is assumed that a single task 
will be partitioned (by the compiler) into four instruction streams that 
cooperate in the execution of that task. Each PE contains a 5-stage 
pipeline, 32 General Purpose Registers (GPRs) which are available for 
data storage that persists over multiple references, a F IFO processor queue 
(PQ) for each PE in the system (including itself) to store data transfers 
between PEs, a Program Counter (PC), a Vector Register (VREG), and 2 
memory queues (MQs) which contain data requested from memory. (The 
size of each of the queues (PQs and MQs) is not given here; however, their 
size is an architecturally visible component. The compiler must know the 
size of each queue (they need not all be the same size) in order to schedule 
code correctly and avoid deadlocks due to resource depletion.) 

All instructions in MISC are 32 bits in length and have three 6-bit 
source operand fields and a 6-bit destination operand field. In addition, 
many instructions allow for two of the source fields to be replaced by a 
12-bit constant. Each source field can address any of the 32 GPRs, a PQ, 
a MQ, the PC, the VREG, or a small signed constant ( - 1 6  to 15). The 
destination specifier may address a GPR or routing information for a data 
transfer onto the PE's PBUS, At the instruction issue stage, if a queue is 
specified as a source input and that queue is currently empty, that instruc- 
tion is delayed until all required input operands are available. 

Since MISC uses a decoupled approach to memory operations, the 
load and store instructions are different from those in a conventional 
machine. Invoking a memory read operation provides the DCache with the 
memory address to be read, the set of destination PEs that are to receive 
the data, and which CBUS (and therefore MQ) will receive the data. In a 
Load Address Queue (LAQ) instruction, the dest field contains the set of 
PEs that are to receive the data: the dest field should not specify a register. 
The address requested is the sum of the srcl and src2 operands. There are 
both LAQ and LAQ2 instructions, in order to specify which MQ of the 
destination PEs should receive the data. The store request (SAQ) instruc- 
tion operates in a similar manner, except that the dest operand specifies a 
single PE from which the DCache should receive data to be written to 
memory. 

There are three types of MISC instructions: predicated operations, ILT) 
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vector operations, and sentinel operations (which use a sentinel value to 
terminate iterations of the instruction). Predicated ALU/FPU operations 
perform all scalar operations as well as allow conditional operations to be 
specified concisely. A predicate operation uses the third source field to 
determine whether or not the operation will complete (and thereby change 
the state of the machine). This allows the issue logic to proceed without 
interrupt through short segments of conditionally executed code by condi- 
tionally completing instead of branching around code. 

In the case of control flow operations, the dest field is used as a 
constant to determine the number of delayed branch slots ~s) to be filled. 
The address of the branch is calculated as the sum of the src l  and src2 
operands, and the src3 operand specifies the register to be tested. 

Vector instructions use the third source operand (src3) to specify a 
vector count. When a vector instruction arrives at the issue stage of the 
instruction pipeline, the vector register (VREG) is cleared and a vector 
count register (VCOUNT) is loaded from src3. The scalar version of the 
vector instruction is then executed and the VREG is incremented until the 
contents of VREG are equal to V CO U NT.  Once the VREG equals 
V C O U N T  normal instruction pipeline function continues. 

In a sentinel instruction, the src3 field specifies a register whose 
contents are compared to the sentinel value (assumed to be zero in the 
initial design). If the contents of the register do not match the sentinel, 
the scalar version of the instruction is allowed to issue. This pattern of 
compare and issue is repeated until the comparison produces a match. 

5. R E L A T E D  W O R K  

There have been several decoupled compilers that have been developed. 
These include the original PIPE compiler, ~9~ the WM streams compiler, ~2~ 
and the compiler for the Briarcliff Multiprocessor. ~2~ 

The PIPE compiler separates code into access and execute instruction 
streams. This is accomplished by assigning each branch and memory access 
operation to the access processor, then examining a Program Dependence 
Graph (PDG)  ~22~ to determine which additional branch control calculation 
operations and address calculation operations should also be assigned the 
access processor. All remaining instructions, as well as duplicate branch 
operations, are then assigned to the execute processor. Once this separation 
is accomplished, register allocation and other optimization transformations 
can be applied to each instruction stream. 

The WM compiler is more conventional in its use of a single instruc- 
tion stream. Dataflow analysis and many of the optimization transfor- 
mations performed are unchanged from standard RISC architectures. 
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Additional restrictions must be placed on the register allocation method 
to allow for the nature of the memory queues found in this decoupled 
architecture. The decoupled nature of this processor is found in the 
dynamic separation of the instruction stream performed during execution. 

The compiler used in the Briarcliff Multiprocessor performs in a much 
different manner from the previous two compilers. This compiler is far 
more aggressive in separating code into multiple instruction streams. This 
machine shares many characteristics of a restricted dataflow architec- 
ture. t23) Instructions are partitioned equally over the available processing 
elements with those data dependencies that exist between PEs being 
allocated a register channelJ 2t) Optimization is then performed to reduce 
the number of channels required without degrading code performance. 
'Memory operations can also be performed on register channels. This 
allows for decoupled memory access in which one PE performs the address 
calculation and memory request for data that is destined for a different 
processor. The Briarcliff design bears more resemblance to a VLIW 
architecture than a decoupled architecture in its treatment of control flow 
operations. PEs synchronize on branch operations by generating a global 
condition code used to determine whether to branch or not. While each PE 
may reach the actual branch instruction on different cycles, no PE can con- 
tinue to process the next branch operation until each PE has completed its 
branch decision on the original branch. This fi~zzy barrier 124~ mechanism 
allows more flexibility than a VLIW implementation but fails to provide 
the flexibility found in true MIMD approaches like PIPE and MISC. 

