

Lecture 6: Storage Devices, Metrics, RAID, I/O Benchmarks, and Busses

Prof. Fred Chong
ECS 250A Computer Architecture
Winter 1999

(Adapted from Patterson CS252 Copyright 1998 UCB)

FTC.W99.1

Motivation: Who Cares About I/O?

- CPU Performance: 60% per year
- I/O system performance limited by *mechanical* delays (disk I/O)
 - < 10% per year (I/O per sec or MB per sec)
- Amdahl's Law: system speed-up limited by the slowest part!
 - 10% I/O & 10x CPU => 5x Performance (lose 50%)
 - 10% I/O & 100x CPU => 10x Performance (lose 90%)
- I/O bottleneck:
 - Diminishing fraction of time in CPU
 - Diminishing value of faster CPUs

FTC.W99.2

Storage System Issues

- Historical Context of Storage I/O
- Secondary and Tertiary Storage Devices
- Storage I/O Performance Measures
- Processor Interface Issues
- Redundant Arrays of Inexpensive Disks (RAID)
- ABCs of UNIX File Systems
- I/O Benchmarks
- Comparing UNIX File System Performance
- I/O Busses

FTC.W99.3

I/O Systems

FTC.W99.4

Technology Trends

FTC.W99.5

Storage Technology Drivers

- **Driven by the prevailing computing paradigm**
 - 1950s: migration from batch to on-line processing
 - 1990s: migration to ubiquitous computing
 - » computers in phones, books, cars, video cameras, ...
 - » nationwide fiber optical network with wireless tails
- **Effects on storage industry:**
 - Embedded storage
 - » smaller, cheaper, more reliable, lower power
 - Data utilities
 - » high capacity, hierarchically managed storage

FTC.W99.6

Historical Perspective

- 1956 IBM Ramac — early 1970s Winchester
 - Developed for mainframe computers, proprietary interfaces
 - Steady shrink in form factor: 27 in. to 14 in.
- 1970s developments
 - 5.25 inch floppy disk form factor
 - early emergence of industry standard disk interfaces
 - » ST506, SASI, SMD, ESDI
- Early 1980s
 - PCs and first generation workstations
- Mid 1980s
 - Client/server computing
 - Centralized storage on file server
 - » accelerates disk downsizing: 8 inch to 5.25 inch
 - Mass market disk drives become a reality
 - » industry standards: SCSI, IPI, IDE
 - » 5.25 inch drives for standalone PCs, End of proprietary interfaces

Disk History

MBits per square inch: DRAM as % of Disk over time

Historical Perspective

- Late 1980s/Early 1990s:
 - Laptops, notebooks, (palmtops)
 - 3.5 inch, 2.5 inch, (1.8 inch formfactors)
 - Form factor plus capacity driven market, not so much performance
 - » Recently Bandwidth improving at 40%/year
 - Challenged by DRAM, flash RAM in PCMCIA cards
 - » still expensive, Intel promises but doesn't deliver
 - » unattractive MBytes per cubic inch
 - Optical disk fails on performance (e.g., NEXT) but finds niche (CD ROM)

FTC.W99.9

Alternative Data Storage Technologies: Early 1990s

Technology	Cap (MB)	BPI	TPI	BPI/TPI	Data Xfer (Million KByte/s)	Access Time
Conventional Tape:						
Cartridge (.25")	150	12000	104	1.2	92	minutes
IBM 3490 (.5")	800	22860	38	0.9	3000	seconds
Helical Scan Tape:						
Video (8mm)	4600	43200	1638	71	492	45 secs
DAT (4mm)	1300	61000	1870	114	183	20 secs
Magnetic & Optical Disk:						
Hard Disk (5.25")	1200	33528	1880	63	3000	18 ms
IBM 3390 (10.5")	3800	27940	2235	62	4250	20 ms
Sony MO (5.25")	640	24130	18796	454	88	100 ms

FTC.W99.12

Devices: Magnetic Disks

- Purpose:**
 - Long-term, nonvolatile storage
 - Large, inexpensive, slow level in the storage hierarchy
- Characteristics:**
 - Seek Time (~8 ms avg)
 - » positional latency
 - » rotational latency
 - Transfer rate
 - About a sector per ms (5-15 MB/s)
 - Blocks
 - Capacity
 - Gigabytes
 - Quadruples every 3 years (aerodynamics)

