Lecture 8:
Parallel Processing

Prof. Fred Chong
ECS 250A Computer Architecture
Winter 1999

(Adapted from Culler CS258 and Dally EE282)

Parallel Programming
« Motivating Problems (application case
studies)
* Process of creating a parallel program
« What a simple parallel program looks like

— three major programming models
— What primitives must a system support?

Simulating Ocean Currents

9ore0ro0a0
000000000

(@) Cross sections

(b) Spatial discretization of across section|

Model as two-dimensional grids
— Discretize in space and time
— finer spatial and temporal resolution => greater accuracy
Many different computations per time step
» set up and solve equations
— Concurrency across and within grid computations
Static and regular

FTCWo9 1 FTCWo9 2 FTCW993
Rendering Scenes by Ray
Simulating Galaxy Evolution Tracing Creating a Parallel Program
i . i « Shoot rays into scene through pixels in image plane i iob:
« Simulate the interactions of many stars Follow thei th ° P|ece§ of the job: .
- h . -
evolvmg over time ollow their paths Identify \{vork that can be d9ne in parallel
. . . — they bounce around as they strike objects » work includes computation, data access and /O
+ Computing forces is expensive — they generate new rays: ray tree per input ray —Partition work and perhaps data among processes
m.m Y g ys: ray tree per input ray

—0(n?) brute force approach = ; : f —Manage data access, communication and synchronization
—Hierarchical Methods take advantage of force law: G r * Result I_S color and opacity for that pIXel

Star onwhich for ces « Parallelism across rays

are being computed oo O |sesran

ouPo ol i
ki @
Small group far enough away to .
i epproxmae o centr ofmass » How much concurrency in these examples?
«Many time-steps, plenty of concurrency across stars within one
FTCWo94 FTCW99 5 FTCW996

Page 1

Definitions
« Task:
— Arbitrary piece of work in parallel computation
— Executed sequentially; concurrency is only across tasks
— E.g. a particle/cell in Barnes-Hut, a ray or ray group in Raytrace
— Fine-grained versus coarse-grained tasks

* Process (thread):
— Abstract entity that performs the tasks assigned to processes
— Processes communicate and synchronize to perform their tasks

« Processor:
— Physical engine on which process executes
— Processes virtualize machine to programmer
» write program in terms of processes, then map to processors

FTCW99 7

4 Steps in Creating a Parallel

Sequental
‘computation

Program

Pariioring

o oA
[
oS |
SO
o T,
O b
LD
o
Tasks

e
5

B EREE

Processes Paralel Processors

program

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors

FTCW998

Decomposition

« Identify concurrency and decide level at
which to exploit it
« Break up computation into tasks to be divided
among processes
— Tasks may become available dynamically
— No. of available tasks may vary with time
« Goal: Enough tasks to keep processes busy,
but not too many

— Number of tasks available at a time is upper bound on
achievable speedup

FTCW999

Limited Concurrency: Amdahl’s Law

« Most fundamental limitation on parallel speedup

« If fraction s of seq execution is inherently serial,
speedup <= 1/s

« Example: 2-phase calculation

— sweep over n-by-n grid and do some independent computation
— sweep again and add each value to global sum

« Time for first phase = n%p
« Second phase serialized at global variable, so time = n?
« Speedup <= 2n? _ or at most 2

2
LU)

« Trick: divide second phase into two
—accumulate into private sum during sweep
—add per-process private sum into global sum 2n2

« Parallel time is n%p + n2/p + p, and speedup atbest pp2 4 p2

FTC.W99 10

Understanding Amdahl’s Law

work done concurrently

N
(b)

t
©

ip vip p

Time.

FTCW99 11

Concurrency Profiles

2385 8&8¢%

Clock yclerumber

—Area under curve is total work done, or time with 1 processor
—Horizontal extent is lower bound on time (infinite processors)

—Amdahl’s law applies to any overhead, not just limited concurrency

FTC.W99 12

Page 2

Orchestration
— Naming data
— Structuring communication
— Synchronization
— Organizing data structures and scheduling tasks temporally

* Goals
— Reduce cost of communication and synch.
— Preserve locality of data reference
— Schedule tasks to satisfy dependences early
— Reduce overhead of parallelism management

« Choices depend on Prog. Model., comm.
abstraction, efficiency of primitives

« Architects should provide appropriate primitives
efficiently

FTC.W99 13

Mapping
« Two aspects:

— Which process runs on which particular processor?
» mapping to a network topology
— Will multiple processes run on same processor?
« space-sharing
— Machine divided into subsets, only one app at a time in a subset
— Processes can be pinned to processors, or left to OS

« System allocation
* Real world
— User specifies desires in some aspects, system handles some

« Usually adopt the view: process <-> processor

FTC.W99 14

Parallelizing Computation vs. Data

« Computation is decomposed and assigned
(partitioned)

< Partitioning Data is often a natural view too
— Computation follows data: owner computes
— Grid example; data mining;
« Distinction between comp. and data stronger in
many applications
— Barnes-Hut
— Raytrace

R EEE R

0 svoo
o oooo
o a0
o 5000

FTC.W99 15

Architect’s Perspective

« What can be addressed by better hardware
design?