There are several other designs that attempt to exploit ILP on a 
MIMD. The XIMD processor ~25~ adds control logic to each functional unit 
of a VLIW in order to transform it into a MIMD. However, since it is a 
VLIW at the core, it requires a high-performance, completely orthogonal, 
global register file in order to support inter-process communication. The 
coMP approach ~6~ is a communication oriented multi-processor that can 
be operated in VLIW mode. However, it does not allow dynamic slip 
between processing elements, and the communication ports between pro- 
cessors are only depth 1. The work by Keckler and Dally ~27) is similar to 
XIMD in that a 4-ALU machine is augmented to allow it to run in a 
MIMD fashion. PEs can write to each other's register files, but no mention 
of queues is given, and multi-ported register files are still required. 

These machines all differ from MISC primarily in that MISC was 
designed to be latency-tolerant, and MISC does not require global clock- 
ing. We feel that distributing a synchronized clock is going to continue to 
be more and more difficult, and by featuring queues at all the I/O interfaces 
the MISC design by nature allows different processing elements to run 
correctly at different rates. 
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6. THE M I S C  COMPILER 

The very portable C compiler (vpcc) ~2~ under development at the 
University of Virginia serves as the base compiler for MISC. Existing 
optimization techniques are used whenever possible; for those optimiza- 
tions that are unique to MISC, or where existing techniques require 
modification (e.g., register allocation incorporating queues), care has been 
taken to maintain the same level of complexity found in current optimizers. 
The front end of vpcc translates C code into Register Transfer List (RTL) 
form for a single processor MISC machine. This code is highly unop- 
timized, but is correct and will run on any MISC configuration. 

The code generator translates this RTL description of a program into 
parallel machine code for the MISC machine. An overview of the optimiza- 
tion algorithm is described in Fig. 2. 

Once the RTL description of a function has been loaded, many 
standard transformations (e.g., common sub-expression elimination, code 
motion, dead code removal) can be performed. It is best to do these trans- 
formations at this point, before the complexity of inter-PE dependencies 
must be considered. Similarly, if-conversion ~zS) can also be performed at 
this point in order to simplify the control flow. Global dataflow analysis 
can then be performed, and a PDG built. 

The code separation phase partitions the operations required by the 
program onto multiple (virtual) processing elements in a manner that max- 
imizes the number of processing elements utilized. Processor load balancing 
then repartitions the schedule to evenly distribute the operations onto the 
number of physical processing elements available on the target machine. 
Once the instructions have all been allocated to the PEs, more code 

foreach function 
load initial RTL description provided by front end 
perform standard single stream transformations and register allocation 
perform if.conversion 
buiM program dependence graph 
separate code 
balance code 
foreach PE 

perform if conversion 
perform loop optimizations 
schedule code 

output MISC machine code for function 

Fig. 2. An overview of the optimization algorithm. 
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int inner_productO [ 
int k, q=O; 
for(k=O; k<I024 ; k++) 

q = q + z[k] * x[kl; 

1 

Fig. 3. Livermore loop 3 (inner product). 

optimizations can be applied to each of the PE instruction streams. Many 
of the standard transformations described previously can be reapplied 
to each individual stream (with new restrictions to maintain interPE 
dependences added). Finally, each instruction stream is scheduled and the 
MISC machine code is generated. 

The code scheduling method used on MISC uses the asynchronous 
behavior of the processing elements to provide many of the characteristics 
found in software pipelining. Individual PEs can be executing instructions 
originating from different iterations, while the PE queues perform a sim- 
plified form of register renaming. Variable latency poses no problem 
because any instructions dependent on the data can be issued to a trailing 
PE. 

A detailed description of this process follows in the remainder of this 
section. To illustrate each phase of the code generation process, a simple 
example (Lawrence Livermore Loop 3) will be used (see Fig. 3). 

6.1. Register Allocation 

Standard register allocation methods can be used, with one exception: 
MISC has a large number of register classes, unlike most architectures 
(which have only 2 register classes, integer and floating point). Since each 
PE has a general purpose register class, two separate memory input 
queues, and a complete interconnection of interPE transfer queues, a 
four processor MISC machine would have 28 different register classes 
(1 GP x 4 + 2  MQ x 4 + 4  PEQ x4). In addition to the large number of 
register classes, all but the general purpose registers are FIFO queues. This 
necessitates some restrictions on standard register allocation methods in 
order to provide correct FIFO ordering of queue use. If the allocation of 
a new register instance would violate the FIFO ordering of the queue, for 
example, the allocation is disallowed and the architectural register 
dependency remains. 

In order to provide a compact 2 byte representation of any machine 
register, the intermediate RTL format employed by the vpcc compiler 
reserves 4 bits to identify one of 16 different classes and 12 bits to identify 
the register within that class. Since this format is incapable of accurately 



254 Tyson and Farrens 

representing a full MISC machine, the MISC register class model must be 
modified. The modified model supports only unidirectional communication 
between PEs through the PE transfer queues--PEl  can send data though 
queues to PE2-PE4, PE2 can send data to PE3 and PE4, and PE3 can 
send data to PE4. The queues to send data back cannot be represented in 
the existing RTL format. Fortunately, the code transformation" strategy 
employed in MISC rarely requires data to be transmitted "back" to PE1, 
and in those cases a transfer through memory can be performed. 

Function calls pose an interesting problem within a tightly coupled 
MIMD architecture. When a function call is made, any variable may be 
passed as a parameter to the function. One standard compiler technique 
to improve the performance of function calls is to place the first few 
parameters in registers before executing the call. However, in MISC 
variables are distributed among the PEs. How should parameters be passed 
in MISC during a function call? We chose to place all parameters on the 
stack--while this does not provide the best performance, it simplifies a 
number of problems with incomplete dataflow analysis between functions. 

