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Review, #1

Designing to Last through Trends
Capacity Speed
Logic  2x in 3years 2x in 3years
DRAM  4x in 3years 2x in 10 years
Disk 4x in 3years 2x in 10 years
Processor (na) 2xin 1.5 years
Time to run the task
— Execution time, response time, latency
Tasks per day, hour, week, sec, ns, ...
— Throughput, bandwidth
“X is n times faster than Y” means
ExTi me(Y) Per f or mance( X)

ExTi me( X) Per f or mance(Y)

FTCW992

Review, #2
* Amdahl’s Law:
d ExTimeyq 1
Speedu = —-= . .
P Poverat ExTime, ,, (1 - Fractiongynanced) + Fractionupanced
« CPI Law: Speedupennanced
CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

« Execution time is the REAL measure of computer
performance!

« Good products created when have:
— Good benchmarks
— Good ways to summarize performance

. . i i 4
Die Cost goes roughly with die area rowees

Recap: Who Cares About the Memory
Hierarchy?

Processor-DRAM Memory Gap (latency)

1000 O iy
“Moore’s Law’, olyr.

3 (2X/1.5yr)
% 100 Processor-Memory
g Performance Gap:
L 10 (grows 50% / year)
@ »—DRAM
o oM Q0b/yr.

Ch o, (@X/10yrs)

LY IR LR 233323885323
Time —-

Levels of the Memory Hierarchy

Capacity Upper Level
Access Time
Staging
Cost Xfer Unit faster
CPU Registers
100s Bytes
<10sns I Instr. Operands prog.compiler
Cache rebes
K Bytes
10-100 ns Cache
101 cents/bit cache cntl
I Blocks 8-128 bytes
Main Memory
M Bytes Memory
200ns- 500ns
$.0001-.00001 cents /bit os
Disk Pages 512-4K bytes
G Bytes, 10 ms.
(10,000,000 ns) Disk
10°5. 16%centsibit N user/operator
I Files ytes
Tape Larger
infinite
secymin | Tape | Lower Level
10
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The Principle of Locality

« The Principle of Locality:
— Program access a relatively small portion of the address space at
any instant of time.
« Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

« Last 15 years, HW relied on localilty for speed

FTCW996
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Memory Hierarchy: Terminology

« Hit: data appears in some block in the upper level
(example: Block X)
Hit Rate: the fraction of memory access found in the upper level
Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
« Miss: data needs to be retrieve from a block in the
lower level (Block Y)
Rate =1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

« Hit Time << Miss Penalty (500 instructions on 21264!)

Miss

Cache Measures

« Hitrate: fraction found in that level

— So high that usually talk about Miss rate
— Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory
« Average memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)

* Miss penalty: time to replace a block from

Simplest Cache: Direct Mapped

Memory Address Memory

4 Byte Direct Mapped Cache
Cache Index

» Location 0 can be occupied by
data from:

— Memory location 0, 4, 8, ... etc.

— In general: any memory location

TMOOD> ©® w00 & Nk o

y 8 © ! whose 2 LSBs of the address are 0s
To Processor [ Upper Level Cower Level lower level, including time to replace in CPU — Address<1:0> => cache index
- . .
Memory Memory — access time: time to lower level « Which one should we place in
Blk X -
From Processor sy fllatency to lower level) the cache?
— transfer time: time to transfer block . P
« How can we tell which one is in
FTC.W99 7 =f(BW between upper & lower levels) FTCW99 8 the cache? FTC.W99 9

1 KB Direct Mapped Cache, 32B blocks

« For a2 ** N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size = 2 ** M)

31 9 4 0
Cache Tag _Example: 0x50 Cache Index Byte Select
Ex: 0x01 Ex: 0x00

Stored as part
of the cache “state”

Valid Bit _Cache Tag Cache Data
Byte31] ' [Byte1 [Bytdo |0
0x50 Byte 63| * | Byte 33| Bytd 32| 1-
2
3
Byte1023 ' Byte9o2 |31

FTC.W99 10

Two-way Set Associative Cache

« N-way set associative: N entries for each Cache Index
— N direct mapped caches operates in parallel (N typically 2 to 4)

« Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— The two tags in the set are compared in parallel
— Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block 0 Cache Block 0

FTCW99 11

Disadvantage of Set Associative Cache

« N-way Set Associative Cache v. Direct Mapped Cache:
— N comparators vs. 1
— Extra MUX delay for the data
— Data comes AFTER Hit/Miss

« In adirect mapped cache, Cache Block is available
BEFORE Hit/Miss:

— Possible to assume a hit and continue. Recover later if miss.
Cache Index
Valid __ Cache Tag Cache Data Cache Data Cache Tag___ Valid
Cache Block 0 Cache Block 0

Cache Block FTC.We9 12
Hit:
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4 Questions for Memory
Hierarchy
¢ Q1: Where can a block be placed in the upper level?
(Block placement)

¢ Q2: How is a block found if it is in the upper level?
(Block identification)

* Q3: Which block should be replaced on a miss?
(Block replacement)

¢ Q4: What happens on a write?
(Write strategy)

FTC.W99 13

Q1: Where can a block be
placed in the upper level?

« direct mapped - 1 place
* n-way set associative - n places D]

« fully-associative - any place
————

FTC.W99 14

Q2: How is a block found if itis in
the upper level?

« Tag on each block
— No need to check index or block offset
« Increasing associativity shrinks index, —»
expandstag —»

Block Address
Block offset
Tag Index

FTC.W99 15

Q3: Which block should be replaced
on a miss?

« Easy for Direct Mapped

« Set Associative or Fully Associative:
— Random
— LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way
Size LRURandomLRURandom LRURandom
16 KB 52% 57% 47% 53% 44% 5.0%
64KB 1.9% 2.0% 1.5% 17% 14% 1.5%
256 KB 1.15% 1.17%1.13% 1.13% 1.12% 1.12%

FTC.W99 16

Q4: What happens on a write?