7200 RPM = 120 RPS => 8 ms per rev
avg. rot. latency = 4 ms
128 sectors per track => 0.25 ms per sector
1 KB per sector => 16 MB / s

Response time = Queue + Controller + Seek + Rot + Xfer
Service time

FTC.W99 13

Disk Device Terminology

Disk Latency = Queuing Time + Controller time + Seek Time + Rotation Time + Xfer Time
Order of magnitude times for 4K byte transfers:
Seek: 8 ms or less
Rotate: 4.2 ms @ 7200 rpm
Xfer: 1 ms @ 7200 rpm

FTC.W99 14

Tape vs. Disk

- Longitudinal tape uses same technology as hard disk; tracks its density improvements
- Disk head flies above surface, tape head lies on surface
- Disk fixed, tape removable
- Inherent cost-performance based on geometries: fixed rotating platters with gaps (random access, limited area, 1 media / reader)
- vs.
removable long strips wound on spool (sequential access, "unlimited" length, multiple / reader)
- New technology trend:
Helical Scan (VCR, Camcorder, DAT)
Spins head at angle to tape to improve density

FTC.W99 16

Current Drawbacks to Tape

- Tape wear out:
 - Helical 100s of passes to 1000s for longitudinal
- Head wear out:
 - 2000 hours for helical
- Both must be accounted for in economic / reliability model
- Long rewind, eject, load, spin-up times; not inherent, just no need in marketplace (so far)
- Designed for archival

FTC.W99 17

Automated Cartridge System

STC 4400
8 feet
10 feet

6000 x 0.8 GB 3490 tapes = 5 TBytes in 1992
\$500,000 O.E.M. Price
6000 x 10 GB D3 tapes = 60 TBytes in 1998
Library of Congress: all information in the world; in 1992, ASCII of all books = 30 TB

FTC.W99 18

Library vs. Storage

- Getting books today as quaint as the way I learned to program
 - punch cards, batch processing
 - wander thru shelves, anticipatory purchasing
- Cost \$1 per book to check out
- \$30 for a catalogue entry
- 30% of all books never checked out
- Write only journals?
- Digital library can transform campuses
- Will have lecture on getting electronic information

FTC.W99.19

Relative Cost of Storage Technology—Late 1995/Early 1996

Magnetic Disks

5.25"	9.1 GB	\$2129	\$0.23/MB
		\$1985	\$0.22/MB
3.5"	4.3 GB	\$1199	\$0.27/MB
		\$999	\$0.23/MB
2.5"	514 MB	\$299	\$0.58/MB
	1.1 GB	\$345	\$0.33/MB

Optical Disks

5.25"	4.6 GB	\$1695+199	\$0.41/MB
		\$1499+189	\$0.39/MB

PCMCIA Cards

Static RAM	4.0 MB	\$700	\$175/MB
Flash RAM	40.0 MB	\$1300	\$32/MB
	175 MB	\$3600	\$20.50/MB

FTC.W99.20

Outline

- Historical Context of Storage I/O
- Secondary and Tertiary Storage Devices
- **Storage I/O Performance Measures**
- Processor Interface Issues
- Redundant Arrays of Inexpensive Disks (RAID)
- ABCs of UNIX File Systems
- I/O Benchmarks
- Comparing UNIX File System Performance
- I/O Busses

FTC.W99.21

Disk I/O Performance

Metrics:
Response Time
Throughput

FTC.W99.22

Response Time vs. Productivity

Interactive environments:

- Each interaction or *transaction* has 3 parts:
 - *Entry Time*: time for user to enter command
 - *System Response Time*: time between user entry & system replies
 - *Think Time*: Time from response until user begins next command

What happens to transaction time as shrink system response time from 1.0 sec to 0.3 sec?