6.2. M e m o r y  Operat ion 

Memory operations must be carefully scheduled in MISC. Since each 
PE executes its instruction stream independent of all others (in the absence 
of a data dependence), memory operations initiated from two separate PE 
can execute in any order. This poses two distinct problems to the generated 
schedule: 

6.2. 1. Two PEs Cannot Initiate Read Memory Operations Destined for 
the Same PE 

It is common to require both operands of an operation (e.g., addition) 
to come from memory. Data sent directly from one PE to another uses 
dedicated interPE transfer queues; however, data arriving from memory 
uses the destination PEs memory queue. Since only a single read is allowed 
per cycle for each queue, both memory operands cannot be processed in a 
cycle (a similar problem was discovered in the PIPE compiler). In MISC 
this problem is solved by providing a second memory queue for each PE. 
When checking FIFO ordering of memory operations, this second queue is 
used to alleviate these problems. 

6.2.2. Memory Aliasing Cannot Be Resolved i f  an Ordering of Memory 
Operations Cannot Be Established 

There is no execution order imposed on instructions from different 
PEs unless a data dependence exists between the instructions. (This differs 
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from a processor that allows out-of-order execution of memory operations 
- - o n  such a machine an ordering exists, but is ignored when the memory 
operations do not conflict.) The code separation phase of the MISC com- 
piler imposes an ordering on memory operations that may conflict by 
assigning those operations to a single PE. Conflict Buffers ~29~ can then be 
used to reorder these memory operations during execution to maximize 
memory throughput. All memory operations that the compiler can guaran- 
tee do not conflict can be assigned to alternate PEs, which allows the con- 
flict buffers to ignore these memory requests when issuing the (potentially) 
aliased memory operations. 

6.3. Code Separation 

The task of the code separator is to partition the task across process- 
ing elements, with the goal of minimizing the effects of high memory 
latency and high functional unit latency for operations like multiply and 
divide by decoupling the definition of the data item from its use. Much like 
initial register allocation strategies, code separation assumes an infinite 
number of processing elements. The mapping of operations to the physical 
processing elements available on the target architecture is left to the pro- 
cessor load balancing phase. 

The first step in code separation is to perform global data flow 
analysis and construct a definition-use chain for the RTLs in each function. 
This chain can then be used to partition RTLs into dependent groups. The 
primary grouping, referred to as the control group, contains all branch 
operations and the RTLs required to calculate branch conditions and 
targets (i.e., branch instructions and the instructions on which they depend). 
The branch instructions are duplicated for each PE in order to maintain a 
consistent control flow through the code. Later transformations may relax 
this condition if no data is being manipulated in a block by some PE(s). 

Branch condition calculations are assigned to the lead PE. The results 
of these calculations (a simple boolean condition) are then transmitted to 
the other PEs executing the branch. Branch target calculations are dis- 
tributed among all PEs performing the branch; however, most of these 
branch targets can be specified in the branch instruction and therefore do 
not contribute to code expansion. 

The concept of a leading (or lead) processing element is central to the 
understanding of code separation. In a MIMD architecture, each of the 
instruction streams executes independently (ignoring for a moment any 
data dependences). Therefore, if operations are scheduled carefully, some of 
the streams can be allowed to proceed farther ahead in the computation 
than others. Staggering the relative entry cycles for the execution of a 

828/22/3-4 
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section of code provides a perfect method for hiding the delay imposed by 
high latency operations. For example, if the instruction that issues a high 
latency operation is scheduled on a processor that enters that section of 
code a sufficient number of cycles before the processor that uses the item, 
the effects of the latency will be hidden. In such a case it is possible for the 
leader PE will be executing instructions in a new section of code while 
trailing PEs are still completing previous sections. 

The scheduling of the control group determines a minimum cost 
traversal through the instruction sequence. Each PE must either follow this 
control path, or at some later point in the code wait for the lead PE to 
provide a branch condition. Other dependencies in the unscheduled code 
may (and likely will) further increase the time required to complete execu- 
tion on some PEs, but the control group time is the only limitation on all 
PEs in the machine. It should be pointed out, however, that the lead PE 
must transmit branch condition information to the other PEs through the 
interPE FIFO registers, and thus may stall if one or more of these queues 
are full (and therefore incapable of accepting more data). It is therefore 
important that all PEs have approximately the same traversal time through 
their instruction schedule. 

Once the control group is scheduled, the code separation phase deter- 
mines how to partition the remaining RTLs. There are several different 
strategies that can be employed at this point, with each strategy having 
strengths and weaknesses in generating efficient code and simplifying the 
task of the later phases. Two strategies will be discussed here: Latency 
Removal and Group Separation. 

In the Latency Removal strategy, a program dependence graph is con- 
structed augmented with latency information. A ready list of RTLs that 
have no outstanding dependences is then examined, and any RTLs that can 
be scheduled without generating pipeline stalls are assigned to the current 
PE. Dependency loops (due to loop recurrence variables) are exposed 
when no items are available in the ready list. These dependency loop 
operations must be scheduled on a single PE and determine a minimum 
cost (Initiation Interval) for this PE. Once all RTLs that do not generate 
stalls are assigned, scheduling continues on the following PE. This 
technique generates a schedule that minimizes pipeline stalls and tends to 
separate code into access/execute streams due to the high latency of 
memory operations. 

