
Page 1

FTC.W99 1

Lecture 8:
Parallel Processing

Prof. Fred Chong
ECS 250A Computer Architecture

Winter 1999

(Adapted from Culler CS258 and Dally EE282)

FTC.W99 2

Parallel Programming

• Motivating Problems (application case
studies)

• Process of creating a parallel program

• What a simple parallel program looks like
– three major programming models
– What primitives must a system support?

FTC.W99 3

Simulating Ocean Currents

• Model as two-dimensional grids
– Discretize in space and time
– finer spatial and temporal resolution => greater accuracy

• Many different computations per time step
» set up and solve equations

– Concurrency across and within grid computations

• Static and regular

(a) Cross sections (b) Spatial discretization of a cross section

FTC.W99 4

Simulating Galaxy Evolution
• Simulate the interactions of many stars

evolving over time

• Computing forces is expensive
– O(n2) brute force approach
– Hierarchical Methods take advantage of force law: G

m1m2

r2

•Many time-steps, plenty of concurrency across stars within one

Star on which for ces
are being computed

Star too close to
appr oximate

Small gr oup far enough away to
appr oximate to center of mass

Large gr oup far
enough away to
appr oximate

FTC.W99 5

Rendering Scenes by Ray
Tracing

• Shoot rays into scene through pixels in image plane

• Follow their paths
– they bounce around as they strike objects
– they generate new rays: ray tree per input ray

• Result is color and opacity for that pixel
• Parallelism across rays

• How much concurrency in these examples?

FTC.W99 6

Creating a Parallel Program
• Pieces of the job:

– Identify work that can be done in parallel
» work includes computation, data access and I/O

– Partition work and perhaps data among processes
– Manage data access, communication and synchronization

Page 2

FTC.W99 7

Definitions
• Task:

– Arbitrary piece of work in parallel computation

– Executed sequentially; concurrency is only across tasks

– E.g. a particle/cell in Barnes-Hut, a ray or ray group in Raytrace

– Fine-grained versus coarse-grained tasks

• Process (thread):
– Abstract entity that performs the tasks assigned to processes

– Processes communicate and synchronize to perform their tasks

• Processor:
– Physical engine on which process executes
– Processes virtualize machine to programmer

» write program in terms of processes, then map to processors

FTC.W99 8

4 Steps in Creating a Parallel
Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

• Decomposition of computation in tasks
• Assignment of tasks to processes

• Orchestration of data access, comm, synch.
• Mapping processes to processors

FTC.W99 9

Decomposition

• Identify concurrency and decide level at
which to exploit it

• Break up computation into tasks to be divided
among processes

– Tasks may become available dynamically
– No. of available tasks may vary with time

• Goal: Enough tasks to keep processes busy,
but not too many

– Number of tasks available at a time is upper bound on
achievable speedup

FTC.W99 10

Limited Concurrency: Amdahl’s Law

• Most fundamental limitation on parallel speedup
• If fraction s of seq execution is inherently serial,

 speedup <= 1/s
• Example: 2-phase calculation

– sweep over n-by-n grid and do some independent computation
– sweep again and add each value to global sum

• Time for first phase = n2/p
• Second phase serialized at global variable, so time = n2

• Speedup <= or at most 2

• Trick: divide second phase into two
– accumulate into private sum during sweep
– add per-process private sum into global sum

• Parallel time is n2/p + n2/p + p, and speedup at best

2n2

n2

p + n2

2n2

2n2 + p2

FTC.W99 11

Understanding Amdahl’s Law

1

p

1

p

1

n2/p

n2

p

w
or

k
do

ne
 c

on
cu

rr
en

tly

n2

n2

Time
n2/p n2/p

(c)

(b)

(a)

FTC.W99 12

Concurrency Profiles

– Area under curve is total work done, or time with 1 processor
– Horizontal extent is lower bound on time (infinite processors)

– Amdahl’s law applies to any overhead, not just limited concurrency

C
on

cu
rr

en
cy

15
0

21
9

24
7

28
6

31
3

34
3

38
0

41
5

44
4

48
3

50
4

52
6

56
4

58
9

63
3

66
2

70
2

73
3

0

200

400

600

800

1,000

1,200

1,400

Clock cycle number

Page 3

FTC.W99 13

Orchestration
– Naming data
– Structuring communication
– Synchronization
– Organizing data structures and scheduling tasks temporally

• Goals
– Reduce cost of communication and synch.
– Preserve locality of data reference
– Schedule tasks to satisfy dependences early
– Reduce overhead of parallelism management

• Choices depend on Prog. Model., comm.
abstraction, efficiency of primitives

• Architects should provide appropriate primitives
efficiently

FTC.W99 14

Mapping
• Two aspects:

– Which process runs on which particular processor?
» mapping to a network topology

– Will multiple processes run on same processor?

• space-sharing
– Machine divided into subsets, only one app at a time in a subset
– Processes can be pinned to processors, or left to OS

• System allocation
• Real world

– User specifies desires in some aspects, system handles some

• Usually adopt the view: process <-> processor

FTC.W99 15

Parallelizing Computation vs. Data

• Computation is decomposed and assigned
(partitioned)

• Partitioning Data is often a natural view too
– Computation follows data: owner computes
– Grid example; data mining;

• Distinction between comp. and data stronger in
many applications

– Barnes-Hut
– Raytrace

FTC.W99 16

Architect’s Perspective

• What can be addressed by better hardware
design?

• What is fundamentally a programming issue?

FTC.W99 17

High-level Goals

• High performance (speedup over sequential program)

• But low resource usage and development effort

• Implications for algorithm designers and architects?

