
Page 1

FTC.W99 1

Lecture 5:
Vector Processors and DSPs

Prof. Fred Chong
ECS 250A Computer Architecture

Winter 1999

(Adapted from Patterson CS252 Copyright 1998 UCB)

FTC.W99 2

Review
• Speculation: Out-of-order execution, In-order commit

(reorder buffer+rename registers)=>precise exceptions
• Branch Prediction

– Branch History Table: 2 bits for loop accuracy

– Recently executed branches correlated with next branch?
– Branch Target Buffer: include branch address & prediction
– Predicated Execution can reduce number of branches, number of

mispredicted branches

• Software Pipelining
– Symbolic loop unrolling (instructions from different iterations) to

optimize pipeline with little code expansion, little overhead

• Superscalar and VLIW(“EPIC”): CPI < 1 (IPC > 1)
– Dynamic issue vs. Static issue
– More instructions issue at same time => larger hazard penalty
– # independent instructions = # functional units X latency

FTC.W99 3

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Review: Theoretical Limits to ILP?
(Figure 4.48, Page 332)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

FTC.W99 4

Review: Instructon Level Parallelism

• High speed execution based on instruction
level parallelism (ilp): potential of short
instruction sequences to execute in parallel

• High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) superscalar execution: issue and execute multiple
instructions per clock cycle
3) Out-of-order execution (commit in-order)

• Memory accesses for high-speed
microprocessor?

– Data Cache, possibly multiported, multiple levels

FTC.W99 5

Problems with conventional approach

• Limits to conventional exploitation of ILP:

1) pipelined clock rate: at some point, each
increase in clock rate has corresponding CPI
increase (branches, other hazards)
2) instruction fetch and decode: at some
point, its hard to fetch and decode more
instructions per clock cycle

3) cache hit rate: some long-running
(scientific) programs have very large data
sets accessed with poor locality;
others have continuous data streams
(multimedia) and hence poor locality

FTC.W99 6
25

Alternative Model:
Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

add.vv v3, v1, v2

VECTOR
(N operations)

• Vector processors have high-level operations that work
on linear arrays of numbers: "vectors"

Page 2

FTC.W99 7

Properties of Vector Processors

• Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate

• Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over 64 elements
=> no (data) caches required! (Do use instruction cache)

• Reduces branches and branch problems in pipelines
• Single vector instruction implies lots of work (loop)

=> fewer instruction fetches

FTC.W99 8

Spec92fp Operations (Millions) Instructions (M)

Program RISC Vector R / V RISC Vector R / V

swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x

nasa7 69 41 1.7x 69 2.2 31x

su2cor 51 35 1.4x 51 1.8 29x

tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x

mdljdp2 32 52 0.6x 32 15.8 2x

Operation & Instruction Count:
RISC v. Vector Processor

(from F. Quintana, U. Barcelona.)

 Vector reduces ops by 1.2X, instructions by 20X
FTC.W99 9

Styles of Vector Architectures

• memory-memory vector processors: all vector
operations are memory to memory

• vector-register processors: all vector operations
between vector registers (except load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s:

Cray, Convex, Fujitsu, Hitachi, NEC
– We assume vector-register for rest of lectures

FTC.W99 10

Components of Vector Processor
• Vector Register: fixed length bank holding a single

vector
– has at least 2 read and 1 write ports
– typically 8-32 vector registers, each holding 64-128 64-bit elements

• Vector Functional Units (FUs): fully pipelined, start new
operation every clock

– typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), integer
add, logical, shift; may have multiple of same unit

• Vector Load-Store Units (LSUs): fully pipelined unit to
load or store a vector; may have multiple LSUs

• Scalar registers: single element for FP scalar or
address

• Cross-bar to connect FUs , LSUs, registers
FTC.W99 11

“DLXV” Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDSV V1,F0,V2 V1=F0+V2 scalar + vector

• MULTV V1,V2,V3 V1=V2xV3 vector x vector
• MULSV V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1

• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask

• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask

FTC.W99 12
32

Memory operations
• Load/store operations move groups of data

between registers and memory
• Three types of addressing

– Unit stride
» Fastest

– Non-unit (constant) stride
– Indexed (gather-scatter)

» Vector equivalent of register indirect

» Good for sparse arrays of data
» Increases number of programs that vectorize

Page 3

FTC.W99 13

DAXPY (Y = a * X + Y)

 LD F0,a
 ADDI R4,Rx,#512 ;last address to load

loop: LD F2, 0(Rx) ;load X(i)

 MULTD F2,F0,F2 ;a*X(i)
 LD F4, 0(Ry) ;load Y(i)
 ADDD F4,F2, F4 ;a*X(i) + Y(i)
 SD F4 ,0(Ry) ;store into Y(i)
 ADDI Rx,Rx,#8 ;increment index to X
 ADDI Ry,Ry,#8 ;increment index to Y
 SUB R20,R4,Rx ;compute bound

 BNZ R20,loop ;check if done

LD F0,a ;load scalar a

LV V1,Rx ;load vector X

MULTS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y
are length 64

Scalar vs. Vector

 578 (2+9*64) vs.
 321 (1+5*64) ops (1.8X)

578 (2+9*64) vs.
 6 instructions (96X)

64 operation vectors +
no loop overhead

also 64X fewer pipeline
hazards

FTC.W99 14

Example Vector Machines
• Machine Year Clock Regs Elements FUs LSUs

• Cray 1 1976 80 MHz 8 64 6 1
• Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
• Cray YMP 1988 166 MHz 8 64 8 2 L, 1 S