An alternative approach, Group Separation, tries to maximize the 
number of PEs that are scheduled. Again, a dependency graph is con- 
structed. RTLs are then partitioned into dependence groups which contain 
only mutually dependent RTLs. Each group is assigned to different PEs, 
with any remaining interPE dependencies forming a Directed Acyclic 



Instruct ion Level Parallelism on M I M D  Architectures 257 

Graph (DAG) from l e a d i n g  PEs to t r a i l i n g  PEs. This representation of the 
schedule forms a hybrid dataflow representation with control flow shared 
and interPE data having unidirection flow. 

The partitioning algorithm processes the program dependency graph 
from the r o o t  (first operation) to the l e a v e s  (dependent operations). Infor- 
mation concerning operational latency and register use is examined and 
operations are assigned to processing elements in a bottom-up or depend- 
ent-first order. This leads to a reverse schedule in which the final operations 
for a block are scheduled first and those instructions that use data items 
that are not available (due to operational latencies) are scheduled on a 
different processing element. 

Branching is handled slightly differently. Branch instructions are 
duplicated across all processing elements to ensure that each processing 
element conforms to the same control flow, and all instructions that 
calculate branch conditions are assigned to the processing element that has 
no instructions containing data dependencies; this allows a single processor 
to l e a d  the execution. 

The algorithm for Code Separation is described in Fig. 4. 
The following example shows how the code separation process works 

using the L a t e n c y  R e m o v a l  strategy. (For this example, both strategies lead 
to the same resulting code.) 

The RTL representation of the intermediate code prior to code 
scheduling appears in Fig. 5. Each line of the RTL description either 
defines a label or describes an operation to be performed in the resulting 

get RTL description 
calculate control group 
foreach RTL calculate 

dependence group 
recurrence data dependencies 
resource constraints ( memory FIFO queue ordering ) 
memory address disambiguation 

if (approach is Latency Removal) then 
foreach group in the DAG with no remaining unscheduled dependencies 
assign to "leading" PE that does not create pipeline stall in the 
PE schedule. 

elseif (approach is Group Separation) then 
assign each dependence group to a separate virtual PE 

convert inter group dependencies into queue transfers 
return modified RTL description 

Fig. 4. Algorithm code for code separation. 
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[1] tl = 0 ; q=O 
[2] t2 = 0 ; k=O 
[3] t3 = 1024 ; set register for test 
[4] t4 = LOC[_z] ; t4 = base of array z 
[5] t5 = LOC[_x] ; t5 = base of array x 

[6] LI: 
[7] t6 = (t2>=t3) ; calculate branch cond 
[8] PC = t6, L2 ; branch if true 
[9] t7 = M[ t4+t2 ] ; load t7= z[k] 

[10] t8 = M[ t5+t2 ] ; load t8= x[k] 
[11] t9 = t7 * t8 ; (z[k] * x[k]) 
[12] tl = t l  +t9 ; q = q  + (z[k]* x[k]) 
[13] t2 = t2 + 1 ; k++ 
[14] PC = L1 
[15] L2: 

Fig. 5. RTL representation of LLL3 prior to code 
separation. 

code. Each R T L  line shown throughout  this section will contain  a com-  
ment  (delimited by " ; " )  to explain its operat ion.  Virtual register labels 
(specified as t l ,  t2, t3, etc.) define intermediate points in the calculat ion 
and may  or may  not map  to physical registers or  queues. To  avoid confu- 
sion the actual  register mapp ing  has been omitted. 

As referred to previously, the code scheduler can use the knowledge  
that  basic blocks are entered by successive processing elements on different 
cycles to hide the latency of long latency instructions. For  example,  if an 
instruct ion with a comple t ion  latency of 5 cycles can be issued by a leading 
PE with the result destined for a PE trailing by 5 or more  cycles, the effects 
of  the opera t ional  latency are completely subsumed.  

A simple approach  the scheduler can take is to assume a fixed latency 
period between processing element block entries and enforce a strict order-  
ing on PE leadership. Thi.s approach  can be used to get reasonable  perfor-  
mance  f rom the scheduler; however,  greater  benefit can be found f rom 
calculating the expected stagger in relative basic block entry/exit  cycles. 
This can be accomplished by augment ing  the s tandard  dataf low analysis 
ga thered in the code separa t ion phase with expected comple t ion  times for 
each of the processing elements in the virtual machine. 

It  is possible that  a constant  value for the entry t ime stagger will be 
grossly erroneous;  this is the case when a loop containing a recurrence is 
scheduled such that  only one processing element is delayed by a recurrence 
relat ion while the remaining processing elements proceed to the next itera- 
t ion (and finally to the loop  complet ion).  In this situation, the processing 
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element delayed by the recurrence (and any processing elements dependent 
on that one) will enter the basic block following the loop termination many 
cycles later than the lead processing elements. If the code scheduler can 
recognize when this occurs, a normally less efficient schedule can be created 
for the basic block succeeding the loop that avoids any use of the process- 
ing elements that are lagging far behind. This has the effect of concurrently 
executing the successor blocks and the loop containing the recurrence. The 
MISC code scheduler incorporates this augmentation to the dataflow 
analysis, and the benefits of this approach are discussed in the analysis in 
Section 6. 

In order to determine which operations should migrate to a new pro- 
cessing element, the scheduler locates all data dependencies that have laten- 
cies that cannot be hidden with a simple reordering of instructions. From 
this list of candidate operations, ones that are involved in a dependency 
circuit are scheduled to a single processing element. This tends to negate 
the transmission time penalties between processing elements as well as 
greatly simplifying the deadlock detection scheme in the code generator. 
Unfortunately, migrating the operation to another processing element may 
create new hardware dependencies, which may conflict with others. For 
example, if migrating a multiply operation requires that the destination for 
the product be a FIFO ordered queue (since queues are used to transfer 
data between processing elements), a conflict may arise if that queue is 
already allocated to a previously existing instruction. In these cases, the 
migration cannot proceed unless that conflict can be resolved in a later 
optimization step. 

