
Page 1

FTC.W99 1

Lecture 2:
Caches and Advanced Pipelining

Prof. Fred Chong
ECS 250A Computer Architecture

Winter 1999

(Adapted from Patterson CS252 Copyright 1998 UCB)

FTC.W99 2

Review, #1
• Designing to Last through Trends

Capacity Speed

Logic 2x in 3 years 2x in 3 years

DRAM 4x in 3 years 2x in 10 years

Disk 4x in 3 years 2x in 10 years

 Processor (n.a.) 2x in 1.5 years

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns, …
– Throughput, bandwidth

• “X is n times faster than Y” means
 ExTime(Y) Performance(X)

 --------- = --------------

 ExTime(X) Performance(Y)
FTC.W99 3

Review, #2

• Amdahl’s Law:

• CPI Law:

• Execution time is the REAL measure of computer
performance!

• Good products created when have:
– Good benchmarks
– Good ways to summarize performance

• Die Cost goes roughly with die area4

Speedupoverall =
ExTimeold

ExTimenew

=

1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

FTC.W99 4

Recap: Who Cares About the Memory
Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

FTC.W99 5

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

FTC.W99 6

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

• Last 15 years, HW relied on localilty for speed

Page 2

FTC.W99 7

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level

(example: Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the
lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

Memory
Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

FTC.W99 8

Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

• Average memory-access time
= Hit time + Miss rate x Miss penalty

(ns or clocks)

• Miss penalty: time to replace a block from
lower level, including time to replace in CPU

– access time: time to lower level
= f(latency to lower level)

– transfer time: time to transfer block

=f(BW between upper & lower levels) FTC.W99 9

Simplest Cache: Direct Mapped
Memory

4 Byte Direct Mapped Cache

Memory Address
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Cache Index

0

1

2

3

• Location 0 can be occupied by
data from:

– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0> => cache index

• Which one should we place in
the cache?

• How can we tell which one is in
the cache?

FTC.W99 10

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9

FTC.W99 11

Two-way Set Associative Cache

• N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit FTC.W99 12

Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

– Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Page 3

FTC.W99 13

4 Questions for Memory
Hierarchy

• Q1: Where can a block be placed in the upper level?
(Block placement)

• Q2: How is a block found if it is in the upper level?
 (Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

FTC.W99 14

Q1: Where can a block be
placed in the upper level?

• direct mapped - 1 place

• n-way set associative - n places

• fully-associative - any place

FTC.W99 15

Q2: How is a block found if it is in
the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,
expands tag

Block Address
Block offset

Tag Index

FTC.W99 16

Q3: Which block should be replaced
on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random

– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way
Size LRURandomLRURandom LRURandom
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17%1.13% 1.13% 1.12% 1.12%

FTC.W99 17

Q4: What happens on a write?

• Write through—The information is written to
both the block in the cache and to the block in
the lower-level memory.

• Write back—The information is written only to
the block in the cache. The modified cache
block is written to main memory only when it
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so
that don’t wait for lower level memory FTC.W99 18

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time) -> 1 / DRAM write cycle

– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

Page 4

FTC.W99 19

Impact of Memory Hierarchy on
Algorithms

• Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

• “The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings
of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting
algorithm when all keys fit in memory

• Radix sort: also called “linear time” sort because for
keys of fixed length and fixed radix a constant
number of passes over the data is sufficient
independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped
L2 2MB cache, 8 byte keys, from 4000 to 4000000 FTC.W99 20

Quicksort vs. Radix as vary number
keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)

Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort

FTC.W99 21

Quicksort vs. Radix as vary number
keys: Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)

Radix (Instr/key)

Quick (Clocks/key)

Radix (clocks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort

FTC.W99 22

Quicksort vs. Radix as vary number
keys: Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 10000000

Quick(miss/key)

Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?
FTC.W99 23

A Modern Memory Hierarchy
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the
cheapest technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
 (10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
 (10s sec)

Ts
FTC.W99 24

Basic Issues in VM System Design
size of information blocks that are transferred from
 secondary to main storage (M)

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages

reg

cache
mem disk

frame

Page 5

FTC.W99 25

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' and a' in M

 = 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

FTC.W99 26

Paging Organization
frame 0

1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

V.A.