« What is fundamentally a programming issue?

FTC.W99 16

High-level Goals

Architecture-

step Dependent? Major Performance Goals
Mostly no but not too much
Assignment Mostyno Balance workioad
Reduce communication volume
Orchestration Yes Reduce noninheent communication via data.

locality

Reduce communication and synclanization cost
as seen by the pocessor

Reduce serialization al shazd resouces

Schedule tasks to satisfy dependences early

Mapping Yes Putrelated processes on the same cessor if

Exploitocality in network opology

« High performance (speedup over sequential program)
« But low resource usage and development effort
« Implications for algorithm designers and architects?

FTC.W99 17

What Parallel Programs Look Like

FTC.W99 18

Page 3

Example: iterative equation
solver

Grid Solver

Sequential Version

Lint n; Isize of matrix: (n+ 2-by-n + 2) dlements'/
cooo00000O O 2 float **A, diff = 0;
cooooooooo 5 min0
« Simplified version of a piece of Ocean simulation ©8.08 8 900 9 9 8 | Epressonorupdaing cach inierorpoin 4 begin
! 0000900000 |, uu i nearne 5 read(n) ; 1*read input parameter: mtri size?
« lllustrate program in low-level parallel language 0 00D a-se aaoa A1+ AT+ 6 A~ mlloc (a2-d array of size y n + 2 doubles)
3 o } . 6o o0 d000 00 7. initialize(A); Pinitialize the matrix A somehow”
— C-like pseudocode with simple extensions for parallelism C00000000O genﬂsu"\avli (A): I+call the routine to solve equation*/
— Expose basic comm. and synch. primitives co00000O0O0O . .
f most real llel programming toda cooooooooo0 1 procedure Solve (A) rovethoeagtionoamt
— State of most real parallel prog fe} y c e e ecnaone B teat (n+2)-by-(n+2) aray
cecocoobosooo R
0 0 0 0 0 8 6 065 | coressonteut cut ot st « Gauss-Seidel (near-neighbor) sweeps to convergence f whle (1done) do rouermstloop over et
0000900000 | o A gear e — interior n-by-n points of (n+2)-by-(n+2) updated in each sweep v fori > ttondo /*sweep over nonborder points of grid/
O 00 o080 0 OO O Al 1]+ AT+ 1) — updates done in-place in grid 10. lejmp:A{\‘J]_ I*saveold value of element/
eooe8n09son — difference from previous value computed 2. AT 0 0.2 (Al + A1)+ Ali-L] ¢
coooobDoaocD ol e o " 21 A[iLj+1] + Ali+1,]]); /*compute average*/
6 0000000G00 — accumulate partial diffs into global diff at end of every sweep 2 diff += abs(Ai,j] - temp)
cooocoboocoo0 - check if has converged z e for
ocoooopoao o » to within a tolerance parameter 25 it (diff/(n*n) < TOL) then done = 1;
2. end while
FTC.W99 19 FTC.W99 20 27-end procedure FTC.W99 21
Decomposition Exploit Application Knowledge Decomposition
-Simple way to identify concurrency isto look at loop iterations -Reorder grid traversal: red-black ordering
T 15. while (!done) do I*asequential loop*/
—dependence analysis; if not enough concurrency, then look 16, diff = 0
eo0eceoceoceo " .
further cecececsoe 17. for_all i = 1ton do I*aparallel loop nest*/
!) ecscececen| em 18. for_all | + 1ton do
+Not much concurrency here at this level (all loops sequential) cecegececs " 19. temp = Ali.j];
. so e soeo 20. AiLjl = 0.2 % (Ali,j] +Ali,j-1] + Ali-1,j] +
«Examine fundamental dependences cesebaceca 21. AT+ + ALl 41T
22. diff += abs(A[i.j] - temp);
23 end for_all
24. end for_all
ceceocsosos 25, if (diff/(n*n) < TOL) then done = 1;
26. end while
/ — Different ordering of updates: may converge quicker or slower
— Red sweep and black sweep are each fully parallel:
/?z — Global synch between them (conservative but convenient) - Decomposition into elements: degree of concurrency n2
° — Ocean uses red-black « Decompose into rows?
o o . — We use simpler, asynchronous one to illustrate
— Concurrency O(n) along anti-diagonals, serialization O(n) along diag. » no red-black, simply ignore dependences within sweep
— Retain loop structure, use pt-to-pt synch; Problem: too many synch ops. » parallel program nondeterministic
— Restructure loops, use global synch; imbalance and too much syrg?°22 FTC.W9923 FTC.W99 24

Page 4

Assignment

coo(esseanlono
cooleesleaslooo

o
o
o
®
°
8
.
.
.
o
o
o

cooleesleaslooo

ooo[eseeenlono

600
aoo
s oo
2o o
so e
2ce
e
ase
ese
To o
o0 0
aoo

ooolessloanlano

« Static assignment: decomposition into rows L iJ
- block assignment of rows: Row i is assigned to process B
- cyclic assignment of rows: process i is assigned rows i, i+p, ...
—Dynamic assignment
» get a row index, work on the row, get a new row,
* What is the mechanism?