Write through—The information is written to
both the block in the cache and to the block in
the lower-level memory.
Write back—The information is written only to
the block in the cache. The modified cache
block is written to main memory only when it
is replaced.

— is block clean or dirty?
Pros and Cons of each?

— WT: read misses cannot result in writes

— WB: no repeated writes to same location
WT always combined with write buffers so
that don’t wait for lower level memory Frewes 17

Write Buffer for Write Through

—]

Cache
Processor DRAM

Write Buffer

« A Write Buffer is needed between the Cache and
Memory

— Processor: writes data into the cache and the write buffer

— Memory controller: write contents of the buffer to memory
« Write buffer is just a FIFO:

— Typical number of entries: 4

— Works fine if: Store frequency (w.r.t. time) << 1/ DRAM write cycle
* Memory system designer’s nightmare:

— Store frequency (w.r.t. time) -> 1/DRAM write cycle

— Write buffer saturation

FTC.W99 18
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Impact of Memory Hierarchy on

Algorithms
Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?
“The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings
of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, January, 1997, 370-379.

Quicksort: fastest comparison based sorting
algorithm when all keys fit in memory

Radix sort: also called “linear time” sort because for
keys of fixed length and fixed radix a constant
number of passes over the data is sufficient
independent of the number of keys

For Alphastation 250, 32 byte blocks, direct mapped
L2 2MB cache, 8 byte keys, from 4000 to 400000@Tc:ws9 19

Quicksort vs. Radix as vary number
keys: Instructions

Radix sort
800
700 \
600 \'
500 \

200 o
“ortﬂ: . i Instructions/key
100 -

0 T T T 1
1000 10000 100000 1000000 1E+07

Set size in keys FTC.W99 20

Quicksort vs. Radix as vary number
keys: Instrs & Time

Radix sort -
800 = Quick (Instr/key)

—=- Radix (Instr/key)
—— Quick (Clocks/key)
Radix (clocks/key)

700 \

600 \
500

400 \

300 \ //

Quick
200 Bort -
Instructions
100 ~———

0 T T T 1
1000 10000 100000 1000000 1E+07

Time »

Set size in keys FTC.W99 21

Quicksort vs. Radix as vary number
keys: Cache misses

Quick ~ e
0 +SOH—

1000 10000 100000 1000000 10000000

Set size in keys

What is proper approach to fast algorithms?
FTCwes 22

A Modern Memory Hierarchy

« By taking advantage of the principle of locality:

— Present the user with as much memory as is available in the
cheapest technology.

— Provide access at the speed offered by the fastest w

Processor
Tertiary
secondary|| sorage
— Second Main Sg’,’akge (Disk/Tape)
is
2 Level Memory (Disk)
Datapathf . Cache | | (DRAM)
g (SRAM)
Speed (ns): 1s 108 1005 10,000,000s 10,000,000,0005
Size (bytes): 1005 (10smy  (10s5e0)
Ks Ms Gs Ts
Frowse2s

Basic Issues in VM System Design

@ size of information blocks that are transferred from
secondary to main storage (M)

® block of information brought into M, and M is full, then some region
of M must be released to make room for the new block -->
replacement policy

® which region of M is to hold the new block --> placement policy

@® missing item fetched from secondary memory only on the occurrence
of afault --> demand load policy

mem disk
— [
frame

virtual and phchaI address space partitioned into blocks of equal size

page frames

pages FTCW99 24
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Address Map

v={0,1,..., n-1} virtual address space n>m
M={0,1,...,m-1} physical address space

MAP: V--> M U {d} address mapping function

MAP(a) = a' if data at virtual address a is present in physical
addressa' and a'inM

= @ if data at virtual address a is not presentin M

Name Space V /missing item fault

Processor

4
Addr Trans Main Secondary
a Mechanism Memory Memory
a
physical address OS performs

this transfer

FTC.W99 25

Paging Organization

P.A unit of
o[ frame0 1K U _—0 page 0 1K mapping
1024 1|1k | AT 00, 1 |1k —
Trans
MAP also unit of
7168 7 11IK_—| transfer from
" virtual to
i’dhysmal physical
emory 31744 31| 1k memory
Virtual Memory
Address Mapping
«—10—*
VA

Page Table

Page Table
Base Reg oo
index V| Rights| PA

actually, concatenation
is more likely

into
gﬁg table located physical
in physical memory
memory address FTC.W99 26

Virtual Address and a Cache

Main
Memory

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the
"innermost loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
synonym / alias problem: two different virtual addresses map to
same physical address => two different cache entries holding data for
the same physical address!

for update: must update all cache entries with same
physical address or memory becomes inconsistent

determining this requires significant hardware, essentially an
associative lookup on the physical address tags to see if you
have multiple hits; or

software enforced alias boundary: same Isb of VA &PA > cache size
FTCIW99 27

TLBs

A way to speed up translation is to use a special cache of recently
used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address | Physical Address | Dirty | Ref | Valid | Acces:

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

FTC.W99 28

Translation Look-Aside Buffers

Just like any other cache, the TLB can be organized as fully associative,
set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines. This permits fully associative
lookup on these machines. Most mid-range machines use small
n-way set associative organizations.

hit .
VA PA miss |
TLB Main
cPU Lookup Cache Memory
Translation missl hit
witha TLB
Trans-
lation
" data
U2t t Flid e

Reducing Translation Time
Machines with TLBs go one step further to reduce #
cycles/cache access
They overlap the cache access with the TLB access:

high order bits of the VA are used to look in the TLB
while low order bits are used as index into cache

FTC.W99 30
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Overlapped Cache & TLB Access

T ind
32 TLB F‘::l?ucp ’M' Cache
l [——4 bytes
10 2
Hit/
PA Miss| 20 12 PA| Data 'V\-llllltés
—
v

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
access memory with the PA from the TLB

ELSE do standard VA translation
FTCW99 31

Problems With Overlapped TLB Access

Overlapped access only works as long as the address bits used to
index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11> 2

This bit is changed

by VA translation, but

20 12 is needed for cache
virt page # disp lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K 2 way set assoc cache
10
4 4 l FTCWe9 32

Summary #1/4:

« The Principle of Locality:

— Program access a relatively small portion of the address space at
any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
« Three Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.