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary

Exploit locality in network topology

FTC.W99 18

What Parallel Programs Look Like

Page 4

FTC.W99 19

Example: iterative equation
solver

• Simplified version of a piece of Ocean simulation
• Illustrate program in low-level parallel language

– C-like pseudocode with simple extensions for parallelism
– Expose basic comm. and synch. primitives
– State of most real parallel programming today

A[i,j] = 0.2 × (A[i,j] + A[i,j – 1] + A [i – 1, j] +

A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

FTC.W99 20

Grid Solver

• Gauss-Seidel (near-neighbor) sweeps to convergence
– interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
– updates done in-place in grid
– difference from previous value computed
– accumulate partial diffs into global diff at end of every sweep
– check if has converged

» to within a tolerance parameter

A[i,j] = 0.2 × (A[i,j] + A[i,j – 1] + A [i – 1, j] +

A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

FTC.W99 21

1. i n t n ; /*size of matrix: (n + 2-by-n + 2) elements*/
2. f l o a t * * A , d i f f = 0 ;

3. ma i n ()
4. b e g i n
5. r e a d (n) ; /*read input parameter: matrix size*/
6. A ← ma l l o c (a 2 - d a r r a y o f s i z e n + 2 b y n + 2 d o u b l e s) ;
7. i n i t i a l i z e (A) ; /*initialize the matrix A somehow*/
8. S o l v e (A) ; /*call the routine to solve equation*/
9. e n d ma i n

10. p r o c e d u r e S o l v e (A) /*solve the equation system*/
11. f l o a t * * A ; /*A is an (n + 2)-by-(n + 2) array*/
12. b e g i n
13. i n t i , j , d o n e = 0 ;
14. f l o a t d i f f = 0 , t e mp;
15. whi l e (! d o n e) d o /*outermost loop over sweeps*/
16. d i f f = 0 ; /*initialize maximum difference to 0*/
17. f o r i ← 1 t o n d o /*sweep over nonborder points of grid*/
18. f o r j ← 1 t o n d o
19. t e mp = A[i , j] ; /*save old value of element*/
20. A[i , j] ← 0 . 2 * (A [i , j] + A[i , j - 1] + A[i - 1 , j] +
21. A[i , j + 1] + A[i + 1 , j]) ; /*compute average*/
22. d i f f + = a b s (A[i , j] - t e m p) ;
23. e n d f o r
24. e n d f o r
25. i f (d i f f / (n*n) < TOL) t hen done = 1 ;
26. e n d whi l e
27. e n d p r o c e d u r e

Sequential Version

FTC.W99 22

Decomposition

– Concurrency O(n) along anti-diagonals, serialization O(n) along diag.
– Retain loop structure, use pt-to-pt synch; Problem: too many synch ops.
– Restructure loops, use global synch; imbalance and too much synch

•Simple way to identify concurrency is to look at loop iterations
–dependence analysis; if not enough concurrency, then look
further

•Not much concurrency here at this level (all loops sequential)
•Examine fundamental dependences

FTC.W99 23

Exploit Application Knowledge

– Different ordering of updates: may converge quicker or slower
– Red sweep and black sweep are each fully parallel:
– Global synch between them (conservative but convenient)
– Ocean uses red-black
– We use simpler, asynchronous one to illustrate

» no red-black, simply ignore dependences within sweep
» parallel program nondeterministic

Red point

Black point

•Reorder grid traversal: red-black ordering

FTC.W99 24

Decomposition

• Decomposition into elements: degree of concurrency n2

• Decompose into rows?

1 5 . wh i l e (! d o n e) d o /*a sequential loop*/
1 6 . di f f = 0;
1 7 . f o r _ a l l i ← 1 t o n d o /*a parallel loop nest*/
1 8 . f o r _ a l l j ← 1 t o n d o
1 9 . t e mp = A[i , j] ;
2 0 . A[i , j] ← 0 . 2 * (A[i , j] + A[i , j - 1] + A[i - 1 , j] +
2 1 . A[i , j +1] + A[i +1, j]) ;
2 2 . di f f += a b s (A[i , j] - t e mp) ;
2 3 . e n d f o r _ a l l
2 4 . e n d f o r _ a l l
2 5 . i f (di f f / (n*n) < TOL) then done = 1 ;
2 6 . e n d whi l e

Page 5

FTC.W99 25

Assignment

• Static assignment: decomposition into rows
– block assignment of rows: Row i is assigned to process
– cyclic assignment of rows: process i is assigned rows i, i+p, ...

– Dynamic assignment
» get a row index, work on the row, get a new row, ...

• What is the mechanism?
• Concurrency? Volume of Communication?

i
p

P0

P1

P2

P4

FTC.W99 26

Data Parallel Solver
1 . i n t n , nprocs ; /*grid size (n + 2-by-n + 2) and number of processes*/
2 . f l o a t * * A, d i f f = 0 ;

3 . ma i n ()
4 . b e g i n
5 . r e a d (n) ; r e a d (nprocs) ; ; /*read input grid size and number of processes*/
6 . A ← G_MALLOC (a 2 - d a r r a y o f s i z e n + 2 b y n + 2 d o u b l e s) ;
7 . i n i t i a l i z e (A) ; /*initialize the matrix A somehow*/
8 . S o l v e (A) ; /*call the routine to solve equation*/
9 . end main