« Concurrency? Volume of Communication?
FTCwWes 25

Data Parallel Solver

1. int n, nprocs Igrid Sze (n-+ 2-by-n + 2) and number of processest/
2 float “*A diff = 0;

3. min()

2. begin

50 reas(n): read(nprocs); +readinput grid size and number of processest/
6. A~ GMALCC (a 2-d array of size n+2 by n+2 doubles):

7. initialize(A): Finitiaize the matrix A

8 Solve (A): Trca trouanero tvecaustont

9. end main

10. procedure Solve(A) 1*solve the equation system/

1L float ttA I*Alsan (n+ 2byn s 2)aray/

120 begin

130 inti. . done = 0

13 float mdiff = 0, temp

42 DECOMP ABLOCK*, Nprocs]:

15 wiiie tidone) do 1outermost loop over Sweeps'/

16 nydift = Pinitaize maximum difference o 0/
17 for_alli -+ 1tondo e over non-border poits of ric
18 for_all j ~ 1ton do

19 temp = Al Isaveoldvaueof dement'/

20 AL 2 02 0 A AL s AL

21 A1) ¢ AL D) Fompuean

22 AT = Ss(ALLT) - temp)

23 endTor_ai

28 endtor

242 £l hyair ~0);

i (mn/(n B e one = 1

3% endprocedure
FTC.W99 26

Shared Address Space Solver

Single Program Multiple Data (SPMD)

i

« Assignment controlled by values of variables used

as loop bounds FTC.Wo9 27

Generating Threads

1. int n, nprocs; J+matrix dimension and number of processorsto be used*/
2a. float **A diff; 1+A is global (shared) array representing the grid*/

J+diff isglobal (shared) maximum difference n current sweep*/
2b. LOCKDEO(diff_lock); /*declaration of lock to enforce mutual exclusion*/
2c. BARDEC (bari); I+barrier declaration for global synchronization between sweeps*/

3. min()

4. begin

5 read(n); read(nprocs); /*readinput matrix size and number of processes'/

6 Y a two-dinensional array of size n+2 by n+2
doubles);

7. initialize(A); [initialize A in an unspecified way*/

8a. CREATE (nprocs-1, Solve, A);

8 Solve(A); 1¥méin process becomes aworker 100"/

8b VWAIT_FOR END (nprocs—1); /*wait for all child processes created to terminate*/
9. end min

10. procedure Solve(A)

1 float **A [*A is entire r+2-by-n+2 shared array,
asin the sequential program*/

12. begin

27.end procedure

FTC.W99 28

Assignment Mechanism

10 procedure Solve(A)
11 float **A; 1A s entire n+2-by-n+2 shared aray,
asinthe sequential program®/

12. begin
13 int i,j, pid, done = 0;
14 tloat temp, nydiff = 0; J*private variables'/
14a int mymn = 1+ (pid * ninprocs); /*assumethat nisexactly dvisble by'/
14b. int mymx = nmymin + ninprocs - 1 /*nprocsfor simplicity here*/
15, while ({done) do 1+ outer loop Sweeps,
16 nydift = diff = 0 J+set globl diff 10 0 (okay for all todo t)*/
16a. BARRIER(barl, nprocs); I+ensure al reach here before anyone modfies diff*/
17 for i - mymin to mymx do I*for each of my rows'/
18 for j 7 1ton do J+tor al nonborder elements in that row*/
19 temp = Ali,j];
20 Ali] = 02 %]+ AE-1) + A1)+
21 Wiy *an”]
22 nydiff += abs(A[i.j] -
23 endfor
24 endfor
25a. Lo ditt_lock), 1*update global diff if necessary*/
25b. diff += mydif
25c. L.NLOCK(G\IL e
254. BARRIER(barl, nprocs) I+ensure all reach here before checkingif done*/
25e. it (um/(n "2 TOL) then done = 1. - check convergence: al gt
same answer*/

25¢ BARRIER (bart, nprocs);

endwhile

27. end procedure
FTC.W99 29

SAS Program

SPMD: not lockstep. Not necessarily same instructions
Assignment controlled by values of variables used as
loop bounds

— unique pid per process, used to control assignment
done condition evaluated redundantly by all
Code that does the update identical to sequential
program

— each process has private mydiff variable
Most interesting special operations are for
synchronization

— accumulations into shared diff have to be mutually exclusive

— why the need for all the barriers?
Good global reduction?

— Utili 272
Utility of this parallel accumulate??? FTC.W99 30

Page 5

Mutual Exclusion

* Why is it needed?

* Provided by LOCK-UNLOCK around critical
section
— Set of operations we want to execute atomically

— Implementation of LOCK/UNLOCK must guarantee
mutual excl.

« Serialization?