• Cray C-90 1991 240 MHz 8 128 8 4
• Cray T-90 1996 455 MHz 8 128 8 4

• Conv. C-1 1984 10 MHz 8 128 4 1
• Conv. C-4 1994 133 MHz 16 128 3 1
• Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2

• Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
• NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
• NEC SX/3 1995 400 MHz 8+8K 256+var 16 8 FTC.W99 15

Vector Linpack Performance
(MFLOPS)

 Machine Year Clock 100x100 1kx1k Peak(Procs)

• Cray 1 1976 80 MHz 12 110 160(1)
• Cray XMP 1983 120 MHz 121 218 940(4)
• Cray YMP 1988 166 MHz 150 307 2,667(8)

• Cray C-90 1991 240 MHz 387 902 15,238(16)
• Cray T-90 1996 455 MHz 705 1603 57,600(32)

• Conv. C-1 1984 10 MHz 3 -- 20(1)
• Conv. C-4 1994 135 MHz 160 2531 3240(4)
• Fuj. VP200 1982 133 MHz 18 422 533(1)

• NEC SX/2 1984 166 MHz 43 885 1300(1)
• NEC SX/3 1995 400 MHz 368 2757 25,600(4)

FTC.W99 16

Vector Surprise
• Use vectors for inner loop parallelism (no surprise)

– One dimension of array: A[0, 0], A[0, 1], A[0, 2], ...
– think of machine as, say, 32 vector regs each with 64 elements
– 1 instruction updates 64 elements of 1 vector register

• and for outer loop parallelism!
– 1 element from each column: A[0,0], A[1,0], A[2,0], ...
– think of machine as 64 “virtual processors” (VPs)

each with 32 scalar registers! (multithreaded processor)
– 1 instruction updates 1 scalar register in 64 VPs

• Hardware identical, just 2 compiler perspectives

FTC.W99 17

Virtual Processor Vector Model

• Vector operations are SIMD
(single instruction multiple data)operations

• Each element is computed by a virtual
processor (VP)

• Number of VPs given by vector length
– vector control register

FTC.W99 18

Vector Architectural State

General
Purpose
Registers

Flag
Registers

(32)

VP0 VP1 VP$vlr-1

vr0

vr1

vr31

vf0

vf1

vf31

$vdw bits

1 bit

Virtual Processors ($vlr)

vcr0

vcr1

vcr31

Control
Registers

32 bits

Page 4

FTC.W99 19
33

Vector Implementation

• Vector register file
– Each register is an array of elements
– Size of each register determines maximum

vector length
– Vector length register determines vector length

for a particular operation

• Multiple parallel execution units = “lanes”
(sometimes called “pipelines” or “pipes”)

FTC.W99 20
34

Vector Terminology:
4 lanes, 2 vector functional units

(Vector
Functional
Unit)

FTC.W99 21

Vector Execution Time

• Time = f(vector length, data dependicies, struct. hazards)
• Initiation rate: rate that FU consumes vector elements

(= number of lanes; usually 1 or 2 on Cray T-90)
• Convoy: set of vector instructions that can begin

execution in same clock (no struct. or data hazards)

• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n,

then they take approx. m x n clock cycles (ignores
overhead; good approximization for long vectors)

4 conveys, 1 lane, VL=64
=> 4 x 64 256 clocks
(or 4 clocks per result)

1: LV V1,Rx ;load vector X

2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result

FTC.W99 22

DLXV Start-up Time
• Start-up time: pipeline latency time (depth of FU

pipeline); another sources of overhead

• Operation Start-up penalty (from CRAY-1)
• Vector load/store 12
• Vector multply 7

• Vector add 6
Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result

1. LV 0 12 11+n (12+n-1)

2. MULV, LV 12+n 12+n+12 23+2n Load start-up

3. ADDV 24+2n 24+2n+6 29+3n Wait convoy 2

4. SV 30+3n 30+3n+12 41+4n Wait convoy 3
FTC.W99 23

Why startup time for each
vector instruction?

• Why not overlap startup time of back-to-back
vector instructions?

• Cray machines built from many ECL chips
operating at high clock rates; hard to do?

• Berkeley vector design (“T0”) didn’t know it
wasn’t supposed to do overlap, so no startup
times for functional units (except load)

FTC.W99 24

Vector Load/Store Units & Memories
• Start-up overheads usually longer fo LSUs

• Memory system must sustain (# lanes x word) /clock cycle
• Many Vector Procs. use banks (vs. simple interleaving):

1) support multiple loads/stores per cycle
=> multiple banks & address banks independently

2) support non-sequential accesses (see soon)
• Note: No. memory banks > memory latency to avoid stalls

– m banks => m words per memory lantecy l clocks
– if m < l, then gap in memory pipeline:

clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m
– may have 1024 banks in SRAM

Page 5

FTC.W99 25

Vector Length

• What to do when vector length is not exactly 64?

• vector-length register (VLR) controls the length of
any vector operation, including a vector load or
store. (cannot be > the length of vector registers)

do 10 i = 1, n
10 Y(i) = a * X(i) + Y(i)

• Don't know n until runtime!
n > Max. Vector Length (MVL)?