- With Keyboard: 4.0 sec entry, 9.4 sec think time
- With Graphics: 0.25 sec entry, 1.6 sec think time

FTC.W99.23

Response Time & Productivity

- 0.7sec off response saves 4.9 sec (34%) and 2.0 sec (70%) total time per transaction => greater productivity
- Another study: everyone gets more done with faster response, but novice with fast response = expert with slow

FTC.W99.24

Disk Time Example

- **Disk Parameters:**
 - Transfer size is 8K bytes
 - Advertised average seek is 12 ms
 - Disk spins at 7200 RPM
 - Transfer rate is 4 MB/sec
- Controller overhead is 2 ms
- Assume that disk is idle so no queuing delay
- **What is Average Disk Access Time for a Sector?**
 - Ave seek + ave rot delay + transfer time + controller overhead
 - $12 \text{ ms} + 0.5/(7200 \text{ RPM}/60) + 8 \text{ KB}/4 \text{ MB/s} + 2 \text{ ms}$
 - $12 + 4.15 + 2 + 2 = 20 \text{ ms}$
- Advertised seek time assumes no locality: typically 1/4 to 1/3 advertised seek time: 20 ms \Rightarrow 12 ms

FTC.W99.25

Outline

- Historical Context of Storage I/O
- Secondary and Tertiary Storage Devices
- Storage I/O Performance Measures
- **Processor Interface Issues**
- Redundant Arrays of Inexpensive Disks (RAID)
- ABCs of UNIX File Systems
- I/O Benchmarks
- Comparing UNIX File System Performance
- I/O Busses

FTC.W99.26

Processor Interface Issues

- **Processor interface**
 - Interrupts
 - Memory mapped I/O
- **I/O Control Structures**
 - Polling
 - Interrupts
 - DMA
 - I/O Controllers
 - I/O Processors
- **Capacity, Access Time, Bandwidth**
- **Interconnections**
 - Busses

FTC.W99.27

I/O Interface

Memory Mapped I/O

Programmed I/O (Polling)

Summary: Relationship to Processor Architecture

- I/O instructions have disappeared
- Interrupt vectors have been replaced by jump tables
- Interrupt stack replaced by shadow registers
- Interrupt types reduced in number
- Caches required for processor performance cause problems for I/O
- Virtual memory frustrates DMA
- Load/store architecture at odds with atomic operations
- Stateful processors hard to context switch

FTC.W99.37

Outline

- Historical Context of Storage I/O
- Secondary and Tertiary Storage Devices
- Storage I/O Performance Measures
- Processor Interface Issues
- **Redundant Arrays of Inexpensive Disks (RAID)**
- ABCs of UNIX File Systems
- I/O Benchmarks
- Comparing UNIX File System Performance
- I/O Busses

FTC.W99.38

Network Attached Storage

FTC.W99.39

Manufacturing Advantages of Disk Arrays

Replace Small # of Large Disks with Large # of Small Disks! (1988 Disks)

	IBM 3390 (K)	IBM 3.5" 0061	x70
Data Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.
Power	3 KW	11 W	1 KW
Data Rate	15 MB/s	1.5 MB/s	120 MB/s
I/O Rate	600 IOs/s	55 IOs/s	3900 IOs/s
MTTF	250 Khrs	50 Khrs	?? Hrs
Cost	\$250K	\$2K	\$150K

Disk Arrays have potential for
large data and I/O rates
high MB per cu. ft., high MB per KW
reliability?

FTC.W99.41

Array Reliability

- Reliability of N disks = Reliability of 1 Disk \div N
- 50,000 Hours \div 70 disks = 700 hours
- Disk system MTTF: Drops from 6 years to 1 month!
- Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with access: very high media availability can be achieved

FTC.W99.42

I/O Benchmarks: TP1 by Anon et. al

- DebitCredit Scalability: size of account, branch, teller, history function of throughput
- TPS Number of ATMs Account-file size
 - 10 1,000 0.1 GB
 - 100 10,000 1.0 GB
 - 1,000 100,000 10.0 GB
 - 10,000 1,000,000 100.0 GB
- Each input TPS =>100,000 account records, 10 branches, 100 ATMs
- Accounts must grow since a person is not likely to use the bank more frequently just because the bank has a faster computer!
- Response time: 95% transactions take ≤ 1 second
- Configuration control: just report price (initial purchase price + 5 year maintenance = cost of ownership)
- By publishing, in public domain