1 0 . p r o c e d u r e S o l v e (A) /*solve the equation system*/
1 1 . f l o a t * * A; /*A is an (n + 2-by-n + 2) array*/
1 2 . b e g i n
1 3 . i n t i , j , d o n e = 0 ;
1 4 . f l o a t my d i f f = 0 , t e mp ;
1 4 a . DECOMP A[BLOCK, * , n p r o c s] ;
1 5 . w h i l e (! d o n e) d o /*outermost loop over sweeps*/
1 6 . my d i f f = 0 ; /*initialize maximum difference to 0*/
1 7 . f o r _ a l l i ← 1 t o n d o /*sweep over non-border points of grid*/
1 8 . f o r _ a l l j ← 1 t o n d o
1 9 . t e mp = A[i , j] ; /*save old value of element*/
2 0 . A[i , j] ← 0 . 2 * (A[i , j] + A[i , j - 1] + A[i - 1 , j] +
2 1 . A[i , j + 1] + A[i + 1 , j]) ; /*compute average*/
2 2 . mydi f f [i , j] = a b s (A [i , j] - t e m p) ;
2 3 . end f o r _ a l l
2 4 . end f o r _ a l l
2 4 a . REDUCE (my d i f f , d i f f , ADD) ;
2 5 . i f (d i f f / (n*n) < TOL) then done = 1 ;
2 6 . e n d w h i l e
2 7 . e n d p r o c e d u r e

FTC.W99 27

Shared Address Space Solver

• Assignment controlled by values of variables used
as loop bounds

Single Program Multiple Data (SPMD)

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

FTC.W99 28

1 . i n t n , n p r o c s ; /*matrix dimension and number of processors to be used*/
2 a . f l o a t * * A, d i f f ; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current sweep*/
2 b . LOCKDEC(di f f _ l o c k) ; /*declaration of lock to enforce mutual exclusion*/
2 c . BARDEC (b a r 1) ; /*barrier declaration for global synchronization between sweeps*/

3 . ma i n ()
4 . b e g i n
5 . r e a d (n) ; r e a d (n p r o c s) ; /*read input matrix size and number of processes*/
6 . A ← G_MALLOC (a t w o - d i me n s i o n a l a r r a y o f s i z e n + 2 b y n + 2
d o u b l e s) ;
7 . i n i t i a l i z e (A) ; /*initialize A in an unspecified way*/
8 a . CREATE (n p r o c s – 1 , S o l v e , A) ;
8 . S o l v e (A) ; /*main process becomes a worker too*/
8 b . WAI T_FOR_END (n p r o c s – 1) ; /*wait for all child processes created to terminate*/
9 . end ma i n

1 0 . p r o c e d u r e S o l v e (A)
1 1 . f l o a t * * A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
1 2 . b e g i n
1 3 . - - - -
2 7 . e n d p r o c e d u r e

Generating Threads

FTC.W99 29

Assignment Mechanism
1 0 . p r o c e d u r e S o l v e (A)
1 1 . f l o a t * * A ; /*A is entire n+2-by-n+2 shared array,

 as in the sequential program*/
1 2 . b e g i n
1 3 . i n t i , j , p i d , done = 0 ;
1 4 . f l o a t t e mp, my d i f f = 0 ; /*private variables*/
1 4 a . i n t mymi n = 1 + (p i d * n / n p r o c s) ; /*assume that n is exactly divisible by*/
1 4 b . i n t mymax = mymi n + n / n p r o c s - 1 /*nprocs for simplicity here*/

1 5 . w h i l e (! d o n e) d o /*outer loop sweeps*/
1 6 . my d i f f = d i f f = 0 ; /*set global diff to 0 (okay for all to do it)*/
1 6 a . BARRIER(bar1 , n p r o c s) ; /*ensure all reach here before anyone modifies diff*/
1 7 . f o r i ← mymi n t o mymax do /*for each of my rows*/
1 8 . f o r j ← 1 t o n d o /*for all nonborder elements in that row*/
1 9 . t e mp = A[i , j] ;
2 0 . A[i , j] = 0 . 2 * (A[i , j] + A[i , j - 1] + A[i - 1 , j] +
2 1 . A[i , j + 1] + A[i + 1 , j]) ;
2 2 . my d i f f += a b s (A [i , j] - t e mp) ;
2 3 . e n d f o r
2 4 . e n d f o r
2 5 a . LOCK(d i f f _ l o c k) ; /*update global diff if necessary*/
2 5 b . d i f f + = my d i f f ;
2 5 c . UNLOCK(d i f f _ l o c k) ;
2 5 d . BARRIER(bar1 , n p r o c s) ; /*ensure all reach here before checking if done*/
2 5 e . i f (d i f f / (n*n) < TOL) then done = 1 ; /*check convergence; all get

same answer*/
2 5 f . BARRIER(bar1 , n p r o c s) ;
2 6 . e n d w h i l e
2 7 . e n d p r o c e d u r e

FTC.W99 30

SAS Program

• SPMD: not lockstep. Not necessarily same instructions
• Assignment controlled by values of variables used as

loop bounds
– unique pid per process, used to control assignment

• done condition evaluated redundantly by all
• Code that does the update identical to sequential

program
– each process has private mydiff variable

• Most interesting special operations are for
synchronization

– accumulations into shared diff have to be mutually exclusive

– why the need for all the barriers?

• Good global reduction?
– Utility of this parallel accumulate???

Page 6

FTC.W99 31

Mutual Exclusion

• Why is it needed?

• Provided by LOCK-UNLOCK around critical
section

– Set of operations we want to execute atomically
– Implementation of LOCK/UNLOCK must guarantee

mutual excl.

• Serialization?