FTC.W99 26

Strip Mining
• Suppose Vector Length > Max. Vector Length (MVL)?
• Strip mining: generation of code such that each vector

operation is done for a size Š to the MVL
• 1st loop do short piece (n mod MVL), rest VL = MVL

 low = 1
 VL = (n mod MVL) /*find the odd size piece*/
 do 1 j = 0,(n / MVL) /*outer loop*/

do 10 i = low,low+VL-1 /*runs for length VL*/
Y(i) = a*X(i) + Y(i) /*main operation*/

10 continue
low = low+VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue
FTC.W99 27

Common Vector Metrics

• Rinf: MFLOPS rate on an infinite-length vector
– upper bound
– Real problems do not have unlimited vector lengths, and the start-up

penalties encountered in real problems will be larger
– (Rn is the MFLOPS rate for a vector of length n)

• N1/2: The vector length needed to reach one-half of Rinf
– a good measure of the impact of start-up

• NV: The vector length needed to make vector mode
faster than scalar mode

– measures both start-up and speed of scalars relative to vectors, quality
of connection of scalar unit to vector unit

FTC.W99 28

Vector Stride
• Suppose adjacent elements not sequential in memory
do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0
do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)

• Either B or C accesses not adjacent (800 bytes between)
• stride: distance separating elements that are to be

merged into a single vector (caches do unit stride)
=> LVWS (load vector with stride) instruction

• Strides => can cause bank conflicts
(e.g., stride = 32 and 16 banks)

• Think of address per vector element
FTC.W99 29

Compiler Vectorization on Cray XMP
• Benchmark %FP %FP in vector

• ADM 23% 68%
• DYFESM 26% 95%
• FLO52 41% 100%

• MDG 28% 27%
• MG3D 31% 86%
• OCEAN 28% 58%

• QCD 14% 1%
• SPICE 16% 7% (1% overall)

• TRACK 9% 23%
• TRFD 22% 10%

FTC.W99 30

Vector Opt #1: Chaining
• Suppose:

MULV V1,V2,V3

ADDV V4,V1,V5 ; separate convoy?
• chaining: vector register (V1) is not as a single entity but

as a group of individual registers, then pipeline
forwarding can work on individual elements of a vector

• Flexible chaining: allow vector to chain to any other
active vector operation => more read/write port

• As long as enough HW, increases convoy size

Unchained

Chained

7 64
MULTV

6 64
ADDV

7 64

MULTV
6 64

ADDV

Total = 77

Total = 141

Page 6

FTC.W99 31

Example Execution of Vector Code
Vector

Memory Pipeline
Vector

Multiply Pipeline
Vector

Adder Pipeline

8 lanes, vector length 32,
chaining

Scalar

FTC.W99 32

Vector Opt #2: Conditional Execution
• Suppose:

do 100 i = 1, 64
if (A(i) .ne. 0) then

A(i) = A(i) – B(i)

endif
100 continue

• vector-mask control takes a Boolean vector: when
vector-mask register is loaded from vector test, vector
instructions operate only on vector elements whose
corresponding entries in the vector-mask register are 1.

• Still requires clock even if result not stored; if still
performs operation, what about divide by 0?

FTC.W99 33

Vector Opt #3: Sparse Matrices
• Suppose:

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

• gather (LVI) operation takes an index vector and fetches
the vector whose elements are at the addresses given by
adding a base address to the offsets given in the index
vector => a nonsparse vector in a vector register

• After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a
scatter store (SVI), using the same index vector

• Can't be done by compiler since can't know Ki elements
distinct, no dependencies; by compiler directive

• Use CVI to create index 0, 1xm, 2xm, ..., 63xm

FTC.W99 34

Sparse Matrix Example

• Cache (1993) vs. Vector (1988)

IBM RS6000 Cray YMP
Clock 72 MHz 167 MHz
Cache 256 KB 0.25 KB

Linpack 140 MFLOPS 160 (1.1)
Sparse Matrix 17 MFLOPS 125 (7.3)

(Cholesky Blocked)
• Cache: 1 address per cache block (32B to 64B)

• Vector: 1 address per element (4B)

FTC.W99 35

Applications
Limited to scientific computing?

• Multimedia Processing (compress., graphics, audio synth, image
proc.)

• Standard benchmark kernels (Matrix Multiply, FFT, Convolution,

Sort)

• Lossy Compression (JPEG, MPEG video and audio)

• Lossless Compression (Zero removal, RLE, Differencing, LZW)

• Cryptography (RSA, DES/IDEA, SHA/MD5)

• Speech and handwriting recognition
• Operating systems/Networking (memcpy, memset, parity,

checksum)

• Databases (hash/join, data mining, image/video serving)

• Language run-time support (stdlib, garbage collection)

• even SPECint95 FTC.W99 36

Vector for Multimedia?

• Intel MMX: 57 new 80x86 instructions (1st since 386)
– similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC

• 3 data types: 8 8-bit, 4 16-bit, 2 32-bit in 64bits
– reuse 8 FP registers (FP and MMX cannot mix)

• short vector: load, add, store 8 8-bit operands

• Claim: overall speedup 1.5 to 2X for 2D/3D graphics,
audio, video, speech, comm., ...

– use in drivers or added to library routines; no compiler

+

Page 7

FTC.W99 37

MMX Instructions

• Move 32b, 64b

• Add, Subtract in parallel: 8 8b, 4 16b, 2 32b
– opt. signed/unsigned saturate (set to max) if overflow

• Shifts (sll,srl, sra), And, And Not, Or, Xor
in parallel: 8 8b, 4 16b, 2 32b

• Multiply, Multiply-Add in parallel: 4 16b
• Compare = , > in parallel: 8 8b, 4 16b, 2 32b

– sets field to 0s (false) or 1s (true); removes branches

• Pack/Unpack
– Convert 32b<–> 16b, 16b <–> 8b
– Pack saturates (set to max) if number is too large

FTC.W99 38

 Vectors and
Variable Data Width

• Programmer thinks in terms of vectors of data
of some width (8, 16, 32, or 64 bits)

• Good for multimedia; More elegant than
MMX-style extensions

• Don’t have to worry about how data stored in
hardware

– No need for explicit pack/unpack operations

• Just think of more virtual processors operating
on narrow data

• Expand Maximum Vector Length with
decreasing data width:
64 x 64bit, 128 x 32 bit, 256 x 16 bit, 512 x 8 bit

FTC.W99 39

Mediaprocesing:
Vectorizable? Vector Lengths?