FTC.W99 67

I/O Benchmarks: TP1 by Anon et. al

- Problems
 - Often ignored the user network to terminals
 - Used transaction generator with no think time; made sense for database vendors, but not what customer would see
- Solution: Hire auditor to certify results
 - Auditors soon saw many variations of ways to trick system
- Proposed minimum compliance list (13 pages); still, DEC tried IBM test on different machine with poorer results than claimed by auditor
- Created Transaction Processing Performance Council in 1988: founders were CDC, DEC, ICL, Pyramid, Stratus, Sybase, Tandem, and Wang; 46 companies today
- Led to TPC standard benchmarks in 1990, www.tpc.org

FTC.W99 68

I/O Benchmarks: Old TPC Benchmarks

- TPC-A: Revised version of TP1/DebitCredit
 - Arrivals: Random (TPC) vs. uniform (TP1)
 - Terminals: Smart vs. dumb (affects instruction path length)
 - ATM scaling: 10 terminals per TPS vs. 10
 - Branch scaling: 1 branch record per TPS vs. 10
 - Response time constraint: 90% ≤ 2 seconds vs. 95% ≤ 1
 - Full disclosure, approved by TPC
 - Complete TPS vs. response time plots vs. single point
- TPC-B: Same as TPC-A but without terminals—batch processing of requests
 - Response time makes no sense: plots tps vs. residence time (time of transaction resides in system)
- These have been withdrawn as benchmarks

FTC.W99 69

I/O Benchmarks: TPC-C Complex OLTP

- Models a wholesale supplier managing orders
- Order-entry conceptual model for benchmark
- Workload = 5 transaction types
- Users and database scale linearly with throughput
- Defines full-screen end-user interface
- Metrics: new-order rate (tpmC) and price/performance (\$/tpmC)
- Approved July 1992

FTC.W99 70

I/O Benchmarks: TPC-D Complex Decision Support Workload

- OLTP: business operation
- Decision support: business analysis (historical)
- Workload = 17 adhoc transactions
 - e.g., Impact on revenue of eliminating company-wide discount?
- Synthetic generator of data
- Size determined by Scale Factor:
 - 100 GB, 300 GB, 1 TB, 3 TB, 10 TB
- Metrics: “Queries per Gigabyte Hour”
 - Power (QppD@Size) = 3600 x SF / Geo. Mean of queries
 - Throughput (QthD@Size) = 17 x SF / (time/3600)
 - Price/Performance (\$/QppD@Size) = \$/ geo. mean(QppD@Size, QthD@Size)
- Report time to load database (indices, stats) too
- Approved April 1995

FTC.W99 71

I/O Benchmarks: TPC-W Transactional Web Benchmark

- Represent any business (retail store, software distribution, airline reservation, electronic stock trades, etc.) that markets and sells over the Internet/ Intranet
- Measure systems supporting users browsing, ordering, and conducting transaction oriented business activities.
- Security (including user authentication and data encryption) and dynamic page generation are important
- Before: processing of customer order by terminal operator working on LAN connected to database system
- Today: customer accesses company site over Internet connection, browses both static and dynamically generated Web pages, and searches the database for product or customer information. Customer also initiate, finalize and check on product orders and deliveries.
- Started 1/97; hope to release Fall, 1998

FTC.W99 72

TPC-C Performance tpm(c)

Rank	Config	tpmC	\$/tpmC	Database
1	IBM RS/6000 SP (12 node x 8-way)	57,053.80	\$147.40	Oracle8 8.0.4
2	HP HP 9000 V2250 (16-way)	52,117.80	\$81.17	Sybase ASE
3	Sun Ultra E6000 c/s (2 node x 22-way)	51,871.62	\$134.46	Oracle8 8.0.3
4	HP HP 9000 V2200 (16-way)	39,469.47	\$94.18	Sybase ASE
5	Fujitsu GRANPOWER 7000 Model 800	34,116.93	\$57,883.00	Oracle8
6	Sun Ultra E6000 c/s (24-way)	31,147.04	\$108.90	Oracle8 8.0.3
7	Digital AlphaS8400 (4 node x 8-way)	30,390.00	\$305.00	Oracle7 V7.3
8	SGI Origin2000 Server c/s (28-way)	25,309.20	\$139.04	INFORMIX
9	IBM AS/400e Server (12-way)	25,149.75	\$128.00	DB2
10	Digital AlphaS8400 5/625 (10-way)	24,537.00	\$110.48	Sybase SQL