– Contention?
– Non-local accesses in critical section?
– use private mydiff for partial accumulation!

FTC.W99 32

Global Event Synchronization
• BARRIER(nprocs): wait here till nprocs processes get here

– Built using lower level primitives
– Global sum example: wait for all to accumulate before using sum
– Often used to separate phases of computation

• Process P_1 Process P_2 Process P_nprocs
• set up eqn system set up eqn system set up eqn system
• Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
• solve eqn system solve eqn system solve eqn system
• Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
• apply results apply results apply results
• Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

– Conservative form of preserving dependences, but easy to use

• WAIT_FOR_END (nprocs-1)

FTC.W99 33

Pt-to-pt Event Synch (Not Used Here)

• One process notifies another of an event so it
can proceed

– Common example: producer-consumer (bounded buffer)
– Concurrent programming on uniprocessor: semaphores
– Shared address space parallel programs: semaphores, or

use ordinary variables as flags

•Busy-waiting or spinning

P1 P2

A = 1;
a: while (flag is 0) do nothing; b: flag = 1;

print A;

FTC.W99 34

Group Event Synchronization

• Subset of processes involved
– Can use flags or barriers (involving only the subset)
– Concept of producers and consumers

• Major types:
– Single-producer, multiple-consumer
– Multiple-producer, single-consumer

– Multiple-producer, single-consumer

FTC.W99 35

Message Passing Grid Solver

• Cannot declare A to be global shared array
– compose it logically from per-process private arrays
– usually allocated in accordance with the assignment of

work
» process assigned a set of rows allocates them locally

• Transfers of entire rows between traversals

• Structurally similar to SPMD SAS
• Orchestration different

– data structures and data access/naming
– communication
– synchronization

• Ghost rows
FTC.W99 36

Data Layout and Orchestration
P0

P1

P2

P4

P0

P2

P4

P1

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

Page 7

FTC.W99 37

10. procedure Solve()
11 . begin
13 . i n t i , j , pi d, n’ = n/nprocs, done = 0;
14 . f l o a t t e mp , t e mp d i f f , my d i f f = 0 ; /*private variables*/
6 . myA ← ma l l o c (a 2 - d a r r a y o f s i z e [n / nprocs + 2] by n+2);

/*initialize my rows of A, in an unspecified way*/

15 . while (!done) do
16 . my d i f f = 0 ; /*set local diff to 0*/

/* Exchange border rows of neighbors into myA[0,*] and myA[n’+1,*]*/
16a . i f (p id != 0) then SEND(&myA[1 , 0] , n * s i z e o f (f l o a t) , p i d - 1 , ROW) ;
16b. i f (pid = nprocs-1) then

SEND(&myA[n ’ , 0] , n * s i z e o f (f l o a t) , p i d + 1 , ROW) ;
16c . i f (p id != 0) then RECEIVE(&myA[0 , 0] , n * s i z e o f (f l o a t) , p i d - 1 , ROW) ;
16d. i f (p id != nprocs-1) then

RECEIVE(&myA[n ’ + 1 , 0] , n * s i z e o f (f l o a t) , p i d + 1 , ROW) ;
17 . f o r i ← 1 to n’ do /*for each of my (nonghost) rows*/
18 . f o r j ← 1 to n do /*for all nonborder elements in that row*/
19 . t e mp = myA[i , j] ;
20 . myA[i , j] = 0 . 2 * (myA[i , j] + myA[i , j - 1] + myA[i - 1 , j] +
21 . myA[i , j + 1] + myA[i + 1 , j]) ;
22 . my d i f f += a b s (myA[i , j] - t e mp) ;
23 . endfor
24 . endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a . i f (p id != 0) then /*process 0 holds global total diff*/
25b. SEND(my d i f f , s i z e o f (f l o a t) , 0 , DIFF) ;
25c . RECEIVE(d o n e , s i z e o f (i n t) , 0 , DONE) ;
25d. e l s e /*pid 0 does this*/
25e . f o r i ← 1 to nprocs-1 do /*for each other process*/
2 5 f . RECEIVE(t e mp d i f f , s i z e o f (f l o a t) , * , DIFF) ;
25g. my d i f f += t e mp d i f f ; /*accumulate into total*/
25h. endfor
25i i f (my d i f f / (n*n) < TOL) then done = 1;
2 5 j . f o r i ← 1 to nprocs-1 do /*for each other process*/
25k. SEND(d o n e , s i z e o f (i n t) , i , DONE) ;
2 5 l . endfor
25m. end i f
26 . endwhile
27 . end procedure FTC.W99 38

Notes on Message Passing Program
• Use of ghost rows
• Receive does not transfer data, send does

– unlike SAS which is usually receiver-initiated (load fetches data)

• Communication done at beginning of iteration, so no
asynchrony

• Communication in whole rows, not element at a time
• Core similar, but indices/bounds in local rather than global

space
• Synchronization through sends and receives

– Update of global diff and event synch for done condition

– Could implement locks and barriers with messages

• Can use REDUCE and BROADCAST library calls to simplify
code

/*communicate local diff values and determine if done, using reduction and broadcast*/
25b. REDUCE(0 , mydi f f , s i z e o f (f l o a t) , ADD) ;
25c . i f (p i d = = 0) t h e n
2 5 i . i f (my d i f f / (n * n) < T OL) t h e n d o n e = 1 ;
25k. end i f
25m. BROADCAST(0 , d o n e , s i z e o f (i n t) , DONE) ;

FTC.W99 39

Send and Receive Alternatives

– Affect event synch (mutual excl. by fiat: only one process touches data)
– Affect ease of programming and performance

• Synchronous messages provide built-in synch. through
match

– Separate event synchronization needed with asynch. messages

• With synch. messages, our code is deadlocked. Fix?