Kernel Vector length

• Matrix transpose/multiply # vertices at once
• DCT (video, communication) image width
• FFT (audio) 256-1024
• Motion estimation (video) image width, iw/16
• Gamma correction (video) image width
• Haar transform (media mining) image width
• Median filter (image processing) image width
• Separable convolution (img. proc.) image width

(from Pradeep Dubey - IBM,
http://www.research.ibm.com/people/p/pradeep/tutor.html)

FTC.W99 40

Vector Pitfalls
• Pitfall: Concentrating on peak performance and ignoring

start-up overhead: NV (length faster than scalar) > 100!
• Pitfall: Increasing vector performance, without

comparable increases in scalar performance
(Amdahl's Law)

– failure of Cray competitor from his former company

• Pitfall: Good processor vector performance without
providing good memory bandwidth

– MMX?

FTC.W99 41

Vector Advantages
• Easy to get high performance; N operations:

– are independent

– use same functional unit

– access disjoint registers

– access registers in same order as previous instructions

– access contiguous memory words or known pattern

– can exploit large memory bandwidth

– hide memory latency (and any other latency)

• Scalable (get higher performance as more HW resources available)
• Compact: Describe N operations with 1 short instruction (v. VLIW)
• Predictable (real-time) performance vs. statistical performance

(cache)

• Multimedia ready: choose N * 64b, 2N * 32b, 4N * 16b, 8N * 8b
• Mature, developed compiler technology
• Vector Disadvantage: Out of Fashion

FTC.W99 42

Vector Summary

• Alternate model accomodates long memory latency,
doesn’t rely on caches as does Out-Of-Order,
superscalar/VLIW designs

• Much easier for hardware: more powerful instructions,
more predictable memory accesses, fewer harzards,
fewer branches, fewer mispredicted branches, ...

• What % of computation is vectorizable?
• Is vector a good match to new apps such as

multidemia, DSP?

Page 8

FTC.W99 43

More Vector Processing

• Hard vector example
• Vector vs. Superscalar
• Krste Asanovic’s dissertation:

designing a vector processor issues
• Vector vs. Superscalar: area, energy
• Real-time vs. Average time

FTC.W99 44

Vector Example with
dependency

/* Multiply a[m][k] * b[k][n] to get c[m][n] */
for (i=1; i<m; i++)
{
 for (j=1; j<n; j++)
 {
 sum = 0;
 for (t=1; t<k; t++)
 {
 sum += a[i][t] * b[t][j];
 }
 c[i][j] = sum;
 }
} FTC.W99 45

Straightforward Solution

• Must sum of all the elements of a vector
besides grabbing one element at a time from
a vector register and putting it in the scalar
unit?

• e.g., shift all elements left 32 elements or
collapse into a compact vector all elements
not masked

• In T0, the vector extract instruction, vext.v.
This shifts elements within a vector

• Called a “reduction”

FTC.W99 46

Novel Matrix Multiply Solution

• You don't need to do reductions for matrix
multiply

• You can calculate multiple independent sums
within one vector register

• You can vectorize the j loop to perform 32
dot-products at the same time

• Or you can think of each 32 Virtual Processor
doing one of the dot products

• (Assume Maximal Vector Length is 32)
• Show it in C source code, but can imagine the

assembly vector instructions from it
FTC.W99 47

Original Vector Example with
dependency

/* Multiply a[m][k] * b[k][n] to get c[m][n] */
for (i=1; i<m; i++)
{
 for (j=1; j<n; j++)
 {
 sum = 0;
 for (t=1; t<k; t++)
 {
 sum += a[i][t] * b[t][j];
 }
 c[i][j] = sum;
 }
} FTC.W99 48

Optimized Vector Example
/* Multiply a[m][k] * b[k][n] to get c[m][n] */
for (i=1; i<m; i++)
{
 for (j=1; j<n; j+=32)/* Step j 32 at a time. */
 {
 sum[0:31] = 0; /* Initialize a vector

register to zeros. */
 for (t=1; t<k; t++)
 {
 a_scalar = a[i][t]; /* Get scalar from

 a matrix. */
 b_vector[0:31] = b[t][j:j+31];

/* Get vector from
 b matrix. */

 prod[0:31] = b_vector[0:31]*a_scalar;
 /* Do a vector-scalar multiply. */

Page 9

FTC.W99 49

Optimized Vector Example cont’d

 /* Vector-vector add into results. */
 sum[0:31] += prod[0:31];
 }

 /* Unit-stride store of vector of
 results. */

 c[i][j:j+31] = sum[0:31];
 }
}

FTC.W99 50

Novel, Step #2

• It's actually better to interchange the i and j
loops, so that you only change vector length
once during the whole matrix multiply

• To get the absolute fastest code you have to
do a little register blocking of the innermost
loop.

FTC.W99 51

Designing a Vector Processor

• Changes to scalar

• How Pick Vector Length?
• How Pick Number of Vector Registers?