FTC.W99 73

TPC-C Price/Performance \$/tpm(c)

Rank	Config	\$/tpmC	tpmC	Database
1	Acer AcerAltos 19000Pro4	\$27.25	11,072.07	M/S SQL 6.5
2	Dell PowerEdge 6100 c/s	\$29.55	10,984.07	M/S SQL 6.5
3	Compaq ProLiant 5500 c/s	\$33.37	10,526.90	M/S SQL 6.5
4	ALR Revolution 6x6 c/s	\$35.44	13,089.30	M/S SQL 6.5
5	HP NetServer LX Pro	\$35.82	10,505.97	M/S SQL 6.5
6	Fujitsu teamserver M796i	\$37.62	13,391.13	M/S SQL 6.5
7	Fujitsu GRANPOWER 5000 Model 670	\$37.62	13,391.13	M/S SQL 6.5
8	Unisys Aquanta HS6 c/s	\$37.96	13,089.30	M/S SQL 6.5
9	Compaq ProLiant 7000 c/s	\$39.25	11,055.70	M/S SQL 6.5
10	Unisys Aquanta HS6 c/s	\$39.39	12,026.07	M/S SQL 6.5

FTC.W99 74

TPC-D Performance/Price 300 GB

Rank	Config.	Qppd	QthD	\$/QphD	Database
1	NCR WorldMark 5150	9,260.0	3,117.0	2,172.00	Teradata
2	HP 9000 EPS22 (16 node)	5,801.2	2,829.0	1,982.00	Informix-XPS
3	DG AVION AV20000	3,305.8	1,277.7	1,319.00	Oracle8 v8.0.4
4	Sun Ultra Enterprise 6000	3,270.6	1,477.8	1,553.00	Informix-XPS
5	Sequent NUMA-Q 2000 (32 way)	3,232.3	1,097.8	3,283.00	Oracle8 v8.0.4

FTC.W99 75

TPC-D Performance 1TB

Rank	Config.	Qppd	QthD	\$/QphD	Database
1	Sun Ultra E6000 (4 x 24-way)	12,931.9	5,850.3	1,353.00	Informix Dyn
2	NCR WorldMark (32 x 4-way)	12,149.2	3,912.3	2103.00	Teradata
3	IBM RS/6000 SP (32 x 8-way)	7,633.0	5,155.4	2095.00	DB2 UDB, V5

- NOTE: Inappropriate to compare results from different database sizes.

FTC.W99 76

TPC-D Performance 1TB

Rank	Config.	Qppd	QthD	\$/QphD	Database
1	Sun Ultra E6000 (4 x 24-way)	12,931.9	5,850.3	1,353.00	Informix Dyn
2	NCR WorldMark (32 x 4-way)	12,149.2	3,912.3	2103.00	Teradata
3	IBM RS/6000 SP (32 x 8-way)	7,633.0	5,155.4	2095.00	DB2 UDB, V5

FTC.W99 77

SPEC SFS/LADDIS Predecessor: NFSstones

- NFSstones: synthetic benchmark that generates series of NFS requests from single client to test server: reads, writes, & commands & file sizes from other studies
 - Problem: 1 client could not always stress server
 - File and block sizes not realistic
 - Clients had to run SunOS

FTC.W99 78

SPEC SFS/LADDIS

- 1993 Attempt by NFS companies to agree on standard benchmark: Legato, Auspex, Data General, DEC, Interphase, Sun. Like NFSstones but
 - Run on multiple clients & networks (to prevent bottlenecks)
 - Same caching policy in all clients
 - Reads: 85% full block & 15% partial blocks
 - Writes: 50% full block & 50% partial blocks
 - Average response time: 50 ms
 - Scaling: for every 100 NFS ops/sec, increase capacity 1GB
 - Results: plot of server load (throughput) vs. response time & number of users
 - Assumes: 1 user => 10 NFS ops/sec