Can extend functionality: stride, scatter-gather, groups

Semantic flavors: based on when control is returned
Affect when data structures or buffers can be reused at either end

Send/Receive

Synchronous Asynchronous

Blocking asynch. Nonblocking asynch.

FTC.W99 40

Orchestration: Summary
• Shared address space

– Shared and private data explicitly separate
– Communication implicit in access patterns
– No correctness need for data distribution
– Synchronization via atomic operations on shared data
– Synchronization explicit and distinct from data

communication

• Message passing
– Data distribution among local address spaces needed
– No explicit shared structures (implicit in comm. patterns)
– Communication is explicit
– Synchronization implicit in communication (at least in

synch. case)
» mutual exclusion by fiat

FTC.W99 41

Correctness in Grid Solver Program

• Decomposition and Assignment similar in SAS
and message-passing

• Orchestration is different
– Data structures, data access/naming, communication,

synchronization
– Performance?

SAS Msg-Passing

Explicit global data structure? Yes No

Assignment indept of data layout? Yes No

Communication Implicit Explicit

Synchronization Explicit Implicit

Explicit replication of border rows? No Yes

FTC.W99 42

Application Software

System
 Software SIMD

Message Passing

Shared MemoryDataflow

Systolic
Arrays Architecture

History of Parallel Architectures

• Parallel architectures tied closely to
programming models

– Divergent architectures, with no predictable pattern of
growth.

– Mid 80s rennaisance

Page 8

FTC.W99 43

Convergence

• Look at major programming models
– where did they come from?
– The 80s architectural rennaisance!
– What do they provide?
– How have they converged?

• Extract general structure and fundamental
issues

• Reexamine traditional camps from new
perspective

SIMD

Message Passing

Shared MemoryDataflow

Systolic
Arrays Generic

Architecture

FTC.W99 44

Programming Model
• Conceptualization of the machine that

programmer uses in coding applications
– How parts cooperate and coordinate their activities
– Specifies communication and synchronization operations

• Multiprogramming
– no communication or synch. at program level

• Shared address space
– like bulletin board

• Message passing
– like letters or phone calls, explicit point to point

• Data parallel:
– more regimented, global actions on data
– Implemented with shared address space or message

passing
FTC.W99 45

Structured Shared Address
Space

• Add hoc parallelism used in system code
• Most parallel applications have structured SAS

• Same program on each processor
– shared variable X means the same thing to each thread

St or e

P1

P2

Pn

P0

Load

P0 pr i vat e

P1 pr i vat e

P2 pr i vat e

Pn pr i vat e

Virtual address spaces for a
collection of processes communicating
via shared addresses

Machine physical address space

Shared portion
of address space

Private portion
of address space

Common physical
addresses

FTC.W99 46

Engineering: Intel Pentium Pro Quad

– All coherence and
multiprocessing glue in
processor module

– Highly integrated, targeted at
high volume

– Low latency and bandwidth

P-Pro bus (64-bit data, 36-bit address, 66 MHz)

CPU

Bus interface

MIU

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved

DRAM

P
C

I b
us

P
C

I b
usPCI

I/O
cards

FTC.W99 47

Engineering: SUN Enterprise

• Proc + mem card - I/O card
– 16 cards of either type
– All memory accessed over bus, so symmetric
– Higher bandwidth, higher latency bus

Gigaplane bus (256 data, 41 address, 83 MHz)

S
B

U
S

S
B

U
S

S
B

U
S

2
F

ib
er

C
ha

nn
el

10
0b

T,
 S

C
S

I

Bus interface

CPU/mem
cardsP

$2

$

P

$2

$

Mem ctrl

Bus interface/switch

I/O cards

FTC.W99 48

Scaling Up

– Problem is interconnect: cost (crossbar) or bandwidth (bus)
– Dance-hall: bandwidth still scalable, but lower cost than crossbar

» latencies to memory uniform, but uniformly large
– Distributed memory or non-uniform memory access (NUMA)

» Construct shared address space out of simple message
transactions across a general-purpose network (e.g. read-
request, read-response)

– Caching shared (particularly nonlocal) data?

M M M
° ° °

° ° ° M ° ° °M M

NetworkNetwork

P

$

P

$

P

$

P

$

P

$

P

$

“Dance hall” Distributed memory

Page 9

FTC.W99 49

Engineering: Cray T3E

– Scale up to 1024 processors, 480MB/s links
– Memory controller generates request message for non-local references
– No hardware mechanism for coherence

» SGI Origin etc. provide this

Switch

P

$

XY

Z

Exter nal I/O

Mem
ctrl

and NI

Mem

FTC.W99 50

Message Passing Architectures

• Complete computer as building block, including I/O
– Communication via explicit I/O operations

• Programming model
– direct access only to private address space (local memory),

– communication via explicit messages (send/receive)

• High-level block diagram
– Communication integration?