• Context switch overhead
• Exception handling
• Masking and Flag Instructions

FTC.W99 52

Changes to scalar processor to
run vector instructions

• Decode vector instructions

• Send scalar registers to vector unit
(vector-scalar ops)

• Synchronization for results back from vector
register, including exceptions

• Things that don’t run in vector don’t have
high ILP, so can make scalar CPU simple

FTC.W99 53

How Pick Vector Length?
• Vector length => Keep all VFUs busy:

 vector length •
(# lanes) X (# VFUs)

Vector instructions/cycle

FTC.W99 54

How Pick Vector Length?
• Longer good because:

1) Hide vector startup
2) lower instruction bandwidth
3) tiled access to memory reduce scalar processor memory

bandwidth needs

4) if know max length of app. is < max vector length, no
strip mining overhead

5) Better spatial locality for memory access

• Longer not much help because:
1) diminishing returns on overhead savings as keep

doubling number of element

2) need natural app. vector length to match physical
register length, or no help

Page 10

FTC.W99 55

How Pick Number of
Vector Registers?

• More Vector Registers:
1) Reduces vector register “spills” (save/restore)

– 20% reduction to 16 registers for su2cor and tomcatv

– 40% reduction to 32 registers for tomcatv
– others 10%-15%

2) aggressive scheduling of vector instructinons:
better compiling to take advantage of ILP

• Fewer:

Fewer bits in instruction format (usually 3 fields)

FTC.W99 56

Context switch overhead

• Extra dirty bit per processor
– If vector registers not written, don’t need to save on

context switch

• Extra valid bit per vector register, cleared on
process start

– Don’t need to restore on context switch until needed

FTC.W99 57

Exception handling: External

• If external exception, can just put pseudo-op
into pipeline and wait for all vector ops to
complete

– Alternatively, can wait for scalar unit to complete and
begin working on exception code assuming that vector
unit will not cause exception and interrupt code does not
use vector unit

FTC.W99 58

Exception handling: Arithmetic

• Arithmetic traps harder

• Precise interrupts => large performance loss
• Alternative model: arithmetic exceptions set

vector flag registers, 1 flag bit per element

• Software inserts trap barrier instructions from
SW to check the flag bits as needed

• IEEE Floating Point requires 5 flag bits

FTC.W99 59

Exception handling: Page Faults

• Page Faults must be precise

• Instruction Page Faults not a problem
• Data Page Faults harder

• Option 1: Save/restore internal vector unit
state

– Freeze pipeline, dump vector state
– perform needed ops
– Restore state and continue vector pipeline

FTC.W99 60

Exception handling: Page Faults
• Option 2: expand memory pipeline to check

addresses before send to memory + memory
buffer between address check and registers

• multiple queues to transfer from memory
buffer to registers; check last address in
queues before load 1st element from buffer.

• Pre Address Iinstruction Queue (PAIQ) which
sends to TLB and memory while in parallel go
to Address Check Instruction Queue (ACIQ)

• When passes checks, instruction goes to
Committed Instruction Queue (CIQ) to be
there when data returns.

• On page fault, only save instructions in PAIQ
and ACIQ

Page 11

FTC.W99 61

Masking and Flag Instructions

• Flag have multiple uses (conditional, arithmetic
exceptions)

• Alternative is conditional move/merge
• Clear that fully masked is much more efficient that

with conditional moves
– Not perform extra instructions, avoid exceptions

• Downside is:
1) extra bits in instruction to specify the flag register
2) extra interlock early in the pipeline for RAW

hazards on Flag registers

FTC.W99 62

Flag Instruction Ops

• Do in scalar processor vs. in vector unit with
vector ops?

• Disadvantages to using scalar processor to do
flag calculations (as in Cray):

1) if MVL > word size => multiple instructions;
 also limits MVL in future

2) scalar exposes memory latency
3) vector produces flag bits 1/clock, but scalar

consumes at 64 per clock, so cannot chain
together

• Proposal: separate Vector Flag Functional Units
and instructions in VU FTC.W99 63

Vectors Are Inexpensive
Scalar
l N ops per cycle

 ⇒ Ο(Ν2) circuitry
l HP PA-8000

l 4-way issue

l reorder buffer:
850K transistors

l incl. 6,720 5-bit register
number comparators

Vector
l N ops per cycle

⇒ Ο(Ν + εΝ2)
circuitry

l T0 vector micro
l 24 ops per cycle
l 730K transistors

total
l only 23 5-bit register

number comparators

l No floating point

FTC.W99 64

MIPS R10000 vs. T0

*See http://www.icsi.berkeley.edu/real/spert/t0-intro.html FTC.W99 65

Vectors Lower Power
Vector

• One instruction
fetch,decode, dispatch per
vector

• Structured register
accesses

• Smaller code for high
performance, less power in
instruction cache misses

• Bypass cache

• One TLB lookup per
group of loads or stores

• Move only necessary data
across chip boundary

Single-issue Scalar
l One instruction fetch, decode,

dispatch per operation
l Arbitrary register accesses,

adds area and power
l Loop unrolling and software

pipelining for high performance
increases instruction cache
footprint

l All data passes through cache;
waste power if no temporal locality

l One TLB lookup per load or store

l Off-chip access in whole cache lines
FTC.W99 66

Superscalar Energy Efficiency
Even Worse

Vector
• Control logic grows

linearly with issue width

• Vector unit switches
off when not in use

• Vector instructions expose
parallelism without
speculation

• Software control of
speculation when desired:

– Whether to use vector mask or
compress/expand for
conditionals

Superscalar
l Control logic grows

quadratically with issue
width

l Control logic consumes
energy regardless of
available parallelism

l Speculation to increase
visible parallelism
wastes energy

Page 12

FTC.W99 67

New Architecture Directions

• “…media processing will become the dominant force in
computer arch. & microprocessor design.”

• “... new media-rich applications... involve significant
real-time processing of continuous media streams, and
make heavy use of vectors of packed 8-, 16-, and 32-bit
integer and Fl. Pt.”