— Capacity Misses: increase cache size
— Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

« Write Policy:
— Write Through: needs a write buffer. Nightmare: WB saturation
— Write Back: control can be complex

FTC.W99 33

Summary #2 / 4:
The Cache Design Space

« Several interacting dimensions Cache Size
— cache size
~ block size Associativity
— associativity
— replacement policy
— write-through vs write-back
— write allocation

) . . Block Size
« The optimal choice is a compromise
— depends on access characteristics
» workload Bad
» use (I-cache, D-cache, TLB)
— depends on technology / cost
. P . Fact Factor B
« Simplicity often wins Good | P28 =i
Less More

FTC.W99 34

Summary #3/4: TLB, Virtual Memory

Caches, TLBs, Virtual Memory all understood by
examining how they deal with 4 questions: 1) Where
can block be placed? 2) How is block found? 3) What
block is repalced on miss? 4) How are writes
handled?

Page tables map virtual address to physical address
TLBs are important for fast translation

TLB misses are significant in processor performance

— funny times, as most systems can’t access all of 2nd level cache
without TLB misses!

FTC.W99 35

Summary #4/4: Memory Hierachy

< Virtual memory was controversial at the time:
can SW automatically manage 64KB across many
programs?

— 1000X DRAM growth removed the controversy
Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy
Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

FTC.W99 36
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Case Study: MIPS R4000
(200 MHz)

« 8 Stage Pipeline:
— IF-first half of fetching of instruction; PC selection happens here
as well as initiation of instruction cache access.
— IS-second half of access to instruction cache.
RF-instruction decode and register fetch, hazard checking and
also instruction cache hit detection.
— EX-execution, which includes effective address calculation, ALU
operation, and branch target computation and condition
evaluation.

— DF—data fetch, first half of access to data cache.

— DS-second half of access to data cache

— TC-tag check, determine whether the data cache access hit.
— WB-write back for loads and register-register operations.

« 8 Stages: What is impact on Load delay? Branch
delay? Why? FTC.Wo9 37

Case Study: MIPS R4000

TWO Cycle IF IS RF EX DF WB
Load Latency IF IS RF  EX TC
IF IS RF DS
IF IS DF
IF EX
RF
IS
IF
THREE Cycle IF IS RF @ DF DS TC WB
Branch Latency IF IS RF\ EX DF DS TC
(conditions evaluated IF \ RF EX DF DS
IS RF  EX DF

during EX phase)

IS RF  EX

Delay slot plus two stalls F s RE
Branch likely cancels delay slot if not taken F s
IF
FTCW99 38

MIPS R4000 Floating Point

« FP Adder, FP Multiplier, FP Divider
« Last step of FP Multiplier/Divider uses FP Adder HW

« 8 kinds of stages in FP units:
Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier
R FP adder Rounding stage

S FP adder Operand shift stage

u

Unpack FP numbers

FTC.W99 39

MIPS FP Pipe Stages

FP Instr 12 3 4 5 6 7 8

Add, Subtract U S+A A+R R+S

Multiply UEMM M M N N+A R

Divide U A R Dz .. D+A D+R, D+R, D+A, D+R, AR

Square root U E (A+R)w08 .. A R

Negate U s

Absolute value U S

FP compare U A R

Stages:
M First stage of multiplier A Mantissa ADD stage
N Second stage of multiplier D Divide pipeline stage
R Rounding stage E Exception test stage
S Operand shift stage
u Unpack FP numbers

FTC.W99 40

R4000 Performance

Not ideal CPI of 1:
— Load stalls (1 or 2 clock cycles)
Branch stalls (2 cycles + unfilled slots)
: RAW data hazard (latency)

— FP structural stalls: Not enough FP hardware (parallelism)
45

4
35
3
25
2
15
1
0.5
0 8 3
I R T T RS
vk LI
e B Lo sls. B Branch salls Orpresitsais B FP strucural

salls FTC.W99 41

Advanced Pipelining and
Instruction Level Parallelism (ILP)

« ILP: Overlap execution of unrelated instructions

* gcc 17% control transfer
— 5instructions + 1 branch
— Beyond single block to get more instruction level parallelism

« Loop level parallelism one opportunity, SW and HW
« Do examples and then explain nomenclature

« DLX Floating Point as example

— Measurements suggests R4000 performance FP execution has room
for improvement

FTC.W99 42
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FP Loop: Where are the Hazards?

Loop: LD  FO,0(R1)
ADDD F4,F0,F2
SD  O(R1).F4
SUBI R1,R18
BNEZ R1,Loop

iFO=vector element
;add scalar from F2

;store result

:decrement pointer 88 (DW)
:branch R1l=zero

NOP ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FPALUop 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

*  Where are the stalls?

FTC.W99 43

FP Loop Hazards

Loop: LD  FQO(R1)  ;FO=vector element
ADDD F4,FO,F2  ;add scalar in F2
SD  O(R1),F4  ;store result
SUBI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop  ;branch Ril=zero
NOP ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FPALUop 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

FTC.W99 44

FP Loop Showing Stalls

lLloop: LD  FO,0(R1)

2 stall

3 ADDD F4,F0,F2
4 stall

5 stall

6 sD O(R1),F4

7 suBl R1,R1,8
8 BNEZ R1,Loop

;FO=vector element

;add scalar in F2

;store result

;decrement pointer 88 (DW)
:branch R1l=zero

9 stall ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FPALUop 3
FP ALU op Store double 2
Load double FP ALU op 1

* 9clocks: Rewrite code to minimize stalls? ~ frewe®

Revised FP Loop Minimizing Stalls

lLloop: LD  FO,0(R1)