» Mem, I/O, LAN, Cluster
– Easier to build and scale than SAS

• Programming model more removed from basic
hardware operations

– Library or OS intervention

M ° ° °M M

Network

P

$

P

$

P

$

FTC.W99 51

Message-Passing Abstraction

– Send specifies buffer to be transmitted and receiving process
– Recv specifies sending process and application storage to receive into
– Memory to memory copy, but need to name processes
– Optional tag on send and matching rule on receive
– User process names local data and entities in process/tag space too
– In simplest form, the send/recv match achieves pairwise synch event

» Other variants too
– Many overheads: copying, buffer management, protection

Process P Process Q

Address Y

Address X

Send X, Q, t

Receive Y, P, tMatch

Local process
address space

Local process
address space

FTC.W99 52

000001

010011

100

110

101

111

Evolution of Message-Passing
Machines

• Early machines: FIFO on each link
– HW close to prog. Model;
– synchronous ops
– topology central (hypercube algorithms)

CalTech Cosmic Cube (Seitz, CACM Jan 95)
FTC.W99 53

Diminishing Role of Topology
• Shift to general links

– DMA, enabling non-blocking ops
» Buffered by system at

destination until recv
– Store&forward routing

• Diminishing role of
topology
– Any-to-any pipelined routing
– node-network interface

dominates communication time

– Simplifies programming
– Allows richer design space

» grids vs hypercubes

H x (T0 + n/B)

vs

T0 + H∆∆ + n/B

Intel iPSC/1 -> iPSC/2 -> iPSC/860

FTC.W99 54

Example Intel Paragon

Memory bus (64-bit, 50 MHz)

i860

L1 $

NI

DMA

i860

L1 $

Driver

Mem
ctrl

4-way
interleaved

DRAM

Intel
Paragon
node

8 bits,
175 MHz,
bidirectional2D grid network

with processing node
attached to every switch

Sandia’s Intel Paragon XP/S-based Supercomputer

Page 10

FTC.W99 55

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R

A
M

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

General interconnection
network formed from
8-port switches

NIC

Building on the mainstream:
IBM SP-2

• Made out of
essentially
complete
RS6000
workstations

• Network
interface
integrated in
I/O bus (bw
limited by I/O
bus)

FTC.W99 56

Berkeley NOW

• 100 Sun Ultra2
workstations

• Inteligent
network
interface

– proc + mem

• Myrinet
Network

– 160 MB/s per
link

– 300 ns per hop

FTC.W99 57

Toward Architectural Convergence
• Evolution and role of software have blurred boundary

– Send/recv supported on SAS machines via buffers
– Can construct global address space on MP (GA -> P | LA)
– Page-based (or finer-grained) shared virtual memory

• Hardware organization converging too
– Tighter NI integration even for MP (low-latency, high-bandwidth)
– Hardware SAS passes messages

• Even clusters of workstations/SMPs are parallel
systems

– Emergence of fast system area networks (SAN)

• Programming models distinct, but organizations
converging

– Nodes connected by general network and communication assists
– Implementations also converging, at least in high-end machines

FTC.W99 58

Programming Models Realized
by Protocols

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

Network Transactions

FTC.W99 59

Shared Address Space Abstraction

• Fundamentally a two-way request/response protocol
– writes have an acknowledgement

• Issues
– fixed or variable length (bulk) transfers

– remote virtual or physical address, where is action performed?

– deadlock avoidance and input buffer full

• coherent? consistent?

Source Destination

Time

Load r ← [Global address]

Read request

Read request

Memory access

Read response

(1) Initiate memory access

(2) Address translation

(3) Local /remote check

(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

Wait

Read response

FTC.W99 60

The Fetch Deadlock Problem

• Even if a node cannot issue a request, it must
sink network transactions.

• Incoming transaction may be a request, which
will generate a response.

• Closed system (finite buffering)

Page 11

FTC.W99 61

Consistency

• write-atomicity violated without caching

Memory

P1 P2 P3

Memory Memory

A=1;
flag=1;

while (flag==0);
print A;

A:0 flag:0->1

Interconnection network

1: A=1

2: flag=1

3: load A
Delay

P1

P3P2

(b)

(a)

Congested path

FTC.W99 62

Key Properties of Shared
Address Abstraction

• Source and destination data addresses are
specified by the source of the request

– a degree of logical coupling and trust

• no storage logically “outside the address
space”

» may employ temporary buffers for transport

• Operations are fundamentally request
response

• Remote operation can be performed on
remote memory

– logically does not require intervention of the remote
processor

FTC.W99 63

Message passing

• Bulk transfers

• Complex synchronization semantics
– more complex protocols
– More complex action

• Synchronous
– Send completes after matching recv and source data sent
– Receive completes after data transfer complete from

matching send

• Asynchronous
– Send completes after send buffer may be reused

FTC.W99 64

Synchronous Message Passing

• Constrained programming model.
• Deterministic!

• Destination contention very limited.

Source Destination

Time

Send Pdest, local VA, len

Send-rdy req

Tag check

(1) Initiate send

(2) Address translation on Psrc

(4) Send-ready request

(6) Reply transaction

Wait

Recv Psrc, local VA, len

Recv-rdy reply

Data-xfer req

(5) Remote check for
posted receive
(assume success)

(7) Bulk data transfer
Source VA Õ Dest VA or ID

(3) Local/remote check

Processor
Action?

FTC.W99 65

Asynch. Message Passing: Optimistic

• More powerful programming model
• Wildcard receive => non-deterministic

• Storage required within msg layer?

Source Destination

T ime

Send (Pdest, local VA, len)

(1) Initiate send

(2) Address translation

(4) Send data

Recv Psrc, local VA, len

Data-xfer req

Tag match

Allocate buffer

(3) Local/remote check

(5) Remote check for
posted receive; on fail,
allocate data buffer

FTC.W99 66

Asynch. Msg Passing: Conservative

• Where is the buffering?
• Contention control? Receiver initiated

protocol?