FTC.W99.79

Example SPEC SFS Result: DEC Alpha

- 200 MHz 21064: 8KI + 8KD + 2MB L2; 512 MB; 1 Gigaswitch
- DEC OSF1 v2.0
- 4 FDDI networks; 32 NFS Daemons, 24 GB file size
- 88 Disks, 16 controllers, 84 file systems

FTC.W99.80

Willy

- UNIX File System Benchmark that gives insight into I/O system behavior (Chen and Patterson, 1993)
- Self scaling to automatically explore system size
- Examines five parameters
 - Unique bytes touched: - data size; locality via LRU
 - Gives file cache size
 - Percentage of reads: %writes = 1 - % reads; typically 50%
 - 100% reads gives peak throughput
 - Average I/O Request Size: Bernoulli, C=1
 - Percentage sequential requests: typically 50%
 - Number of processes: concurrency of workload (number processes issuing I/O requests)
- Fix four parameters while vary one parameter
- Searches space to find high throughput

FTC.W99.81

Example Willy: DS 5000

	Sprite	Ultrix
Avg. Access Size	32 KB	13 KB
Data touched (file cache)	2MB, 15 MB	2 MB
Data touched (disk)	36 MB	6 MB
<ul style="list-style-type: none"> % reads = 50%, % sequential = 50% DS 5000 32 MB memory Ultrix: Fixed File Cache Size, Write through Sprite: Dynamic File Cache Size, Write back (Write cancelling) 		

FTC.W99.82

Sprite's Log Structured File System

Large file caches effective in reducing disk reads
Disk traffic likely to be dominated by writes

Write-Optimized File System

- Only representation on disk is log
- Stream out files, directories, maps without seeks

Advantages:

- Speed
- Stripes easily across several disks
- Fast recovery
- Temporal locality
- Versioning

Problems:

- Random access retrieval
- Log wrap
- Disk space utilization

FTC.W99.83

Willy: DS 5000 Number Bytes Touched

FTC.W99.84

Summary: I/O Benchmarks

- Scaling to track technological change
- TPC: price performance as normalizing configuration feature
- Auditing to ensure no foul play
- Throughput with restricted response time is normal measure

FTC.W99.85

Outline

- Historical Context of Storage I/O
- Secondary and Tertiary Storage Devices
- Storage I/O Performance Measures
- Processor Interface Issues
- A Little Queuing Theory
- Redundant Arrays of Inexpensive Disks (RAID)
- ABCs of UNIX File Systems
- I/O Benchmarks
- Comparing UNIX File System Performance
- I/O Busses

FTC.W99.86

Interconnect Trends

- Interconnect = glue that interfaces computer system components
- High speed hardware interfaces + logical protocols
- Networks, channels, backplanes

	Network	Channel	Backplane
Distance	>1000 m	10 - 100 m	1 m
Bandwidth	10 - 100 Mb/s	40 - 1000 Mb/s	320 - 1000+ Mb/s
Latency	high (>ms)	medium	low (<μs)
Reliability	low Extensive CRC	medium Byte Parity	high Byte Parity
	message-based narrow pathways distributed arb	↔	memory-mapped wide pathways centralized arb

FTC.W99.87

Backplane Architectures

Metric	VME	FutureBus	MultiBus II	SCSI-4
Bus Width (signals)	128	96	96	25
Address/Data Multiplexed?	No	Yes	Yes	na
Data Transfer Rate	16 - 32	32	32	64
Transfer Size	Single/Multiple	Single/Multiple	Single/Multiple	Single/Multiple
# of Bus Masters	Multiple	Multiple	Multiple	Multiple
Address Bus Functions	Sync	Sync	Optional	Optional
Clocking	Sync	Sync	Sync	External
Bandwidth, Single Word (0 ns mem)	25	37	20	5, 1.5
Bandwidth, Single Word (150 ns mem)	12.9	15.5	10	5, 1.5
Bandwidth, Multiple Word (0 ns mem)	27.9	95.5	40	5, 1.5
Bandwidth, Multiple Word (150 ns mem)	13.6	20.8	13.3	5, 1.5
Max. # of devices	31	20	21	25
Max. Bus Length	5 m	3 m	5 m	25 m
Standard	IEEE 1014	IEEE 896	ANSI/IEEE 1296	ANSI X3.131