2 stall

3 ADDD F4,F0,F2
4 SUBI R1,RL8
5 BNEZ R1,Loop
6 sD 8(R1),F4

:delayed branch
;altered when move past SUBI

Swap BNEZ and SD by changing address of SD

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FPALUop 3

FP ALU op Store double 2

Load double FP ALU op 1

6 clocks: Unroll loop 4 times code to make faster?rcwsss

Unroll Loop Four Times
(straightforward way)

1Loop: LD F0,0(R1)
2 ADDD  F4,F0.F2

3 sD O(R1).F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)

5 ADDD  F8,F6,F2

6 sD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)

8 ADDD F12,F10,F2

9 sD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)

11 ADDD F16,F14,F2

12 sD -24(R1),F16

13 SUBI  RI1,R1,#32 alter to 4*8

14 BNEZ RL1,LOOP

15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration

Assumes R1 is multiple of 4

Rewrite loop to
minimize stalls?

FTC.W99 47

Unrolled Loop That Minimizes Stalls

1Loop: LD F0,0(R1)

2 LD F6,-8(R1)

3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD  F4,F0.F2

6 ADDD  F8,F6,F2

7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD O(R1).F4
10 SD -8(R1),F8
11 sD -16(R1),F12
12 SUBI  RI1,R1,#32
13 BNEZ RL1,LOOP
14 sD 8(R1),F16

* What assumptions
made when moved
code?

— OK to move store past
SUBI even though changes
register

— OK to move loads before
stores: get right data?

— When is it safe for
compiler to do such
changes?

;8-32=-24

14 clock cycles, or 3.5 per iteration
When safe to move instructions?

FTC.W99 48
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Compiler Perspectives on Code
Movement

Definitions: compiler concerned about dependencies
in program, whether or not a HW hazard depends on
a given pipeline
Try to schedule to avoid hazards
(True) Data dependencies (RAW if a hazard for HW)

— Instruction i produces a result used by instruction j, or

— Instruction j is data dependent on instruction k, and instruction k
is data dependent on instruction i.

If depedent, can’t execute in parallel
Easy to determine for registers (fixed names)

Hard for memory:
— Does 100(R4) = 20(R6)?
— From different loop iterations, does 20(R6) = 20(R6)? FTC.W99 29

Where are the data dependencies?

lLloop: LD  FO,0(R1)

2 ADDD F4,FO,F2

3 SUBI R1,R138

4 BNEZ R1,Loop  :delayed branch

5sD 8(R1).F4 ;altered when move past SUBI

FTC.W99 50

Compiler Perspectives on Code
Movement

« Another kind of dependence called name dependence:
two instructions use same name (register or memory
location) but don’t exchange data

« Antidependence (WAR if a hazard for HW)

— Instruction j writes a register or memory location that instruction i
reads from and instruction i is executed first

¢ Output dependence (WAW if a hazard for HW)

— Instruction i and instruction j write the same register or memory
location; ordering between instructions must be preserved.

FTC.W99 51

Where are the name
dependencies?

1Loop: LD F0,0(R1)
2 ADDD  F4,F0.F2

3 sD 0(R1).F4 ;drop SUBI & BNEZ
4 LD F0,-8(R1)

2 ADDD  F4,F0.F2

3 SD -8(R1),F4 ;drop SUBI & BNEZ
7 LD FO,-16(R1)

8 ADDD  F4,F0.F2

9 SD -16(R1).F4 ;drop SUBI & BNEZ
10 LD F0,-24(R1)

11 ADDD  F4,F0.F2

12 SD -24(R1),F4

13 SUBI  RI1,R1,#32 alter to 4*8

14 BNEZ RL1,LOOP

15 NOP

How can remove them?
FTCWes 52

Where are the name
dependencies?

1Loop: LD F0,0(R1)
2 ADDD  F4,F0.F2

3 sD 0(R1).F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)

5 ADDD  F8,F6,F2

6 sD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)

8 ADDD  F12,F10,F2

9 sD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)

11 ADDD F16,F14,F2

12 sD -24(R1),F16

13 SUBI  RI1,R1,#32 alter to 4*8

14 BNEZ RL1,LOOP

15 NOP

Called “register renaming”
FTCWes 53

Compiler Perspectives on Code
Movement

« Again Name Dependenceis are Hard for Memory
Accesses
— Does 100(R4) = 20(R6)?
— From different loop iterations, does 20(R6) = 20(R6)?
« Our example required compiler to know that if R1
doesn’t change then:

0(R1) -8(R1) -16(R1) -24(R1)

There were no dependencies between some loads and
stores so they could be moved by each other

FTC.W99 54
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Compiler Perspectives on Code

Movement
« Final kind of dependence called control dependence
« Example
ifpl{sy;}
if p2 {s2;};

S1is control dependent on pl and S2 is control
dependent on p2 but not on p1.

FTC.W99 55

Compiler Perspectives on Code
Movement

« Two (obvious) constraints on control dependences:

— An instruction that is control dependent on a branch cannot be moved
before the branch so that its execution is no longer controlled by the
branch.

— An instruction that is not control dependent on a branch cannot be
moved to after the branch so that its execution is controlled by the
branch.

« Control dependencies relaxed to get parallelism; get
same effect if preserve order of exceptions (address in
register checked by branch before use) and data flow
(value in register depends on branch)

FTC.W99 56

Where are the control
dependencies?

1Loop: LD F0,0(R1)
ADDD  F4,F0.F2
3 sD 0(R1).F4
4 SUBI  RI1,R18
5 BEQZ RIexit
6 LD F0,0(R1)
7 ADDD  F4,F0.F2
8 SD O(R1).F4
9 SUBI  RI1RL18
10 BEQZ RIexit
11 LD F0,0(R1)
12 ADDD  F4,F0.F2
13 sD O(R1).F4
14 SUBI  RI1,RL18
15 BEQZ RIexit

FTC.W99 57

When Safe to Unroll Loop?

« Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)
for (i=1; i<=100; ){
Ali+1] = A[i] + C[i]; /*S1%
B[i+1] = B[i] + A[i+1];} /* S2 */

1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same
is true of S2 for BJi] and B[i+1].

This is a “loop-carried dependence”: between iterations

Implies that iterations are dependent, and can’t be
executed in parallel

Not the case for our prior example; each iteration was
distinct

FTC.W99 58

HW Schemes: Instruction Parallelism

* Why in HW at run time?
— Works when can’t know real dependence at compile time
— Compiler simpler
— Code for one machine runs well on another
« Key idea: Allow instructions behind stall to proceed
DIVD FO,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14
— Enables out-of-order execution => out-of-order completion

— ID stage checked both for structuralScoreboard dates to CDC 6600
in 1963

FTC.W99 59

HW Schemes: Instruction Parallelism

« Out-of-order execution divides ID stage:
1. Issue—decode instructions, check for structural hazards
2. Read operands—wait until no data hazards, then read operands
« Scoreboards allow instruction to execute whenever
1 & 2 hold, not waiting for prior instructions
« CDC 6600: In order issue, out of order execution, out
of order commit ( also called completion)

FTC.W99 60
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Scoreboard Implications

Out-of-order completion => WAR, WAW hazards?
Solutions for WAR

— Queue both the operation and copies of its operands

— Read registers only during Read Operands stage
For WAW, must detect hazard: stall until other
completes
Need to have multiple instructions in execution
phase => multiple execution units or pipelined
execution units
Scoreboard keeps track of dependencies, state or
operations
Scoreboard replaces ID, EX, WB with 4 stages

FTC.W99 61

Four Stages of Scoreboard Control

1.I1ssue—decode instructions & check for
structural hazards (ID1)

If a functional unit for the instruction is free and no other
active instruction has the same destination register (WAW),
the scoreboard issues the instruction to the functional unit
and updates its internal data structure. If a structural or
WAW hazard exists, then the instruction issue stalls, and no
further instructions will issue until these hazards are cleared.

2.Read operands—uwait until no data hazards, then
read operands (ID2)

A source operand is available if no earlier issued active
instruction is going to write it, or if the register containing

the operand is being written by a currently active functional

unit. When the source operands are available, the

scoreboard tells the functional unit to proceed to read the
operands from the registers and begin execution. The
scoreboard resolves RAW hazards dynamically in this step,

and instructions may be sent into execution out of order. ¢ o962

Four Stages of Scoreboard Control

3.Execution—operate on operands (EX)
The functional unit begins execution upon receiving
operands. When the result is ready, it notifies the scoreboard
that it has completed execution.
4.Write result—finish execution (WB)
Once the scoreboard is aware that the functional unit has
completed execution, the scoreboard checks for WAR
hazards. If none, it writes results. If WAR, then it stalls the
instruction.
Example:
DIVD FO,F2F4
ADDD F10,FO,F8
SUBD F8,F8F14
CDC 6600 scoreboard would stall SUBD until ADDD reads

operands
FTCW99 63

Three Parts of the Scoreboard
1.Instruction status—which of 4 steps the instruction is in

2.Functional unit status—Indicates the state of the
functional unit (FU). 9 fields for each functional unit

Busy—Indicates whether the unit is busy or not
Op—Operation to perform in the unit (e.g., + or -)
Fi—Destination register
Fj, Fk—Source-register numbers
Qj, Qk—Functional units producing source registers Fj, Fk
Rj, Rk—Flags indicating when Fj, Fk are ready

3.Register result status—Indicates which functional unit
will write each register, if one exists. Blank when no
pending instructions will write that register FTCWo9 64

Detailed Scoreboard Pipeline
Control

Busy(FU)- yes; Op(FU
Fi(FU)~ "D; Fj(FU)-
FK(FU)~ "S2'; Qj S1);
Qk- Result('S2’); Rj~ not Qj;
Rk= not Qk; Result('D")~ FU;

Rj and Rk Rj~ No; Rk= No

)=
Not busy (FU) S
and not result(D)

Functional unit
done

" f((Fj( £ )Fi(FU)

or Rj( f)=No) &

(FK( ) [Ei(FU) or
Rk( f)=No))

" f(if Qj()=FU then Rj(f)~ Yes);
* (if Qk(f)=FU then Rj(f)~ Yes);
Result(Fi(FU))- 0; Busy(FU)~ No

FTC.W99 65

Scoreboard Example

Ingtruction status Read Executic Write
Ingrucion Kk Issue operand completiResult
LD F6 34+ R2
LD F2 45+ R3
MULT FO F2 F4
SUBD F8 F6 F2
DIVD FI0 FO F6
ADDD F6 F8 F2

Functiond unit satus dest SI  S2  FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi Fk Qi Qk Rj Rk
Integer  [No
Mutl No
Mut2 No
Add No
Divide  [No
Register resuilt status.
Clock ‘FO F2 F4 F6 F8 F10 F12 .. F30‘
FU

FTC.W99 66
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Scoreboard Example Cycle 1

Ingtruction status Read Executio Write
Ingruction ]k Issue Resul
LD F6 34+ R2 1

LD F2 45+ R3
MULTFO F2 F4
SUBDF8 F6 F2
DIVD FI0 FO F6
ADDDF6 F8 F2

Funciond unit status dest S S2 FUforjFUfork Fj?  Fk?
Time Name  Busy Op Fi__Fj Fk Q Qk R Rk
Integer [Yes Load F6 R2 Yes
Miil  |No
Mi2  |No
Add No
Divice  [No
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
1 Fu [ Integer ]
FTCWo967

Scoreboard Example Cycle 2

Ingtruction status Read Executio Write
Ingrucion j  k Issue _operands complete Result
D F6 3+ R2 [ 1 2
LD F2 45+ R3
MULTFO F2 F4
SUBDF8 F6 F2
DIVD FI0 FO F6
ADDDF6  F8 F2
Functiond unit satus dest  SL S2 FUforjFUfork Fj?  Fk?
Time Name Buy Op  Fi Fi_ Fk Qi Qk Ri Rk
Integer  [Yes Load F6 R2 Yes
Muitl No
Mut2 No
Add No
Divide  [No
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 F30
2 FU [ Integer |
FTCW99 68

* Issue 2nd LD?