• Needs include high memory BW, high network BW,
continuous media data types, real-time response, fine
grain parallelism

– “How Multimedia Workloads Will Change Processor Design”,
Diefendorff & Dubey, IEEE Computer (9/97)

FTC.W99 68

Which is Faster?
 Statistical v. Real time v. SPEC

Performance
Statistical ⇒ Average ⇒ C
Real time ⇒ Worst ⇒ A

(SPEC ⇒ Best ⇒ C)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Performance

In
pu

ts

Average

Worst Case

A B C

Best Case
FTC.W99 69

VLIW/Out-of-Order vs.
Modest Scalar+Vector

0

100

Applications sorted by Instruction Level
Parallelism

P
er

fo
rm

an
ce

VLIW/OOO

Modest Scalar

Vector

Very Sequential Very Parallel

(Where are important
applications on this axis?)

(Where are crossover
points on these curves?)

FTC.W99 70

Cost-performance of simple vs. OOO

 MIPS MPUs R5000 R10000 10k/5k
• Clock Rate 200 MHz 195 MHz 1.0x
• On-Chip Caches 32K/32K 32K/32K 1.0x

• Instructions/Cycle 1(+ FP) 4 4.0x
• Pipe stages 5 5-7 1.2x

• Model In-order Out-of-order ---
• Die Size (mm2) 84 298 3.5x

– without cache, TLB 32 205 6.3x

• Development (man yr.) 60 300 5.0x

• SPECint_base95 5.7 8.8 1.6x

FTC.W99 71

Summary

• Vector is alternative model for exploiting ILP

• If code is vectorizable, then simpler hardware,
more energy efficient, and better real-time
model than Out-of-order machines

• Design issues include number of lanes,
number of functional units, number of vector
registers, length of vector registers,
exception handling, conditional operations

• Will multimedia popularity revive vector
architectures?

FTC.W99 72

Review: Processor Classes
• General Purpose - high performance

– Pentiums, Alpha's, SPARC
– Used for general purpose software
– Heavy weight OS - UNIX, NT
– Workstations, PC's

• Embedded processors and processor cores
– ARM, 486SX, Hitachi SH7000, NEC V800
– Single program
– Lightweight, often realtime OS
– DSP support

– Cellular phones, consumer electronics (e. g. CD players)

• Microcontrollers
– Extremely cost sensitive
– Small word size - 8 bit common
– Highest volume processors by far

– Automobiles, toasters, thermostats, ...

In
cr

ea
si

n
g

 C
o

st

In
cr

ea
si

n
g

 V
o

lu
m

e

Page 13

FTC.W99 73

DSP Outline
• Intro
• Sampled Data Processing and Filters
• Evolution of DSP

• DSP vs. GP Processor

FTC.W99 74

DSP Introduction

• Digital Signal Processing: application of
mathematical operations to digitally represented
signals

• Signals represented digitally as
sequences of samples

• Digital signals obtained from physical signals
via tranducers (e.g., microphones) and analog-
to-digital converters (ADC)

• Digital signals converted back to physical
signals via digital-to-analog converters (DAC)

• Digital Signal Processor (DSP):
electronic system that processes digital signals

FTC.W99 75

Common DSP algorithms
and applications

• Applications – Instrumentation and
measurement

– Communications
– Audio and video processing
– Graphics, image enhancement, 3- D rendering
– Navigation, radar, GPS
– Control - robotics, machine vision, guidance

• Algorithms
– Frequency domain filtering - FIR and IIR
– Frequency- time transformations - FFT
– Correlation

FTC.W99 76

What Do DSPs Need to Do Well?

• Most DSP tasks require:
– Repetitive numeric computations
– Attention to numeric fidelity
– High memory bandwidth, mostly via array accesses
– Real-time processing

• DSPs must perform these tasks efficiently
while minimizing:

– Cost
– Power
– Memory use
– Development time

FTC.W99 77

Who Cares?

• DSP is a key enabling technology for many
types of electronic products

• DSP-intensive tasks are the performance
bottleneck in many computer applications
today

• Computational demands of DSP-intensive
tasks are increasing very rapidly

• In many embedded applications, general-
purpose microprocessors are not competitive
with DSP-oriented processors today

• 1997 market for DSP processors: $3 billion

FTC.W99 78

A Tale of Two Cultures
• General Purpose Microprocessor traces roots

back to Eckert, Mauchly, Von Neumann (ENIAC)
• DSP evolved from Analog Signal Processors,

using analog hardware to transform phyical
signals (classical electrical engineering)

• ASP to DSP because
– DSP insensitive to environment (e.g., same response in snow

or desert if it works at all)
– DSP performance identical even with variations in components;

2 analog systems behavior varies even if built with same
components with 1% variation

• Different history and different applications led to
different terms, different metrics, some new
inventions

• Increasing markets leading to cultural warfare

Page 14

FTC.W99 79

DSP vs. General Purpose MPU

• DSPs tend to be written for 1 program, not
many programs.

– Hence OSes are much simpler, there is no virtual memory
or protection, ...

• DSPs sometimes run hard real-time apps
– You must account for anything that could happen in a

time slot
– All possible interrupts or exceptions must be accounted

for and their collective time be subtracted from the time
interval.

– Therefore, exceptions are BAD!

• DSPs have an infinite continuous data stream

FTC.W99 80

Today’s DSP “Killer Apps”

• In terms of dollar volume, the biggest markets
for DSP processors today include:

– Digital cellular telephony
– Pagers and other wireless systems
– Modems
– Disk drive servo control

• Most demand good performance

• All demand low cost
• Many demand high energy efficiency

• Trends are towards better support for these
(and similar) major applications.