— Contention?
— Non-local accesses in critical section?

R)) . FTCW99 31
— use private mydiff for partial accumulation!

Global Event Synchronization

« BARRIER(nprocs): wait here till nprocs processes get here
— Built using lower level primitives
— Global sum example: wait for all to accumulate before using sum
— Often used to separate phases of computation

* ProcessP_ 1 ProcessP 2 Process P_nprocs

« set up egn system set up egn system set up egn system

« Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
« solve egn system solve egn system solve egn system

« Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
« apply results apply results apply results

« Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

— Conservative form of preserving dependences, but easy to use

* WAIT_FOR_END (nprocs-1)

FTC.W99 32

Pt-to-pt Event Synch (Not Used Here)

« One process notifies another of an event so it
can proceed

— Common example: producer-consumer (bounded buffer)

— Concurrent programming on uniprocessor: semaphores

— Shared address space parallel programs: semaphores, or
use ordinary variables as flags

Py Py
A=
a: while (flag is 0) do nothing; b flag = 1:

print A

«Busy-waiting or spinning

FTC.W99 33

Group Event Synchronization

« Subset of processes involved
— Can use flags or barriers (involving only the subset)
— Concept of producers and consumers

« Major types:
— Single-producer, multiple-consumer
— Multiple-producer, single-consumer
— Multiple-producer, single-consumer

FTC.W99 34

Message Passing Grid Solver

« Cannot declare A to be global shared array
— compose it logically from per-process private arrays

— usually allocated in accordance with the assignment of
work

» process assigned a set of rows allocates them locally
 Transfers of entire rows between traversals
« Structurally similar to SPMD SAS
 Orchestration different
— data structures and data access/naming
— communication
— synchronization

* Ghost rows
FTCwes 3s

Data Layout and Orchestration

0000000000
P looocoooboooo

°
°
°
°
0
.
.
°
°
°

ooolessleesoon

Data partition allocated per processor
Add ghost rows to hold boundary data
Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

FTC.W99 36

Page 6

Erocedure So\veo

ot i - mprocs doe =
et Lorp. emaitr oyaii 6. rptas o ter!
A~ raiTo(a 26 arrey of Size [ninprocs s 2) by ne2)
" igemy rowsct A, inanrspesievey'!
while (1done) do
nyaifl = 0; Fetlod dif o0/
I‘Exmavemde ows of peighborsintomyA[0] ad myA[T 1"/
11 (pld 1= 0) then SAamA[0] nsizeol (floan) pid-1, 70N
it {pid = nprocs'1) then
SO(yALN' 0] 1 sizeol(floa pid+1
mdizo) theri RECEVE(amA 0.0) i al2ebi(10at) pig-1, vy
pid 1= nprocs-1) U
A L 0] sizeo (floa), pid+1. AWy
for i = 1ton do for ecchof my (ronghes) s
fo i ahrent s ettt

terp = o1
mAL) = 012 (mAlli) AL v AL ¢
1 ShslonR 1 i
endlor A
endfor
oamaictle af s et
ones can ereplzcd by recucin
it (pid 1= 0) v s s g v
Sy i1 s.mr;um) 0,0FF)
dorie,si zeol (int)
else radostis)
for i = 1 to nprocs. forech ot rocess |
et Shaettloan - 350
it = e Feoamiieinotot/
u mymvmm < Tou) then dene = 1
<o npro o ich ater pross
' ydans seeoiii) 1,008
endfor
endif
endwhil
end ‘procedure Frewes st

Notes on Message Passing Program

Use of ghost rows
Receive does not transfer data, send does

— unlike SAS which is usually receiver-initiated (load fetches data)
Communication done at beginning of iteration, so no
asynchrony
Communication in whole rows, not element at a time
Core similar, but indices/bounds in local rather than global
space
Synchronization through sends and receives

~ Update of global diff and event synch for done condition

— Could implement locks and barriers with messages

Can use REDUCE and BROADCAST library calls to simplify
code

25b.
25¢.

25i.

25k,
25m

J+communicate local iff values and determine if done, using reduction and broadcast*/
EDUCH 0, mydi {5 ze0f (f10at) ,ADD);
it (pid == 0) the
it (it o® %) < T then done = 1;
endi f
BROADCAST(0, done, si zeof (int), DONE) ;
FTCW99 38

Send and Receive Alternatives
Can extend functionality: stride, scatter-gather, groups

Semantic flavors: based on when control is returned
Affect when data structures or buffers can be reused at either end
Send/Receive

Synchronous Asynchronous

Blocking asynch.
— Affect event synch (mutual excl. by fiat: only one process touches data)
— Affect ease of programming and performance
« Synchronous messages provide built-in synch. through
match
— Separate event synchronization needed with asynch. messages

« With synch. messages, our code is deadlocked. Fix?
FTCWes 39

Nonblocking asynch.