Scoreboard Example Cycle 3

Ingtruction status Read Executio Write.
Ingruction  j  k Issue operands

LD F6 34+ R2 1 2

LD F2 45+ R3
MULTFO F2 F4
SUBDF8 F6 F2
DIVD FI0 FO F6
ADDDF6 F8 F2

Funciond unit satus dest  SI S2 FUforjFUfork Fj?  Fk?
Time Name  Busy Op  FiF| Fk Q Ok R Rk
Integer [Yes Load  F6 R2 Yes
Miil  |No
Mi2  |No
Add No
Divice  [No
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
3 Fu | Integer ]
FTCW9969

¢ Issue MULT?

Scoreboard Example Cycle 4

Read  ExecutioWrite
Issue_operands
1 2 3 4

dest SL S2 FUforjFUfork Fj?  Fk?

Busy Op Fi Fi__Fk Qi Qk Rj Rk
Yes Loal F6 R2 Yes
No
No
No
No
FO F2 F4 F6 F8 F10 F12 .. F30
Integer
FTCW99 70

Scoreboard Example Cycle 5

Ingtruction status Read Executio Write
Ingrucion j  k Issue operands
D F6 3+ R2 [ 1 2 3 4
LD F2 45+ R3 | 5
MULTFO F2 F4
SUBDF8 F6 F2
DIVD FI0 FO F6
ADDDF6  F8 F2
Functiond unit satus dest SL S2 FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi__Fk Qi Qk Rj Rk
Inte Yes Loal F2 R3 Yes
Muitl No
Muit2 No
Add No
Divide  [No
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 F30
5 FU [ Integer
FTCW99 71

Scoreboard Example Cycle 6

Ingtruction status Read Executio Write
Ingruction ]k Issue Resul
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6

MULTFO F2 F4 6
SUBDF8 F6 F2
DIVD FI0 FO F6
ADDDF6 F8 F2

Functiond unit satus dest S1 S2 FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi__Fk_Qj Qk Rj Rk
Integer  [Ves Load F2 R3 Yes
Muitl Yes Mut FO  F2 F4  lnteger No  Yes
Muit2 No
Add No
Divide  [No
Register result status.

Clock FO F2 F4 F6 F8 F10 F12 .. F30
6 FU (MUt integer

FTCW99 72
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Scoreboard Example Cycle 7

Ingtruction status Read Executio Write
Ingnucion ]k lssue operands
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7
MULTFO F2 F4 6
SUBDF8 F6 F2 7
DIVD F10 FO F6
ADDDF6 F8 F2
Functional unit status dest S1 S2  FU forj FU for k Fj? Fk?
Time Name Busy Op Fi Fi Fk Q QK Rj Rk
Integer Yes Load F2 R3 Yes
Multl Yes Mut FO F2 F4 Integer No Yes
Mult2 No
Add Yes Sub F8 F6 F2 Integer  Yes No
Divide No
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
7 FU (MUt integer Add ]
Read multiply operands? FrewseTs

Scoreboard Example Cycle 8a

Ingtruction status Read Executio Write

Ingrucion |k Issue _operandscomplete Resul

LD F6 3+ R2 [ 1 2 3 4

LD F2 45+ R3 | 5 6 7

MULTFO F2 F4 | 6

SUBDF8 F6 F2 | 7

DIVDFIO FO F6 | 8

ADDDF6  F8 F2

Functiond unit satus dest S1 S2 FUforjFUfork Fj?  Fk?

Time Name Busy Op Fi Fi__Fk_Qj Qk Rj Rk

Integer [Ves Load F2 R3 Yes
Muitl Yes Mut FO  F2 F4 lnteger No  Yes
Muit2 No
Add Yes S F8  F6 F2 Integer  Yes  No
Divide |Yes Dv Fl0 FO F6 Mutl No  Yes

Register result status.
Clock FO F2 F4 F6 F8 F10 Fi12 .. F30
8 FU [Mutl integer Add_Divide |
FTC.Wo9 74

Scoreboard Example Cycle 8b

Ingtruction status Read Executio Write
Intucion ]k Issue _operandscomplete Resul
D F6 M+ R [ 1 2 3 4
ID F2 4+ R3 | 5 6 7 8
MULTFO F2 F4 | 6
SUBDFE F6 F2 | 7
8
dest  SL S2 FUforjFUfork Fj?  Fk?
Busy Op Fi Fi__Fk Qi Qk Rj Rk
No
Yes Mit FO  F2 F4 Yes  Yes
No
Yes Sb F8 F6 F2 Yes  Yes
Yes Dv FlI0 FO F6  Muil No  Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
8 FU [Mut Add_Divide ]

FTCW99 75

Scoreboard Example Cycle 9

Ingtruction status Read Executio Write
Ingruction ] k oper:

LD F6 34+ R2 2
LD F2 45+ R3 6
MULTFO F2 F4 9
SUBDF8 F6 F2 9
DIVD FI0 FO F6

Fundiond unit gatus dest  S1 S2 FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi__Fk Qi Qk Rj Rk
Ineger  [No
10 MUl |Yes Mt FO  F2 F4 Yes  Yes
MUz [No
2 Add Yes sb  F8  F6 F2 Yes  Yes
Divide [Yes Dv FI0 FO F6  Mutl No  Yes
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 . F30
9 FU [Mutn Add_Divide ]