FTC.W99 81

Digital Signal Processing in
General Purpose Microprocessors
• Speech and audio compression
• Filtering
• Modulation and demodulation

• Error correction coding and decoding
• Servo control

• Audio processing (e.g., surround sound, noise
reduction, equalization, sample rate conversion)

• Signaling (e.g., DTMF detection)
• Speech recognition

• Signal synthesis (e.g., music, speech synthesis)

FTC.W99 82

Decoding DSP Lingo

• DSP culture has a graphical format to represent
formulas.

• Like a flowchart for formulas, inner loops,
 not programs.

• Some seem natural:
ΣΣ is add, X is multiply

• Others are obtuse:
z–1 means take variable from earlier iteration.

• These graphs are trivial to decode

FTC.W99 83

Decoding DSP Lingo
• Uses “flowchart” notation instead of equations
• Multiply is or

X

• Add is or

+ ΣΣ

• Delay/Storage is or or

Delay z–1 D

designed to keep
computer
architects
without the secret
decoder ring out
of the DSP field?

FTC.W99 84

FIR Filtering:
A Motivating Problem

• M most recent samples in the delay line (Xi)

• New sample moves data down delay line
• “Tap” is a multiply-add

• Each tap (M+1 taps total) nominally requires:
– Two data fetches
– Multiply
– Accumulate
– Memory write-back to update delay line

• Goal: 1 FIR Tap / DSP instruction cycle

Page 15

FTC.W99 85

DSP Assumptions of the World

• Machines issue/execute/complete in order

• Machines issue 1 instruction per clock
• Each line of assembly code = 1 instruction

• Clocks per Instruction = 1.000
• Floating Point is slow, expensive

FTC.W99 86

FIR filter on (simple)
General Purpose Processor

loop:
lw x0, 0(r0)
lw y0, 0(r1)
mul a, x0,y0
add y0,a,b
sw y0,(r2)
inc r0
inc r1
inc r2
dec ctr
tst ctr
jnz loop

• Problems: Bus / memory bandwidth
bottleneck, control code overhead

FTC.W99 87

First Generation DSP (1982):
Texas Instruments TMS32010

• 16-bit fixed-point

• “Harvard architecture”
– separate instruction,

data memories

• Accumulator

• Specialized instruction set
– Load and Accumulate

• 390 ns Multiple-Accumulate
 (MAC) time; 228 ns today

Processor

Instruction
Memory

Data
Memory

T-Register

Accumulator

ALU

Multiplier

Datapath:

P-Register

Mem

FTC.W99 88

TMS32010 FIR Filter Code

• Here X4, H4, ... are direct (absolute) memory addresses:
LT X4 ; Load T with x(n-4)

MPY H4 ; P = H4*X4
LTD X3 ; Load T with x(n-3); x(n-4) = x(n-3);

; Acc = Acc + P
MPY H3 ; P = H3*X3

LTD X2
MPY H2

...
• Two instructions per tap, but requires unrolling

FTC.W99 89

Features Common to Most DSP
Processors

• Data path configured for DSP

• Specialized instruction set
• Multiple memory banks and buses

• Specialized addressing modes
• Specialized execution control
• Specialized peripherals for DSP

FTC.W99 90

DSP Data Path: Arithmetic
• DSPs dealing with numbers representing real world

=> Want “reals”/ fractions
• DSPs dealing with numbers for addresses

=> Want integers
• Support “fixed point” as well as integers

S.
radix
point

-1 Š x < 1

S .
radix
point

–2N–1 Š x < 2N–1

Page 16

FTC.W99 91

DSP Data Path: Precision
• Word size affects precision of fixed point numbers

• DSPs have 16-bit, 20-bit, or 24-bit data words
• Floating Point DSPs cost 2X - 4X vs. fixed point,

slower than fixed point

• DSP programmers will scale values inside code
– SW Libraries
– Separate explicit exponent

• “Blocked Floating Point” single exponent for a
group of fractions

• Floating point support simplify development

FTC.W99 92

DSP Data Path: Overflow?
• DSP are descended from analog :

what should happen to output when “peg” an input?
(e.g., turn up volume control knob on stereo)

– Modulo Arithmetic???

• Set to most positive (2N–1–1) or
 most negative value(–2N–1) : “saturation”

• Many algorithms were developed in this model

FTC.W99 93

DSP Data Path: Multiplier
• Specialized hardware performs all key

arithmetic operations in 1 cycle
• 50% of instructions can involve multiplier

=> single cycle latency multiplier
• Need to perform multiply-accumulate (MAC)

• n-bit multiplier => 2n-bit product

FTC.W99 94

DSP Data Path: Accumulator
• Don’t want overflow or have to scale accumulator

• Option 1: accumulator wider than product:
“guard bits”

– Motorola DSP:
24b x 24b => 48b product, 56b Accumulator

• Option 2: shift right and round product before adder

Accumulator

ALU

Multiplier

Accumulator

ALU

Multiplier

Shift

G FTC.W99 95

DSP Data Path: Rounding
• Even with guard bits, will need to round when

store accumulator into memory
• 3 DSP standard options
• Truncation: chop results

=> biases results up

• Round to nearest:
< 1/2 round down, >= 1/2 round up (more positive)
=> smaller bias

• Convergent:
< 1/2 round down, > 1/2 round up (more positive),
= 1/2 round to make lsb a zero (+1 if 1, +0 if 0)
=> no bias
IEEE 754 calls this round to nearest even