Orchestration: Summary

« Shared address space
— Shared and private data explicitly separate
— Communication implicit in access patterns
— No correctness need for data distribution
— Synchronization via atomic operations on shared data

— Synchronization explicit and distinct from data
communication

* Message passing
— Data distribution among local address spaces needed
— No explicit shared structures (implicit in comm. patterns)
— Communication is explicit
— Synchronization implicit in communication (at least in
synch. case)

» mutual exclusion by fiat
FTCW99 40

Correctness in Grid Solver Program

| SsAs | Msg-Passing
Explicit global data structure? Yes No
Assignment indept of data layout? Yes No
Communication Implicit Explicit
Synchronization Explicit Implicit
Explicit replication of border rows? No Yes

Decomposition and Assignment similar in SAS
and message-passing

« Orchestration is different

— Data structures, data access/naming, communication,

synchronization

— Performance?

FTC.W99 41

History of Parallel Architectures

Parallel architectures tied closely to
programming models

— Divergent architectures, with no predictable pattern of
growth.

— Mid 80s rennaisance

Application Software
-
Systolic

Arrays —

> SIMD
— Message Passing
Dataflow Shared Memory

FTC.W99 42

Page 7

Convergence

« Look at major programming models
— where did they come from?
— The 80s architectural rennaisance!
— What do they provide?
— How have they converged?
« Extract general structure and fundamental
issues
« Reexamine traditional camps from new
perspective

Systolic
Arrays ~—— " Generic | 4«—— SIMD
/v Architecture \

Dataflow

Message Passing
Shared Memory

FTC.W99 43

Programming Model

« Conceptualization of the machine that
programmer uses in coding applications
— How parts cooperate and coordinate their activities
— Specifies communication and synchronization operations

* Multiprogramming
— no communication or synch. at program level
« Shared address space
— like bulletin board
* Message passing
— like letters or phone calls, explicit point to point
« Data parallel:
— more regimented, global actions on data
— Implemented with shared address space or message

passing
FTCWe9 24

Structured Shared Address

Space
|

« Add hoc parallelism used in system code
* Most parallel applications have structured SAS
« Same program on each processor

— shared variable X means the same thing to each thread
FTCW99.45

Engineering: Intel Pentium Pro Quad

— All coherence and
multiprocessing glue in
processor module

— Highly integrated, targeted at
high volume

— Low latency and bandwidth

FTC.W99 46

Engineering: SUN Enterprise

Gigaplane bus (256 data 41 address, 83 MHz)

—¥ 10 cards

2

* Proc + mem card - I/O card
— 16 cards of either type
— All memory accessed over bus, so symmetric
— Higher bandwidth, higher latency bus

FTC.W99 47

Scaling Up

“Dance hall” Distributed memory

— Problem is interconnect: cost (crossbar) or bandwidth (bus)

— Dance-hall: bandwidth still scalable, but lower cost than crossbar
» latencies to memory uniform, but uniformly large

— Distributed memory or non-uniform memory access (NUMA)

» Construct shared address space out of simple message
transactions across a general-purpose network (e.g. read-
request, read-response)

- i i ?
Caching shared (particularly nonlocal) data? Frewss s

Page 8

Engineering: Cray T3E

— Scale up to 1024 processors, 480MB/s links
— Memory controller generates request message for non-local references
— No hardware mechanism for coherence

» SGI Origin etc. provide this

FTC.W99 49

Message Passing Architectures

Complete computer as building block, including 1/0
— Communication via explicit I/O operations

Programming model
— direct access only to private address space (local memory),
— communication via explicit messages (send/receive)

High-level block diagram

— Communication integration? #

» Mem, I/O, LAN, Cluster r_ L .. #
— Easier to build and scale than SAS i ng

Programming model more removed from basic
hardware operations
— Library or OS intervention

s
1]
=]

FTC.W99 50

Message-Passing Abstraction

Maich Receivel, P

Addressy

SendX.Q.t

Addressx

Local process
Local process.
address space addess space

ProcessP ProcessQ
— Send specifies buffer to be transmitted and receiving process
— Recv specifies sending process and application storage to receive into
~ Memory to memory copy, but need to name processes
— Optional tag on send and matching rule on receive
— User process names local data and entities in process/tag space too
— In simplest form, the send/recv match achieves pairwise synch event

» Other variants too
— Many overheads: copying, buffer management, protection

FTCW99 51

Evolution of Message-Passing

Machines
« Early machines: FIFO on each link
— HW close to prog. Model;
- synchronous ops
— topology central (hypercube algorithms)

CalTech Cosmic Cube (Seitz, CACM Jan 95)

FTC.W99 52

Diminishing Role of Topology

Shift to general links
— DMA, enabling non-blocking ops

» Buffered by system at

destination until recv

— Store&forward routing
Diminishing role of
topology
— Any-to-any pipelined routing Intel iPSC/L -> IPSC/2 -> iPSC/860
— node-network interface
dominates communication time