Read operands for MULT & SUBD? Issue ADDD7™"*™

Scoreboard Example Cycle 11

Ingtruction status Read Executio Write
Intucion ]k lssue Resul
D F6 M+ RZ [ 1 2 3 4
ID F2 4+ R3 | 5 6 7 8
MULTFO F2 F4 | 6 9
SUBDFE F6 F2 | 7 9 1
DIVDF10 FO F6 | 8
ADDDF6 F8 F2
Funciond unit status dest  SL S2 FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi__Fk Qi Qk Rj Rk
Ineger  [No
8MUl  |Yes MUt FO F2 F4 Yes  Yes
Mi2  |No
0 Add Yes Sb F8  F6 F2 Yes  Yes
Dvice |Yes Dv F10 FO F6 Mut No  Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
11 FU [Mut Add_Divide ]

FTCW99 77

Scoreboard Example Cycle 12

Ingtruction status Read Executio Write
Indrucion ]k lssue operands completeResult
LD F6 34+ R2 1 2
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9
SUBDF8 F6 F2 7 9 11 12
DIVD F10 FO F6 8
ADDDF6 F8 F2
Functiondl unit gatus dest S1 S2  FU for j FU for k Fj? Fk?
Time Name Busy Op Fi Fi  Fk_ Qj Qk R Rk
Integer No
7 Multl Yes Mut FO F2 F4 Yes Yes
Mult2 No
Add No
Divide Yes Div F10 FO _F6 Mutl No Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
12 FU [Mutl Divide |
Read operands for DIVD? frewes e
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Scoreboard Example Cycle 13

Scoreboard Example Cycle 14

Scoreboard Example Cycle 15

Indruction stetus Read  ExecutioWrite Indtruction stetus Read  ExecutioWrite Ingtruction status Read  ExecutioWrite
Ingrucion  j  k Issue operands Insrucion  j k- Issue operands Ingrucion j  k Issue _operands complete Result
LD F6 34+ R2 | 1 2 3 4 LD F6 34+ R2 | 1 2 3 4 LD F6 3+ R2 [ 1 2 3 4
LD F2 45+ R3 5 6 7 8 LD F2 45+ R3 5 6 v 8 LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 MULTFO  F2 F4 6 9 MULTFO F2 F4 6 9
SUBDF8 F6 F2 7 9 un o1 SUBDF8 F6 F2 7 9 u 12 SUBDF8 F6 F2 7 9 un 1
DIVD F10 FO F6 8 DIVD F10 FO  F6 8 DIVD F10 FO F6 8
ADDDF6 F8 F2 | 13 ADDDF6  F8 F2 | 13 14 ADDDF6 F8 F2 |13 14
Functiondl unit status dest S1 S2 FUforjFUfork Fj?  Fk? Functiond unit satus dest  S1 S2  FUforjFUfork Fj?  Fk? Functiondl unit satus dest S1 S2 FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi_ Fk_0Qj ok Ri RK Time Name Busy Op Fi Fi_ Fk_Of Qk Rj Rk Time Name Busy Op Fi Fi Fk Qf Qk Rj Rk
Inte No Integer No Integer No
6 Multl Yes Mut FO 2 F4 Yes  Yes 5 Multl Yes  Mut  FO F2 F4 Yes  Yes 4 Multl Yes Mut FO 2 F4 Yes  Yes
Mul2 No Mult2 No Mu2 No
Add Yes Add  F6 F8 F2 Yes  Yes 2 Add Yes Add  F6 F8 F2 Yes  Yes 1 Add Yes Add  F6 F8 F2 Yes  Yes
Divide Yes Dv__FI0 FO F6 Mutl No  Yes Divide Yes Dv FI0 FO F6 Mutl No  Yes Divide Yes Dv_FI0 FO F6 Mutl No  Yes
Rexister resit gatus Regiger resiit satus Register resiit gatus
Clock FO F2 F4 F6 F8 F10 FI12 F30 Clock FO_F2 F4 F6 F8 F10 Fi2 F30 Clock FO F2 F4 F6 F8 F10 F12 F30
13 FU [Mu Add Divide ] 14 FU [mua Add Divide ] 15 FU [Mut Add Divide ]
FTCWe9 79 FTC.W99 80 FTCW99 81
Scoreboard Example Cycle 16 Scoreboard Example Cycle 17 Scoreboard Example Cycle 18
Ingtruction status Read  Executio Write Instruction status Read  ExecutioWrite Indruction stetus Read  ExecutioWrite
Ingrucion j k Issue Result Intruction Issue_of lete Ingrucion  j  k Issue operands
LD F6 3+ R2 [ 1 2 3 LD F6 3+ R2 WD F6 3+ R2 [ 1 2 3 4
LD F2 45+ R3 | 5 6 78 D F2 45+ R3 LD F2 45+ R3 | 5 6 7 8
MULTFO F2 F4 | 6 9 MULTFO F2 F4 MULTFO F2 F4 | 6 9
SUBDF8 F6 F2 | 7 9 n 12 SUBDF8 F6 F2 SUBDF8 F6 F2 | 7 9 n 12
DIVDFIO FO F6 | 8 DIVD FI0 FO F6 DIVDFIO FO F6 | 8
ADDDF6 F8 F2 [ 13 14 16 ADDDF6 F8 F2 ADDDF6 F8 F2 [ 13 14 16
Fundtiond unit satus dest S1 S2  FUforjFUfork Fj?  Fk? Fundiondl unit gatus dest S1 S2 FUforjFUfork Fj?  Fk? Fundiond wnit gaus dest SLS2  FUforjFUfork Fj?  Fk?
Time Neme ~ Buy Op Fi Fi Fk Qi Ok R Rk Time Name ~ Buy Op  Fi Fi Fk Oi Ok R Rk Time Name  Busy Op  FiFi Fk Qi Ok R Rk
Integer  |No Integer  [No Integer | No
3 Multl Yes Mut FO F2 F4 Yes  Yes 2 MUt Yes MUt FO  F2 F4 Yes  Yes 1 Multl Yes Mut FO  F2 F4 Yes  Yes
Muit2 No Mu2 No Mut2 No
0 Add Yes Add F6 F8 F2 Yes  Yes Add Yes Add F6 F8 F2 Yes  Yes Add Yes Add F6 F8 F2 Yes  Yes
Divide |Yes Dv  Fl0 FO F6  Mutl No  Yes Divike |Ye Dv  Fl0  FO F6  Mutl No  Yes Divide |Yes Dv FI0 FO F6 Mutl No  Yes
Regiter resuit gtatus. Regigter resut gatus Regigter resut tatus
Clock FO F2 F4 F6 F8 F10 F12 F30 Clock FO F2 F4 F6 F8 Fl0 F12 F30 Clock FO F2 F4 F6 F8 F10 F12 F30
16 FU (v Add Divide ] 17 FU (M Add Divide ] 18 FU- v Add Divide J
FTCWo9 82 «  Write result of ADDD? FTCW99 83 FTCWo9 84
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Scoreboard Example Cycle 19