• Short message optimizations

Source Destination

Time

Send Pdest, local VA, len

Send-rdy req

Tag check

(1) Initiate send
(2) Address transla tion on Pdest

(4) Send-ready request

(6) Receive-ready request

Return and compute

Recv Psrc, local VA, len

Recv-rdy req

Data-xfer reply

(3) Local /remote check

(5) Remote check for posted
receive (assume fa il);
record send-ready

(7) Bulk data reply
Source VA Õ Dest VA or ID

Page 12

FTC.W99 67

Key Features of Msg Passing
Abstraction

• Source knows send data address, dest.
knows receive data address

– after handshake they both know both

• Arbitrary storage “outside the local address
spaces”

– may post many sends before any receives

– non-blocking asynchronous sends reduces the
requirement to an arbitrary number of descriptors

» fine print says these are limited too

• Fundamentally a 3-phase transaction
– includes a request / response

– can use optimisitic 1-phase in limited “Safe” cases
» credit scheme FTC.W99 68

Active Messages

• User-level analog of network transaction
– transfer data packet and invoke handler to extract it from

the network and integrate with on-going computation

• Request/Reply

• Event notification: interrupts, polling, events?
• May also perform memory-to-memory transfer

Request

handler

handler

Reply

FTC.W99 69

Common Challenges

• Input buffer overflow
– N-1 queue over-commitment => must slow sources
– reserve space per source (credit)

» when available for reuse?
• Ack or Higher level

– Refuse input when full
» backpressure in reliable network
» tree saturation

» deadlock free
» what happens to traffic not bound for congested

dest?
– Reserve ack back channel
– drop packets
– Utilize higher-level semantics of programming model

FTC.W99 70

Challenges (cont)
• Fetch Deadlock

– For network to remain deadlock free, nodes must
continue accepting messages, even when cannot source
msgs

– what if incoming transaction is a request?
» Each may generate a response, which cannot be

sent!
» What happens when internal buffering is full?

• logically independent request/reply networks
– physical networks
– virtual channels with separate input/output queues

• bound requests and reserve input buffer
space

– K(P-1) requests + K responses per node
– service discipline to avoid fetch deadlock?

• NACK on input buffer full
– NACK delivery? FTC.W99 71

Challenges in Realizing Prog.
Models in the Large

• One-way transfer of information
• No global knowledge, nor global control

– barriers, scans, reduce, global-OR give fuzzy global state

• Very large number of concurrent transactions
• Management of input buffer resources

– many sources can issue a request and over-commit
destination before any see the effect

• Latency is large enough that you are tempted
to “take risks”

– optimistic protocols
– large transfers

– dynamic allocation

• Many many more degrees of freedom in
design and engineering of these system

FTC.W99 72

Network Transaction Processing

• Key Design Issue:
• How much interpretation of the message?

• How much dedicated processing in the
Comm. Assist?

PM

CA

PM

CA
° ° °

Scalable Network

Node Architecture

Communication Assist

Message

Output Processing
 – checks
 – translation
 – formating
 – scheduling

Input Processing
 – checks
 – translation
 – buffering
 – action

Page 13

FTC.W99 73

Spectrum of Designs

• None: Physical bit stream
– blind, physical DMA nCUBE, iPSC, . . .

• User/System
– User-level port CM-5, *T
– User-level handler J-Machine,

Monsoon, . . .

• Remote virtual address
– Processing, translation Paragon, Meiko

CS-2

• Global physical address
– Proc + Memory controller RP3, BBN, T3D

• Cache-to-cache
– Cache controller Dash, KSR, Flash

Increasing HW Support, Specialization, Intrusiveness, Performance (???) FTC.W99 74

Net Transactions: Physical DMA

• DMA controlled by regs, generates interrupts
• Physical => OS initiates transfers

• Send-side
– construct system “envelope” around user data in kernel

area

• Receive
– must receive into system buffer, since no interpretation

in CA

PMemory

Cmd

DestData

Addr
Length
Rdy

PMemory

DMA
channels

Status,
interrupt

Addr

Length
Rdy

° ° °

sender auth

dest addr

FTC.W99 75

nCUBE Network Interface

• independent DMA channel per link direction
– leave input buffers always open
– segmented messages

• routing interprets envelope
– dimension-order routing on hypercube
– bit-serial with 36 bit cut-through

Processor

Switch

Input ports

° ° °

Output ports

Memory

Addr Addr
Length

Addr Addr Addr
Length

Addr
Length

° ° °

DMA
channels

Memory
bus

Os 16 ins 260 cy 13 us

Or 18 200 cy 15 us

 - includes interrupt

FTC.W99 76

Conventional LAN NI

NIC Controller

DMA
addr

len

trncv

TX

RX

Addr Len
Status
Next

Addr Len
Status
Next

Addr Len
Status
Next

Addr Len
Status
Next

Addr Len
Status
Next

Addr Len
Status
Next

Data

Host Memory NIC

IO Bus
mem bus

Proc

FTC.W99 77

User Level Ports

• initiate transaction at user level
• deliver to user without OS intervention
• network port in user space

• User/system flag in envelope
– protection check, translation, routing, media access in

src CA
– user/sys check in dest CA, interrupt on system

PMem

DestData

User/system

PMemStatus,
interrupt

° ° °

FTC.W99 78

User Level Network ports

• Appears to user as logical message queues
plus status

• What happens if no user pop?

Virtual address space

Status

Net output
port

Net input
port

Program counter

Registers

Processor

Page 14

FTC.W99 79

Example: CM-5

• Input and output
FIFO for each
network

• 2 data networks

• tag per message
– index NI mapping

table

• context
switching?