Hx (T, + /B)

vs

TO + HD+ n/B

— Simplifies programming
— Allows richer design space
» grids vs hypercubes

FTC.W99 53

Example Intel Paragon
3 SEFEN R

Sandia's Intel Paragon XP/S-based Supomputer

one
W

with prcessing node
attached to every switch

FTC.W99 54

Page 9

Building on the mainstream:
IBM SP-2

* Made out of
essentially
complete
RS6000
workstations

N EtWO rk ‘General inteconnection
interface St
integrated in

1/0 bus (bw

limited by /0

bus)

FTC.W99 55

Berkeley NOW

* 100 Sun Ultra2
workstations
« Inteligent
network
interface
— proc + mem
* Myrinet
Network
— 160 MB/s per
link

— 300 ns per hop

FTC.W99 56

Toward Architectural Convergence

« Evolution and role of software have blurred boundary
— Send/recv supported on SAS machines via buffers
— Can construct global address space on MP (GA -> P | LA)
— Page-based (or finer-grained) shared virtual memory
« Hardware organization converging too
— Tighter NI integration even for MP (low-latency, high-bandwidth)
— Hardware SAS passes messages
« Even clusters of workstations/SMPs are parallel
systems
— Emergence of fast system area networks (SAN)
* Programming models distinct, but organizations
converging
— Nodes connected by general network and communication assists

— Implementations also converging, at least in high-end machines
FTCN99 57

Programming Models Realized
by Protocols

cAD Database Scientific modeling Parallel applications

Multiprogramming ~~ Shared ~ Message Data Programming models
address passing parallel

¢ !
User/system boundary

Operating systems support

- boundary
Communicatioft Tiadware

Physical communlcationm

Network Transactions

FTC.W99 58

Shared Address Space Abstraction

Iy —— Loadr ~ [Gibatadress]

(e @__
© Remoe nemory acss .

(© Repy sansacton

) Compiere memory access

« Fundamentally a two-way request/response protocol
~ writes have an acknowledgement

* Issues
~ fixed or variable length (bulk) transfers
~ remote virtual or physical address, where is action performed?
~ deadlock avoidance and input buffer full

« coherent? consistent?

FTC.W99 59

The Fetch Deadlock Problem

« Even if a node cannot issue a request, it must
sink network transactions.

« Incoming transaction may be a request, which
will generate a response.

« Closed system (finite buffering)

FTC.W99 60

Page 10

Consistency

o white (113=20)
prine &

Cogesman

« write-atomicity violated without caching

FTC.W99 61

Key Properties of Shared
Address Abstraction

Source and destination data addresses are
specified by the source of the request

— adegree of logical coupling and trust
no storage logically “outside the address
space”

» may employ temporary buffers for transport
Operations are fundamentally request
response
Remote operation can be performed on
remote memory

— logically does not require intervention of the remote
processor

FTC.W99 62

Message passing

« Bulk transfers

« Complex synchronization semantics
— more complex protocols
— More complex action

« Synchronous
— Send completes after matching recv and source data sent

— Receive completes after data transfer complete from
matching send

« Asynchronous
— Send completes after send buffer may be reused

FTC.W99 63

Synchronous Message Passing

Source Destraton
@ ntate sen Reoy B, local VA len

@ Adoss vansiaion on 2.
@ Localiomote check

@ Sendeady request | —]

—
@ Remtechecktor
)

gy -
R Processor

Action?
© Repy sansacton
Recv-dy reply

7 Busk data vanstor
Sourca Vs Dest VAar 1D

Send Ry ol VA fen

Datnxerreq
it

« Constrained programming model.
« Deterministic!
« Destination contention very limited.

FTC.W99 64

Asynch. Message Passing: Optimistic

Source Destnaton

(1) iitate send

(2) Address transiation

(3) Localiremote check Send [es, local VA len)

(4) Send data

(5) Remote check for
ted rceive;on fa,

allocate data buffer

Recy B local VA, len

Time

« More powerful programming model
« Wildcard receive => non-deterministic
« Storage required within msg layer?

FTC.W99 65

Asynch. Msg Passing: Conservative

0 inte sena
) Adess ransasonon
) Locatremos check

Send B ol VA, B
[E—— Senaroyreq
) Remore checkor posted

Py o >

(6 Receve.resoy request Recy B, ocal VA, 0

Moudanrep

* Where is the bufngring?

« Contention control? Receiver initiated
protocol?

« Short message optimizations

FTC.W99 66

Page 11

Key Features of Msg Passing
Abstraction

« Source knows send data address, dest.
knows receive data address
— after handshake they both know both

« Arbitrary storage “outside the local address
spaces”
— may post many sends before any receives

— non-blocking asynchronous sends reduces the
requirement to an arbitrary number of descriptors

» fine print says these are limited too
* Fundamentally a 3-phase transaction
— includes a request / response
— can use optimisitic 1-phase in limited “Safe” cases