Indtruction status Read Executio Write
Ingruction ]k Issue Resul
LD F6 34+ R2 1 2 3

LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 19
SUBDF8 F6 F2 7 9 11 12
DIVD FI0 FO F6 8

ADDDF6 F8 F2 | 13 14 16

Functiond unit satus dest S1  S2  FUforjFU for k Fj? Fk?
Time Name Busy Op Fi Fi Fk Qj Qk R Rk
Integer No
0 Multl Yes  Mut FO F2 F4 Yes Yes

Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 FO__F6  Multl No Yes

Register result status

Clock FO F2 F4 F6 F8 F10 Fi12 .. F30

19 FU [MutL Add Divide |
FTC.Wo9 85

Scoreboard Example Cycle 20

Ingtruction status Read Executio Write
Ingrucion  j  k Issue _operands complete Result
LD F6 34+ R2 1 2

LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 19 20
SUBDF8 F6 F2 7 9 11 12
DIVD FI0 FO F6 8

ADDDF6 F8 F2 | 13 14 16

Functiond unit satus. dest S1  s2  FUforjFU fork Fj? Fk?
Time Name Busy Op Fi Fi Fk_ Qj Qk R Rk
Integer No
Muitl No
Mult2 No
Add Yes Add F6 F8 F2 Yes  Yes
Divide Yes Div F10 FO F6 Yes Yes
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 .. F30
20 Fu [ Add Divide ]
FTC.Wo9 86

Scoreboard Example Cycle 21

Indtruction status Read Executio Write

Ingruction ]k Issue Resul
1 2 3 4
5 6 7 8
6 9 19 20
7 9 11 12
8 21
13 14 16

dest S1 S2 FUforjFUfork Fj?  Fk?

Busy Op Fi Fi__Fk Qi Qk Rj Rk
No
No
No
Add Yes Add F6 F8 F2 Yes  Yes
Dvice |ves Dv _F10 FoO F6 Yes  Yes
Regidter result gatus
Clock FO F2 F4 F6 F8 F10 F12 .. F30
21 FU Add Divide ]
FTCWo987

Scoreboard Example Cycle 22

Ingtruction status Read Executio Write
Ingruction ]k Issue Resul
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 19 20
SUBDF8 F6 F2 7 9 11 12
DIVD FI0 FO F6 8 21

ADDDF6 F8 F2 | 13 14 6 22

Functiond unit satus dest S1 S2 FUforjFUfork Fj?2  Fk?
Time Name Busy Op Fi Fi__Fk Qi Qk Rj Rk
Integer  [No
Muitl No
Muit2 No
Add No
40 Divide [Yes Dv FlI0 FO F6 Yes Yes
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 . F30
22 Fu Divide ]
FTCW99 88

Scoreboard Example Cycle 61

Ingtruction status Read Executio Write.
Ingruction j  k  Issue operands

LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 19 20
SUBDF8 F6 F2 7 9 11 12
DIVD FI0 FO F6 8 21 61

ADDDF6 F8 F2 [ 13 14 6 2

Functiond unit satus dest SL S2 FUforjFUfork Fj?  Fk?
Time Name Busy Op Fi Fi__Fk Qi Qk Rj Rk
Integer  [No
Muitl No
Mut2 No
Add No
ODvide |Yes Dv FI0 FO F6 Yes Yes
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 .. F30
61 Fu [ Divide ]
FTCW99 89

Scoreboard Example Cycle 62

Insiruction status Executio Write

Read
Ingruction  j  k Issue _operands complete Result
LD F6 34+ R2 1 2 3 4

LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 19 20
SUBDF8 F6 F2 7 9 u 12
DIVD FI0 FO F6 8 21 61 62

Functiond unit satus dest SL S2 FUforjFUfork Fj?  Fk?
Time Name Buy Op  Fi Fi_ Fk Qi Qk Rl Rk
Integer  [No
Muitl No
Mut2 No
Add No
0 Divide  |No
Register result status.
Clock FO F2 F4 F6 F8 F10 F12 .. F30
62 Fu [ ]
FTCW99 90
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CDC 6600 Scoreboard

« Speedup 1.7 from compiler; 2.5 by hand
BUT slow memory (no cache) limits benefit

« Limitations of 6600 scoreboard:
— No forwarding hardware
— Limited to instructions in basic block (small window)

— Small number of functional units (structural hazards),
especailly integer/load store units

— Do not issue on structural hazards
— Wait for WAR hazards
— Prevent WAW hazards

FTC.W99 01

Summary

Instruction Level Parallelism (ILP) in SW or HW
Loop level parallelism is easiest to see

SW parallelism dependencies defined for program,
hazards if HW cannot resolve

SW dependencies/compiler sophistication determine if
compiler can unroll loops

— Memory dependencies hardest to determine
HW exploiting ILP

— Works when can’t know dependence at run time

— Code for one machine runs well on another
Key idea of Scoreboard: Allow instructions behind stall
to proceed (Decode => Issue instr & read operands)

— Enables out-of-order execution => out-of-order completion

— ID stage checked both for structural FTC.W99 92
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