• *T integrated NI
on chip

• iWARP also

Diagnostics network
Control network

Data network

Processing
partition

Processing
partition

Control
processors

I/O partition

PM PM

SPARC

MBUS

DRAM
ctrl

DRAM DRAM DRAM DRAM

DRAM
ctrl

Vector
unit DRAM

ctrl
DRAM

ctrl

Vector
unit

FPU Data
networks

Control
network

$
ctrl

$
SRAM

NI

Os 50 cy 1.5 us

Or 53 cy 1.6 us

interrupt 10us FTC.W99 80

User Level Handlers

• Hardware support to vector to address
specified in message

– message ports in registers

Us er /s ys tem

PM em

D estD ata Addres s

PM em

° ° °

FTC.W99 81

J-Machine: Msg-Driven Processor

• Each node a small msg
driven processor

• HW support to queue
msgs and dispatch to
msg handler task

FTC.W99 82

Communication Comparison

• Message passing (active messages)
– interrupts (int-mp)
– polling (poll-mp)
– bulk transfer (bulk)

• Shared memory (sequential consistency)
– without prefetching (sm)
– with prefetching (pre-sm)

FTC.W99 83

Motivation

• Comparison over a range of parameters
– latency and bandwidth emulation
– hand-optimized code for each mechanism

» 5 versions of 4 applications

FTC.W99 84

The Alewife Multiprocessor

Page 15

FTC.W99 85

Alewife Mechanisms

• Int-mp -- 100-200 cycles Send/Rec ovrhd

• Poll-mp -- saves 50-170 cycles Rec ovrhd
• Bulk -- gather/scatter

• Sm -- 42--63 cycles + 1.6 cycles/hop
• Pre-sm -- 2 cycles, 16 entry buffer

FTC.W99 86

Applications

• Irregular Computations

• Little data re-use
• Data driven

FTC.W99 87

Application Descriptions

EM3D

ICCG

Unstruc

Moldyn

3D electromagnetic wave

irreg sparse matrix solver

3D fluid flow

molecular dynamics

FTC.W99 88

Performance Breakdown

FTC.W99 89

Performance Summary

FTC.W99 90

Traffic Breakdown

Page 16

FTC.W99 91

Traffic Summary

FTC.W99 92

Effects of Bandwidth

FTC.W99 93

Bandwidth Emulation

• Lower bisection by introducing cross-traffic

FTC.W99 94

Sensitivity to Bisection

FTC.W99 95

Effects of Latency

FTC.W99 96

Latency Emulation

• Clock variation
– processor has tunable clock
– network is asynchronous
– results in variations in relative latency

• Context switch on miss
– add delay

Page 17

FTC.W99 97

Sensitivity to Latency

FTC.W99 98

Sensitivity to Higher Latencies

FTC.W99 99

Communication Comparison
Summary

• Low overhead in shared memory performs
well even with:

– irregular, data-driven applications
– little re-use

• Bisection and latency can cause crossovers

FTC.W99 100

Future Technology

• Technology changes the
cost and performance of
computer elements in a
non-uniform manner

– logic and arithmetic is
becoming plentiful and
cheap

– wires are becoming slow
and scarce

• This changes the
tradeoffs between
alternative architectures

– superscalar doesn’t scale
well

» global control and
data

• So what will the
architectures of the
future be?

2007

2004

2001

1998

1 clk

20 clks

64 x the area
4x the speed
slower wires

FTC.W99 101

Single-Chip Multiprocessors

• Build a multiprocessor
on a single chip

– linear increase in peak
performance

– advantage of fast
interaction between
processors

• But
– memory bandwidth

problem multiplied

P P P P

$ $ $ $

$

M

FTC.W99 102

Exploiting fine-grain threads

• Where will the parallelism come from to keep all of
these processors busy?

– ILP - limited to about 5

– Outer-loop parallelism

» e.g., domain decomposition

» requires big problems to get lots of parallelism

• Fine threads
– make communication and synchronization very fast (1 cycle)

– break the problem into smaller pieces

– more parallelism

Page 18

FTC.W99 103

Processor with DRAM (PIM)

• Put the processor and
the main memory on a
single chip

– much lower memory
latency

– much higher memory
bandwidth

• But
– need to build systems with

more than one chip

M

P

64Mb SDRAM Chip
Internal - 128 512K subarrays
4 bits per subarray each 10ns
51.2 Gb/s

External - 8 bits at 10ns, 800Mb/s

1 Integer processor ~ 100KBytes DRAM
1 FP processor ~ 500KBytes DRAM

FTC.W99 104

Reconfigurable processors

• Adapt the processor to the
application

– special function units
– special wiring between

function units

• Builds on FPGA technology
– FPGAs are inefficient

» a multiplier built from an
FPGA is about 100x
larger and 10x slower
than a custom multiplier.

– Need to raise the granularity

» configure ALUs, or whole
processors

– Memory and communication
are usually the bottleneck

» not addressed by
configuring a lot of ALUs

FTC.W99 105

EPIC - explicit (instruction-level)
parallelism aka VLIW

• Compiler schedules
instructions

• Encodes dependencies
explicitly

– saves having the hardware
repeatedly rediscover them

• Support speculation
– speculative load

– branch prediction

• Really need to make
communication explicit
too

– still has global registers
and global instruction
issue

Register File

Instruction Cache

Instruction Issue

FTC.W99 106

Summary

• Parallelism is inevitable
– ILP
– Medium
– Massive

• Commodity forces
– SMPs
– NOWs, CLUMPs

• Technological trends
– MP chips

– Intelligent memory