This separation tends to identify operations by function: flow control, 
memory access or data manipulation, with the leader PE performing control 
flow operations, and trailing PEs supporting memory access and data 
manipulation. This creates a dependency between the PE that generates the 
data and a trailing PE which consumes the data, which tends to separate 
code into memory access and data manipulation functions due to the long 
latency of memory loads. A graph of these inter-PE dependencies is con- 
structed to aid in the scheduling process, and the scheduler attempts to 
avoid circuits in the dependency graph to simplify deadlock elimination 
and to ensure that the ordering of PE execution is maintained (i.e., PE 
leadership does not transfer). 

Code separation provides a model which is capable of balancing PE 
loads in applications that contain little balance between memory access 
and data manipulation. It also provides the flexibility to handle code 
generation for a variable number of processing elements. It should be noted 
that unlike more coarsely grained parallel computations, the separation of 
instructions on MISC tends to be between dependent operations. 
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[1] [PE3] t l = 0  ;q=O 
[21 [PE1] t2 = 0 ; k=0 
[3] [PEI ] t3 = 1024 ; set register for test 
[4] [PE1] t4 = LOCI_z] ; t4 = base of array z 
[5] [PEll t5 = LOC[ x] ; t5 = base of array x 

[6] [PE1-3] LI: 
[7] [PE1] t6 = (t2>=t3) ; PEI calcs branch cond 
[8] [PEI-3] PC = t6, L2 ; branch if true 
[9] [PE1] t7 = M[ t4+t2 ] ; load t7= z[k] 

[10] [PE1] t8 = M[ t5+t2 ] ; load t8= x[k] 
[11] [PE2] t9 = t7 * t8 ; (z[k] * x[k]) 
[12] [PE3] tl = tl + t9 ; q = q + (z[k] * x[k]) 
[131 [PE1] t2 = t2 + 1 ; k++ 
[14] [PEI-3] PC=E1 
[15] [PEI-3] L2: 

Fig. 6. RTL for LLL3 after code separation. 

Applying the code parti t ioning strategy to the example code in Fig. 5 
results in the specification in Fig. 6. A second column has been inserted 
after each line number  to indicate which processing element(s) process this 
RTL line. For  instance, the first line ( [ 1 ] )  initializes the variable q to zero. 
Since the only use of q is in code allocated to PE3, the initialization 
of q is allocated to PE3. Notice also that branch operat ions (lines [ 8 ]  
and [ 1 4 ] )  are allocated across all active processing elements. The separa- 
tion of  operat ions occurs in lines [ 9 ]  through [12] .  Since line [ 1 2 ]  has a 
high latency dependency (due to the multiplication) to line [11 ]  they are 
parti t ioned to different PEs. Similarly, the memory  latency between lines 
[ 9 ]  and ['11], and lines [ 1 0 ]  and [ I 1 ]  require a third PE to be included 
in the schedule. Lines [ 9 ]  and [10 ]  can be issued to the same PE because 
no dependency exists between them; loop control  variable calculation also 
are issued to the lead PE. .  

6.4. Processor  Load Balancing 

The schedule generated by the code separator  is incomplete in two 
areas. First, the parti t ioning is performed on virtual processors, which 
may  not  be equal to the actual number  of  physical processors. Second, no 
considerat ion has been given to equally distributing operat ions a m o n g  the 
processors. The goal of the load balancing phase is to remedy these 
deficiencies. 
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There are two aspects to load balancing: instruction balancing and 
register pressure balancing. In a machine with 128 general purpose registers 
(as a 4-processor MISC configuration has), register pressure is not a 
significant problem. In the initial register allocation, prior to code separa- 
tion, 128 registers are assumed available to the single PE stream. This does 
not correspond to the actual architecture, but provides a good heuristic on 
the final variable assignment. During the code separation phase register 
limitations are ignored, leaving the final task of register assignment to the 
load balancing phase. The goal is to minimize the need to spill register con- 
tents to memory, and when spills are required, maintain the performance 
of the lead PEs. This can be accomplished by scheduling the instructions 
that require spills on trailing PEs. 

The desire to balance the instructions over the PEs is far more impor- 
tant. During code separation, groups of instructions were constructed. 
From this dependence groups can be obtained (directly, if the Group 
Separation strategy was used). These groups are then scheduled onto a set 
of PEs minimizing the variance in instruction count. This problem is 
similar to bin-packing, and a variant of the bin-packing algorithm could be 
used. We chose to use a greedy method. The method we chose builds a 
Directed Acyclic Graph (DAG) of dependence groups with each arc of the 
graph corresponding to an interPE dependence and weighted with the 
latency of that dependence operation. A ready set of dependence groups is 
then determined and considered for scheduling on the leading PE. If the 
size of this group (in instruction count) does not exceed the available 
instructions on the lead PE, and a pipeline stall does not occur, then the 
group can be assigned to the lead PE. This process continues until a PE 
is found for the group. The last PE accepts all remaining (unscheduled) 
groups. The greedy method has the advantage of allocating memory access 

get RTL desc.ription 
construct DA G of dependence groups 
while DAG is not empty 
foreach group in the DAG with no remaining unscheduled dependencies 

assign to "leading" PE that: 
1) does not place the number of instruction of the block(s) associated 

with this group to total instruction for block(s)/number of PEs 
2) does not generate an interPE dependency from a trailing PE. 
3) does not create pipeline stall in the PE schedule. 
4) does not force a register spill to occur 