» credit scheme FTC.W99 67

Active Messages

Request T (Mander
Reply
a7
~~~~~ r

User-level analog of network transaction

— transfer data packet and invoke handler to extract it from
the network and integrate with on-going computation

Request/Reply
Event notification: interrupts, polling, events?
May also perform memory-to-memory transfi

W99 68

Common Challenges

« Input buffer overflow
— N-1 queue over-commitment => must slow sources
— reserve space per source (credit)
» when available for reuse?
+ Ack or Higher level
— Refuse input when full
» backpressure in reliable network
» tree saturation
» deadlock free
» what happens to traffic not bound for congested
dest?

— Reserve ack back channel
— drop packets
— Utilize higher-level semantics of programming model  rc.weo 60

Challenges (cont)

« Fetch Deadlock
— For network to remain deadlock free, nodes must
continue accepting messages, even when cannot source
msgs
— what if incoming transaction is a request?

» Each may generate a response, which cannot be
sent!

» What happens when internal buffering is full?

« logically independent request/reply networks

— physical networks

— virtual channels with separate input/output queues
« bound requests and reserve input buffer

space

— K(P-1) requests + K responses per node

— service discipline to avoid fetch deadlock?
* NACK on input buffer full

— NACK delivery? Fre.wee 7o

Challenges in Realizing Prog.
Models in the Large
One-way transfer of information
No global knowledge, nor global control
— barriers, scans, reduce, global-OR give fuzzy global state
Very large number of concurrent transactions

Management of input buffer resources
— many sources can issue a request and over-commit
destination before any see the effect
Latency is large enough that you are tempted
to “take risks”
— optimistic protocols
— large transfers
— dynamic allocation
Many many more degrees of freedom in

design and engineering of these system
Frcwes 71

Network Transaction Processing

Scalable Network
Message
Output Processing ( ses L Input Processing
~ checks @ c o Assist @ ~ checks
- translation ommunication Assisf - translation

~ formating ~ buffering

~ scheduling u U ﬂ Node Architecture u U n ~action

« Key Design Issue:
« How much interpretation of the message?

« How much dedicated processing in the
Comm. Assist?

FTCW99 72

Page 12




Spectrum of Designs

« None: Physical bit stream

— blind, physical DMA NnCUBE, iPSC, . . .
« User/System

— User-level port CM-5,*T

— User-level handler J-Machine,

Monsoon, . . .

* Remote virtual address

— Processing, translation
Cs-2

« Global physical address
— Proc + Memory controller

« Cache-to-cache
— Cache controller

Paragon, Meiko

RP3, BBN, T3D

Dash, KSR, Flash

Increasing HW Support, Specialization, Intrusiveness, Performance (???) FTC.We9 73

Net Transactions: Physical DMA

ar=—u

DMA controlled by regs, generates interrupts
Physical => OS initiates transfers [Fema
Send-side dest addr

— construct system “envelope” around user data in kernel
area

Receive

— must receive into system buffer, since no interpretation
in

FTC.W99 74

NCUBE Network Interface

« independent DMA channel per link direction
— leave input buffers always open
- segmented messages

< routing interprets envelope
— dimension-order routing on hypercube
— bit-serial with 36 bit cut-through

FTCW99 75

Conventional LAN NI

Host Memory NIC

NIC Controller

le X
lo RX

10Bus

FTC.W99 76

User Level Ports

initiate transaction at user level
deliver to user without OS intervention
network port in user space

User/system flag in envelope

— protection check, translation, routing, media access in
src CA
— user/sys check in dest CA, interrupt on system

FTCW99 77

User Level Network ports

Virual address space

Net output
port
Netinput
port
Processor

saws |

Program counter

« Appears to user as logical message queues
plus status

« What happens if no user pop?

FTC.W99 78

Page 13




Example: CM-5

« Input and output
FIFO for each
network

« 2 data networks

« tag per message
— index NI mapping
table
* context
switching?

« *T integrated NI

on chip Os 50cy  15us
) or s3ey  16us
* iIWARP also gt 1ous FTCW9979

User Level Handlers

[

« Hardware support to vector to address
specified in message
— message ports in registers

FTC.W99 80

J-Machine: Msg-Driven Processor

« Each node a small msg
driven processor

*« HW support to queue
msgs and dispatch to
msg handler task

FTC.W99 81

Communication Comparison

* Message passing (active messages)
— interrupts (int-mp)
— polling (poll-mp)
— bulk transfer (bulk)
« Shared memory (sequential consistency)
— without prefetching (sm)
— with prefetching (pre-sm)

FTC.W99 82

Motivation

« Comparison over a range of parameters
— latency and bandwidth emulation