Distinctions begin to blur:

SCSI channel is like a bus

FutureBus is like a channel (disconnect/reconnect)

HIPPI forms links in high speed switching fabrics

FTC.W99.88

Bus-Based Interconnect

- Bus: a shared communication link between subsystems**
 - Low cost: a single set of wires is shared multiple ways
 - Versatility: Easy to add new devices & peripherals may even be ported between computers using common bus
- Disadvantage**
 - A communication bottleneck, possibly limiting the maximum I/O throughput
- Bus speed is limited by physical factors**
 - the bus length
 - the number of devices (and, hence, bus loading).
 - these physical limits prevent arbitrary bus speedup.

FTC.W99.89

Bus-Based Interconnect

- Two generic types of busses:**
 - I/O busses: lengthy, many types of devices connected, wide range in the data bandwidth, and follow a bus standard (sometimes called a *channel*)
 - CPU-memory busses: high speed, matched to the memory system to maximize memory-CPU bandwidth, single device (sometimes called a *backplane*)
 - To lower costs, low cost (older) systems combine together
- Bus transaction**
 - Sending address & receiving or sending data

FTC.W99.90

SCSI: Small Computer System Interface

- Clock rate: 5 MHz / 10 MHz (fast) / 20 MHz (ultra)
- Width: $n = 8$ bits / 16 bits (wide); up to $n - 1$ devices to communicate on a bus or "string"
- Devices can be slave ("target") or master("initiator")
- SCSI protocol: a series of "phases", during which specific actions are taken by the controller and the SCSI disks
 - **Bus Free:** No device is currently accessing the bus
 - **Arbitration:** When the SCSI bus goes free, multiple devices may request (arbitrate) for the bus; fixed priority by address
 - **Selection:** informs the target that it will participate (Reselection if disconnected)
 - **Command:** the initiator reads the SCSI command bytes from host memory and sends them to the target
 - **Data Transfer:** data in or out, initiator: target
 - **Message Phase:** message in or out, initiator: target (identify, save/restore data pointer, disconnect, command complete)
 - **Status Phase:** target, just before command complete

FTC.W99 97

SCSI "Bus": Channel Architecture

FTC.W99 98

1993 I/O Bus Survey (P&H, 2nd Ed)

Bus	SBus	TurboChannel	MicroChannel	PCI
Originator	Sun	DEC	IBM	Intel
Clock Rate (MHz)	16-25	12.5-25	async	33
Addressing	Virtual	Physical	Physical	Physical
Data Sizes (bits)	8,16,32	8,16,24,32	8,16,24,32,64	8,16,24,32,64
Master	Multi	Single	Multi	Multi
Arbitration	Central	Central	Central	Central
32 bit read (MB/s)	33	25	20	33
Peak (MB/s)	89	84	75	111 (222)
Max Power (W)	16	26	13	25

FTC.W99 99

1993 MP Server Memory Bus Survey

Bus	Summit	Challenge	XDBus
Originator	HP	SGI	Sun
Clock Rate (MHz)	60	48	66
Split transaction?	Yes	Yes	Yes?
Address lines	48	40	??
Data lines	128	256	144 (parity)
Data Sizes (bits)	512	1024	512
Clocks/transfer	4	5	4?
Peak (MB/s)	960	1200	1056
Master	Multi	Multi	Multi
Arbitration	Central	Central	Central
Addressing	Physical	Physical	Physical
Slots	16	9	10
Busses/system	1	1	2
Length	13 inches	127 inches	17 inches

FTC.W99 100

Summary: I/O Benchmarks

- Scaling to track technological change
- TPC: price performance as normalizing configuration feature
- Auditing to ensure no foul play
- Throughput with restricted response time is normal measure

FTC.W99 101