Fig. 7. The load balancing algorithm. 
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[1] [PE4] t l = 0  ;q=0 
[2] [PE1] t2=0  ;k=O 
[3] [PEI] t3 = 1024 ; set register for test 
[4] [PE1] t4 = LOC[__z] ; t4 = base of array z 
[5] [PE2] t5=LOC[_x] ; t5=baseofar rayx  

[6] [PE1-4] LI: 
[7] [PEI] t6 = (t2>=t3) ; PE1 calcs branch cond 
[8] [PE1-4] PC=t6, L2 ; branch if true 
[9] [PEI] t7 = M[ t4+t2 ] ; load t7= z[k] 

[10] [PE2] t8 = M[ t5+t2 ] ; load t8= x[k] 
[11] [PE3] t9 = t7 * t8 ; (z[k] * x[k]) 
[12] [PE4] tl = tl + t9 ; q = q + (z[k] * x[k]) 
[13] [PE1-2] t 2 = t 2 + l  ;k++ 
[14] [PEI-4] PC=L1 
[15] [PE1-4] L2: 

Fig. 8. RTL for LLL3 after load balancing. 

consistently to the lead PEs, simplifying m e m o r y  aliasing analysis. Fig. 7 
describes the load-balancing  algori thm. 

In the example  p rog ram (Fig. 6) the code separa t ion phase allocates 
only three processing elements while the physical target machine  contains  
four processing elements. Therefore, the two independent  m e m o r y  opera-  
tions (the vector  loads for x and z) are split onto  two processing elements. 
This leads to a schedule that  utilizes the full capabilities of the target  
architecture.  The  modified schedule is show in Fig. 8. 

6.5. Loop Trans la t ion  

Of  par t icular  impor tance  is the opt imizat ion of inner loops. Two  
opt imiza t ion  techniques are applied to loops in this compiler--branch 
reduction and induction .variable calculation. These two opt imiza t ions  
a t t empt  to el iminate instructions in inner loops, which can lead to signifi- 
cant pe r fo rmance  improvement s  when these loop i terations account  for a 
large por t ion  of the execution time. 

6.5. 1. Branch Reduction 

One ramificat ion of having multiple processors coopera t ing  on the 
execution of a task is that  m a n y  more  branch instructions are required in 
order  to keep the instruction flows synchronized. This dupl ica t ion of 
branch instruct ions in each s t ream can lead to a significant increase in 
the total  n u m b e r  of  instructions required to perform a task. The  code 
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Table I. Code Expansion Due to Branch Replication" 
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bench inst count branch expand pred loop 

awk 12211251 2164041 18703374 17693006 17547358 
compress 16672328 2651705 24627443 23234851 23216415 
grep 13590761 3056768 22761065 21372373 20630417 
nroff 12806704 2773837 21128215 19706583 19704251 
troff 10302886 2037759 16416163 15224263 15203607 
linpacks 73957172 4134742 86361398 85229646 74884782 

= bench = name of the benchmark program examined 
inst count = the total number  of instructions executed 
.branch = the total number  of branch instruction executed 
expand = the total number  of instructions executed/predicted after code has been separated 

(and balanced) 
pred = the total # of instr executed after balancing if predicate transformations were applied 
loop = the total # of instr executed after balancing and loop transformations 

expansion due to branch duplication for a set of 6 benchmark programs is 
shown in Table I. 

The MISC architecture provides two mechanisms to reduce the need 
for branch duplication: VLOOP/SLOOP instructions and predicated 
execution. The vector loop (VLOOP) instruction uses the vector register in 
conjunction with a Delay Register (DREG) to realize a very simple branch 
hiding (or zero cycle branch) instruction. It is used in cases where the 
number of times a basic block will execute is known at the initial entry into 
the loop (either as a constant or register variable). 

The sentinel loop (SLOOP) instruction provides branch hiding 
capability to more generalized (while) loops. SLOOP operates in a manner 
similar to the VLOOP except that a sentinel comparison is made instead 
of a VREG calculation. When a SLOOP instruction reaches the issue stage 
of the pipeline, the src3 operand is tested to see if the first iteration of the 
loop should be executed. The src3 operand specifier is then saved to allow 
for additional sentinel tests to be performed during the last instruction 
issued each time through the loop body. Loop iteration continues until the 
sentinel marker is reached. 

Conventional wisdom holds that instruction level implementations of 
higher level semantics seldom lead to performance improvements because 
of the complexity of implementation and the scarcity of application. While 
this may be true for a standard sequential processor, the vector and 
sentinel instructions defined in MISC can be implemented with minimal 
hardware modification to the issue logic and the existence of multiple 
instruction streams leads to a greater potential for application of these 
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instructions. Often the application of a complex construct (e.g., a while 
loop) is virtually impossible in a single instruction stream design because 
of the complexity of evaluating the test condition. The need both to 
evaluate a complex test condition and perform the control flow operation 
cannot be reduced to a single instruction. However, in a multiple instruc- 
tion stream machine such as MISC, a single PE can evaluate the test con- 
dition and broadcast the boolean result to all PEs, increasing the number 
of simple boolean tests evaluated during the execution of these loop 
semantics. The reduction figures for the benchmark programs are shown in 
Table I. 

If-conversion (zS) also reduces the effects of branching by eliminating 
branching operations in favor of predicated execution. One problem with 
if-conversion is that while it may be useful to eliminate a branch to allow 
more efficient use of some operational units (e.g., load/store operations), 
the necessity of translating all instructions affected by the branch into a 
predicated form can lead to an overall decrease in execution performance. 
Converting these branches in MISC code can be performed for each PE in 
an independent manner. This allows PEs that can benefit from the removal 
of a branch operation to proceed with the hyperblock transformation while 
other PEs may more efficiently schedule instructions by retaining that 
branch. This also allows the application of VLOOP and SLOOP on a 
greater number of inner loops (containing small segments of conditionally 
executed code), since loop operations cannot contain branches, but can 
contain predicated instructions. The reduction figures for the benchmarks 
are also shown in Table I. 