— hand-optimized code for each mechanism
» 5 versions of 4 applications

FTC.W99 83

The Alewife Multiprocessor

B Y
wiow o
TR TR RS )
T L

FTC.W99 84

Page 14




Alewife Mechanisms

Int-mp -- 100-200 cycles Send/Rec ovrhd
Poll-mp -- saves 50-170 cycles Rec ovrhd
Bulk -- gather/scatter

Sm -- 42--63 cycles + 1.6 cycles/hop
Pre-sm -- 2 cycles, 16 entry buffer

FTC.W99 85

Applications

« Irregular Computations
« Little data re-use
« Data driven

FTC.W99 86

Application Descriptions

EM3D 3D electromagnetic wave
ICCG irreg sparse matrix solver
Unstruc 3D fluid flow

Moldyn molecular dynamics

FTC.W99 87

Performance Breakdown

- nch
W insEs e hewl
= [rziey + [l wall

-

MCwhes

g ol-op bk il e
EMIAD

FTC.W99 88

Performance Summary

i i i
| = g
L 3

FTC.W99 89

Traffic Breakdown

vl el
L__RISTLS L

W bairs | or ilida)
[

mi-mg pollmp  bak £ ] ME-ET
EALAE

FTC.W99 90

Page 15




Traffic Summary

TRTEINT
LAanltl Lannll

Effects of Bandwidth

Bandwidth Emulation

« Lower bisection by introducing cross-traffic

Riiection Hisdwidth

[
| :' k = o ":'!I:!IF‘!’_—.—.
| R - T ]
_JJ II } =4 II £ Trafiic = e L Trafic
idinm (| ] o T
- - “"m et
"""" e i |0 Noder  Compute Peodes B0 Nndiw
[Re——
FTCWe9 91 FTCWes92 FTCwes 9z
Sensitivity to Bisection Effects of Latency Latency Emulation
&
24 _— « Clock variation
. — processor has tunable clock
22 ——int-mp | L = L — network is asynchronous
E === pitl}-mps| e i T rostite in variations i ror
= 3 [ F | 7 results in variations in relative latency
= —— B - bulk-mp | « Context switch on miss
= 18 o —— s E
- . S . Ty " — add delay
1 ,— = pre-am | i -
—s | s et S
3 I 15 2n -
Bisection | bytesToyole) P -
EMED
Pk Liaws
FTCWo9 94 FTCW9995 FTCW9996

Page 16




Sensitivity to Latency

Sensitivity to Higher Latencies

Communication Comparison
Summary

* Low overhead in shared memory performs

pat p
2 B Y et well even with:
| I L - inl-mp — irregular, data-driven applications
__E 154 o —o- poll-mp e —e— pall-mp — little re-use
= hulk-mgq __,-" builk-mgy « Bisection and latency can cause crossovers
=154 i L —— 5m
= = —=—pre-sm  T— 1 — ]
14+ T N - N - 2 154 == o
1] 12 14 16 3 o i 150
Metwork Latency Network Lafency
EM3AD EM30
FTC.Wo9 7 FTC.W9 98 FTC.W9 99
Future Technolo i i i iti i i
ay Single-Chip Multiprocessors Exploiting fine-grain threads
« Technology changes the 1clk
cost and performance of . . «+ Where will the parallelism come from to keep all of
computer elements in a l199g| « Build a multiprocessor these processors busy?
non-uniform manner on a single chip © © Z \LP- limited to about 5
~ logic and arithmetic is 2001 — linear increase in peak s|lsllslls _ Outer-loop parallelism
becoming plentiful and performance . N »
cheap _ advantage of fast 5 » e.g., domain decomposition
_ wires are becoming slow o interaction between T » requires big problems to get lots of parallelism
and scarce processors « Fine threads
« This changes the * But — make communication and synchronization very fast (1 cycle)
tradeoffs between 24 :h‘he a’e: — memory bandwidth — break the problem into smaller pieces
alternative architectures s;;w:r?;if; problem multiplied — more parallelism
— superscalar doesn't scale
well
» global control and 2007
+ So what will the 20 clks
architectures of the
FTC.W99 100 FTC.Wo9 101 FTC.Wo9 102
future be?

Page 17




Processor with DRAM (PIM)

« Put the processor and P
the main memory on a
single chip M

— much lower memory
latency

— much higher memory
bandwidth

64Mb SDRAM Chip
. But Internal - 128 512K subarrays
4 bits per subarray each 10ns
— need to build systems with 51.2 Gbls
more than one chip
External - 8 bits at 10ns, 800Mb/s

1 Integer processor ~ 100KBytes DRAM
1FP processor ~ 500KBytes DRAM

Reconfigurable processors

Adapt the processor to the
application
- special function units
~ special wiring between
function units
Builds on FPGA technology
—~ FPGAs are inefficient
» amultiplier built from an
PGA is about 100x
larger and 10 slower
than a custom multiplier.
~ Need to raise the granularity
» configure ALUS, or whole
processors
~ Memory and communication
are usually the bottleneck

555
555

» not addressed by
configuring a lot of ALUs

EPIC - explicit (instruction-level)
parallelism aka VLIW

Instruction Cache

Compiler schedules
instructions
Encodes dependencies
explicitly

— saves having the hardware

repeatedly rediscover them

Support speculation

— speculative load

— branch prediction
Really need to make

Instruction Issue

communication explicit
too Register File
— still has global registers

and global ir
issue

FTCW99 103 FTCWo9 104 FTCW99 105
Summary
« Parallelism is inevitable
- ILP
— Medium
— Massive
« Commodity forces
- SMPs
— NOWs, CLUMPs
« Technological trends
— MP chips
— Intelligent memory
FTCW99 106

Page 18