FTC.W99 96

DSP Memory
• FIR Tap implies multiple memory accesses

• DSPs want multiple data ports
• Some DSPs have ad hoc techniques to reduce

memory bandwdith demand
– Instruction repeat buffer: do 1 instruction 256 times
– Often disables interrupts, thereby increasing interrupt

responce time

• Some recent DSPs have instruction caches
– Even then may allow programmer to “lock in” instructions into

cache
– Option to turn cache into fast program memory

• No DSPs have data caches
• May have multiple data memories

Page 17

FTC.W99 97

DSP Addressing
• Have standard addressing modes: immediate,

displacement, register indirect
• Want to keep MAC datapth busy
• Assumption: any extra instructions imply clock

cycles of overhead in inner loop
=> complex addressing is good
=> don’t use datapath to calculate fancy address

• Autoincrement/Autodecrement register indirect
– lw r1,0(r2)+ => r1 <- M[r2]; r2<-r2+1
– Option to do it before addressing, positive or negative

FTC.W99 98

DSP Addressing: Buffers
• DSPs dealing with continuous I/O

• Often interact with an I/O buffer (delay lines)
• To save memory, buffer often organized as

circular buffer
• What can do to avoid overhead of address

checking instructions for circular buffer?

• Option 1: Keep start register and end register per
address register for use with autoincrement
addressing, reset to start when reach end of
buffer

• Option 2: Keep a buffer length register, assuming
buffers starts on aligned address, reset to start
when reach end

• Every DSP has “modulo” or “circular” addressing
FTC.W99 99

DSP Addressing: FFT
• FFTs start or end with data in wierd bufferfly order

0 (000) => 0 (000)
1 (001) => 4 (100)
2 (010) => 2 (010)
3 (011) => 6 (110)

4 (100) => 1 (001)
5 (101) => 5 (101)
6 (110) => 3 (011)
7 (111) => 7 (111)

• What can do to avoid overhead of address checking
instructions for FFT?

• Have an optional “bit reverse” address addressing
mode for use with autoincrement addressing

• Many DSPs have “bit reverse” addressing for radix-2
FFT

FTC.W99 100

DSP Instructions
• May specify multiple operations in a single instruction

• Must support Multiply-Accumulate (MAC)
• Need parallel move support
• Usually have special loop support to reduce branch

overhead
– Loop an instruction or sequence
– 0 value in register usually means loop maximum number of times
– Must be sure if calculate loop count that 0 does not mean 0

• May have saturating shift left arithmetic

• May have conditional execution to reduce branches

FTC.W99 101

DSP vs. General Purpose MPU
• DSPs are like embedded MPUs, very concerned

about energy and cost.
– So concerned about cost is that they might even us a 4.0

micron (not 0.40) to try to shrink the the wafer costs by using
fab line with no overhead costs.

• DSPs that fail are often claimed to be good for
something other than the highest volume
application, but that's just designers fooling
themselves.

• Very recently convention wisdom has changed
so that you try to do everything you can digitally
at low voltage so as to save energy.

– 3 years ago people thought doing everything in analog
reduced power, but advances in lower power digital design
flipped that bit. FTC.W99 102

DSP vs. General Purpose MPU

• The “MIPS/MFLOPS” of DSPs is speed of
Multiply-Accumulate (MAC).

– DSP are judged by whether they can keep the multipliers
busy 100% of the time.

• The "SPEC" of DSPs is 4 algorithms:
– Inifinite Impulse Response (IIR) filters
– Finite Impulse Response (FIR) filters

– FFT, and
– convolvers

• In DSPs, algorithms are king!
– Binary compatibility not an issue

• Software is not (yet) king in DSPs.
– People still write in assembly language for a product to

minimize the die area for ROM in the DSP chip.

Page 18

FTC.W99 103

Summary: How are DSPs different?

• Essentially infinite streams of data which
need to be processed in real time

• Relatively small programs and data storage
requirements

• Intensive arithmetic processing with low
amount of control and branching (in the
critical loops)

• High amount of I/ O with analog interface
• Loosely coupled multiprocessor operation

FTC.W99 104

Summary: How are DSPs different?

• Single cycle multiply accumulate (multiple
busses and array multipliers)

• Complex instructions for standard DSP
functions (IIR and FIR filters, convolvers)

• Specialized memory addressing
– Modular arithmetic for circular buffers (delay lines)
– Bit reversal (FFT)

• Zero overhead loops and repeat instructions
• I/ O support – Serial and parallel ports

FTC.W99 105

Summary:
Unique Features in DSP architectures
• Continuous I/O stream, real time requirements
• Multiple memory accesses
• Autoinc/autodec addressing

• Datapath
– Multiply width
– Wide accumulator

– Guard bits/shifting rounding
– Saturation

• Weird things
– Circular addressing
– Reverse addressing

• Special instructions
– shift left and saturate (arithmetic left-shift)

FTC.W99 106

Conclusions

• DSP processor performance has increased by
a factor of about 150x over the past 15 years
(~40%/year)

• Processor architectures for DSP will be
increasingly specialized for applications,
especially communication applications

• General-purpose processors will become
viable for many DSP applications

• Users of processors for DSP will have an
expanding array of choices

• Selecting processors requires a careful,
application-specific analysis

FTC.W99 107

For More Information
• http://www.bdti.com

Collection of BDTI’s papers on DSP processors,
tools, and benchmarking.

• http://www.eg3.com/dsp
Links to other good DSP sites.

• Microprocessor Report
For info on newer DSP processors.

• DSP Processor Fundamentals,
Textbook on DSP Processors, BDTI

• IEEE Spectrum, July, 1996
Article on DSP Benchmarks

• Embedded Systems Prog., October, 1996
Article on Choosing a DSP Processor