During branch reduction, a form of if-conversion is used to convert 
jumps around short segments of conditionally executed code into 
predicated instructions. After this has been accomplished, inner loops are 
again examined to determine whether the VLOOP or SLOOP operations 
can be inserted in place of the explicit branching operations. For loops 
containing no remaining branch operations (other than a single branch exit 
and the backward branch at the end of the loop), the VLOOP or SLOOP 
operator is inserted. 

In the example of Fig. 8 it is a simple matter to determine that a 
VLOOP operation provides the required loop control operation. The 
effects of applying the loop translation along with induction variable 
calculation can be seen in Fig. 9. 

6.5.2. Induction Variable Calculation 

An induction variable is a variable whose value is consistently 
modified (incremented or decremented) by a constant value on each itera- 
tion of a loop. These variables are often used to determine the number of 
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[1] [PE4] t l = 0  ;q=0 
[21 
[3] [PE1-4] t3 = 1024 ; set register for test 
[4] [PE1] t4 = LOC[_z] ; t4 = base of array z 
[5] [PE2] t5 = LOC[__x] ; t5 = base of array x 

[6] 
[71 
[8] [PEI-4] VLOOP 1,0,t3 ;cee = 1, dee = 0 
[9] [PE1] t7 = M[ t4+VREG ] ; load t7=z[k] 

[10] [PE2] t8 = M[ t5+VREG ] ; load t8=x[k] 
[11] [PE3] t9 = t7 * t8 ; (z[k] * x[k]) 
[12] [PE4] t l = t l + t 9  ;q=q+(z[k]*x[k]) 
[131 
[14] [PE1-4] VLOOP_END 
[15] [PEI-4] L2: 

Fig. 9. RTL for LLL3 after loop translation. 

iterations. Furthermore,  induction variables are often used to index array 
data items or manipulate  memory pointers. Induct ion variables can be 
defined in terms of an induction expression. While a number  of expressions 
are possible, a useful induction expression is: 

IVi l l=dee,  IVu+~)=IVu~+cee for all i> l 

where i is the iteration count  (value 1 on the first i teration) 

The detection of induction variables is a well unders tood problem. The 
algori thm used in this compiler is derived from Ref. 30 (Algori thm 10.9). 

Once the control  state of the machine has been modified to suppor t  
loop operations, it is a simple modification to handle the calculation of 
induction variables used in the loop. The srcl and src2 fields of  the loop 
instructions are free to contain the cee and dee values; V R E G  will maintain  
the induct ion value and src3 will control  loop termination as described 
above. 

In the example in Fig. 8 both array index calculations can be 
performed by the hardware.  This leads to the RTL description after loop 
translation show in Fig. 9. 

6.6 .  I n s t r u c t i o n  S c h e d u l i n g  

A least-cost schedule is developed that attempts to schedule all instruc- 
tions in the shortest  time. List scheduling on MISC operates on each of  the 
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PE41 

q < - q + P E 3  

Fig. 10. Execution flow for LLL3. 

processing elements individually, scheduling to avoid wasted cycles (due to 
latency). Simple list scheduling is complicated by the necessity to interpret 
queue register specifications in the RTL and avoid reordering queueing 
operations. Furthermore, the implementation of loop operations is left to 
this phase of the code generation. In the example the VLOOP operations 
for each of the processors can be replaced with the vector version since 
each loop consist of a single instruction and the default induction calcula- 
tion is used (or no induction variable is referenced in PE3 and PE4). A 
flow graph representation of the MISC object code is shown in Fig. 10. 

7. A N A L Y S I S  

The Lawrence Livermore Loops were selected as the benchmarks, 
because they are amenable to hand-coding and are representative of a large 
class of scientific programs. The first 12 loops were compiled for both the 
MIPS and MISC architectures. The MIPS code was compiled using the cc 
compiler with optimization - 0 2 ,  and the MISC code was generated using 
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the IAGO (31) compilation environment using the techniques discussed in 
Section 5 of this paper. 

In order to compare the performance of MISC to the MIPS processor 
we examined the total number of cycles required to complete (Cmplet) a 
given loop and the number of  cycles required before the execution of 
instructions after the loop can start (Next). The Next number is interesting 
because, since MISC PEs operate independently, one PE can complete its 
work on a given loop and begin execution of the code following the loop 
prior to the official loop termination. 

As can be seen in Table II, for a majority of the loops we see a three- 
to four-fold decrease in the cycles required by the MISC machine over the 
MIPS processor in completion of a loop. This demonstrates that MISC is 
effectively extracting the parallelism available in the benchmark. In several 
of these benchmarks there is less of a performance increase (most notably 
in LLL6 and LLLI1); this is due to a recurrence constraint found in the 
data manipulated by the loop. In these cases, adding more processors will 
not increase performance regardless of the approach used, since the 
parallelism is simply not available in the loop. 

To provide a comparison with a similarly configured single instruction 
stream/multiple issue architecture, the loops were also hand compiled 
for a four-issue VLIW architecture based upon the version found in 
Ref. 32. This VLIW machine allows four instructions to be issued per clock 
cycle and places no limitations on the type of instructions that can be 

Table II. Comparison of MIPS and MISC Cycle Counts 
for Livermore Loops 

MISC Improvement 

Bnch MIPS Cmplet Next Cmpiet Next 

LLL 1 5611. 1232 1205 4.55 4.65 
LLL2 1112 256 201 4.34 5.53 
LLL3 6664 2063 1025 3.23 6.50 
LLL4 3011 753 385 3.99 7.82 
LLL5 6979 1994 977 3.50 7.14 
LLL6 7726 4982 0 1.55 oo 
LLL7 4338 859 727 5.05 5.97 
LLL8 3218 1476 586 2.18 5.49 
LLL9 4081 813 609 5.02 6.70 
LLL 10 3107 1007 506 3.08 6.14 
LLL11 3049 2003 0 1.52 oo 
LLL12 3759 1013 1002 3.71 3.75 
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Table III. 
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Comparison of Cycle Counts for MISC, VLIW, and 
Ideal Machines 

Bnch PE1 PE2 PE3 PE4 MISC VLIW Ideal 

LLLI 1205 1215 1221 1232 1232 1236 1000 
LLL2 201 201 211 256 256 228 200 
LLL3 1025 1025 1035 2063 2063 2070 2048 
LLL4 385 395 404 753 753 771 576 
LLL5 997 999 1993 4982 4982 4984 4980 
LLL6 0 997 1995 4982 4982 4984 4980 
LLL7 727 846 736 859 859 863 780 
LLL8 586 720 1240 1476 1476 - -  950 
L L L9 609 707 712 813 813 708 700 
LLLI0 506 506 1006 1007 1007 1014 750 
LLL11 0 999 1000 2003 2003 2004 1998 
LLL12 1002 1012 1013 1013 1013 1013 1000 

issued. Furthermore,  it assumes sufficient resources (e.g., register transfer 
bandwidth) to sustain a fofir-instructions-per-cycle execution rate. The 
"ideal" entry in Table III  is derived by determining the total number  of 
instructions required to complete the program loop, exclusive of branches 
(which can be removed by software or hardware techniques in any ideal 
machine). Barring any recurrence relations, the total instruction count is 
then divided by the issue bandwidth (four in this analysis). 

The results in Table III  show that the MISC approach and the VLIW 
model are capable of extracting about 80 % to 99 % of the instruction level 
parallelism available in these loops. However, as mentioned previously, the 
MISC PEs that finish prior to the overall completion of the loop are 
available to begin execution of the code following the loop exit. This 
demonstrates an important point in the performance capabilities of a multi- 
ple instruction stream processor; the MISC processor requires only those 
processing elements necess.ary to perform the task to be allocated to the 
loop while the unaUocated processing elements can proceed into the follow- 
ing code blocks. In contrast, all functional units in the VLIW processor are 
locked into the loop (even if they have nothing to do). 

A superscalar design might be capable of allocating processing resour- 
ces across loops, but only with a sufficiently large instruction window and 
the ability to predict correctly many branches ahead in the instruction 
stream. The MISC approach of separating instruction streams alleviates 
these requirements. 

To demonstrate the effects of this splitting of resources let us examine 
two of the loops in more detail. If we look at the execution of LLL6 we 
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Table IV. Comparison of Cycle Times for MISC and VLIW 
Executing Two Loops Sequentially 
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Loop PE1 PE2 PE3 PE4 M I S C  V L I W  Improvement 

6 0 997 1995 4982 4982 4984 co 1.00 
It 999 1000 2003 0 2003 2004 co 1.00 

6-11 999 1997 3998 4982 4982 6988 6.99 1.40 

notice that only the final processing element is required to perform the 
majority of the loop calculation. This is due to a tight recurrence relation 
found in the loop equation. In the VLIW machine all functional units are 
forced to sit idle in the loop body until the machine (as a whole) completes 
calculation of the loop. In the MISC approach, the three processing 
elements not involved in the recurrence calculation are free to continue 
execution. 

If we now assume that LLLI1 follows the execution of LLL6, we can 
determine the different stagger rates on exit from LLL6 and reschedule 
LLL11 to take advantage of the free processing elements. Table IV shows 
the result of this rescheduling (done at compile time) and compares it to 
the VLIW architecture. As seen in Table IV, the ability to overlap execu- 
tion of the loops allows the MISC processor to perform both loops in the 
time required by the VLIW architecture to perform the first alone. 

We expect this final result to be demonstrative of the advantage that 
the multiple instruction stream attains across basic blocks. Little dataflow 
analysis is required to achieve this capability. 

8. C O N C L U S I O N S / F U T U R E  W O R K  

In this paper we have examined the feasibility of using a MIMD 
approach to extracting instruction level parallelism. Current MIMD 
architectures suffer from various deficiencies which prevent their direct 
application to instruction level parallel tasks. A new architecture has been 
proposed which alleviates these deficiencies and provides both reduced 
hardware complexity and simplified software scheduling compared to 
conventional (single instruction stream) approaches. When supported with 
a new code scheduling method, this architecture provides performance 
equivalent to the most powerful VLIW and Superscalar architectures 
proposed, while maintaining simple hardware and software schemes. 

The ability to specify more information in the object language of the 
MISC machine (by explicitly defining separate instruction streams) simpli- 
fies the hardware mechanisms required to support out-of-order execution. 
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This provides a powerful combina t ion  of software based control  flow 
opt imizat ions  with the dynamic  features found in out-of-order  execution 

models in a more  cooperative way than that  found in existing V L I W  and  
Superscalar designs, by increasing the informat ion  conten t  between the 

two. 
We believe these results will prove to be even more significant in non-  

vectorizable code, because of the latency hiding effects inherent  in the 
decoupled model. We are currently refining the compi la t ion  env i ronment ,  
in order  to examine a much wider range of benchmark  programs.  
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