FTC.W99 27

Virtual Address and a Cache

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the
"innermost loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
 synonym / alias problem: two different virtual addresses map to
 same physical address => two different cache entries holding data for
 the same physical address!

 for update: must update all cache entries with same
 physical address or memory becomes inconsistent

 determining this requires significant hardware, essentially an
 associative lookup on the physical address tags to see if you
 have multiple hits; or

 software enforced alias boundary: same lsb of VA &PA > cache size

FTC.W99 28

TLBs
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
 (much less than main memory access time)

FTC.W99 29

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

FTC.W99 30

Reducing Translation Time

Machines with TLBs go one step further to reduce #
cycles/cache access

They overlap the cache access with the TLB access:

 high order bits of the VA are used to look in the TLB
while low order bits are used as index into cache

Page 6

FTC.W99 31

Overlapped Cache & TLB Access

TLB Cache

10 2

00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

FTC.W99 32

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes;
 go to 2 way set associative cache; or
 SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache

FTC.W99 33

Summary #1/4:

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!

• Write Policy:
– Write Through: needs a write buffer. Nightmare: WB saturation
– Write Back: control can be complex

FTC.W99 34

Summary #2 / 4:
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity

– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

FTC.W99 35

Summary #3/4: TLB, Virtual Memory
• Caches, TLBs, Virtual Memory all understood by

examining how they deal with 4 questions: 1) Where
can block be placed? 2) How is block found? 3) What
block is repalced on miss? 4) How are writes
handled?

• Page tables map virtual address to physical address

• TLBs are important for fast translation
• TLB misses are significant in processor performance

– funny times, as most systems can’t access all of 2nd level cache
without TLB misses!

FTC.W99 36

Summary #4/4: Memory Hierachy
• VIrtual memory was controversial at the time:

can SW automatically manage 64KB across many
programs?

– 1000X DRAM growth removed the controversy

• Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy

• Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

Page 7

FTC.W99 37

Case Study: MIPS R4000
(200 MHz)

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here

as well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and

also instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU

operation, and branch target computation and condition
evaluation.

– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch
delay? Why? FTC.W99 38

Case Study: MIPS R4000
IF IS

IF
RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
 during EX phase)

Delay slot plus two stalls
Branch likely cancels delay slot if not taken

FTC.W99 39

MIPS R4000 Floating Point

• FP Adder, FP Multiplier, FP Divider
• Last step of FP Multiplier/Divider uses FP Adder HW

• 8 kinds of stages in FP units:
Stage Functional unit Description
A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage
E FP multiplier Exception test stage
M FP multiplier First stage of multiplier
N FP multiplier Second stage of multiplier
R FP adder Rounding stage
S FP adder Operand shift stage
U Unpack FP numbers

FTC.W99 40

MIPS FP Pipe Stages
FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A, R

Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier

R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage
D Divide pipeline stage
E Exception test stage

FTC.W99 41

R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

na
sa

7

or
a

sp
ic

e2
g6

su
2c

or

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural

stalls FTC.W99 42

Advanced Pipelining and
Instruction Level Parallelism (ILP)

• ILP: Overlap execution of unrelated instructions
• gcc 17% control transfer

– 5 instructions + 1 branch
– Beyond single block to get more instruction level parallelism

• Loop level parallelism one opportunity, SW and HW
• Do examples and then explain nomenclature
• DLX Floating Point as example

– Measurements suggests R4000 performance FP execution has room
for improvement

Page 8

FTC.W99 43

FP Loop: Where are the Hazards?

Loop: LD F0,0(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar from F2

 SD 0(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 BNEZ R1,Loop ;branch R1!=zero

 NOP ;delayed branch slot

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

• Where are the stalls? FTC.W99 44

FP Loop Hazards

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

Loop: LD F0,0(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar in F2

 SD 0(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 BNEZ R1,Loop ;branch R1!=zero

 NOP ;delayed branch slot

FTC.W99 45

FP Loop Showing Stalls

• 9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: LD F0,0(R1) ;F0=vector element

 2 stall
 3 ADDD F4,F0,F2 ;add scalar in F2

 4 stall
 5 stall
 6 SD 0(R1),F4 ;store result

 7 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 8 BNEZ R1,Loop ;branch R1!=zero

 9 stall ;delayed branch slot

FTC.W99 46

Revised FP Loop Minimizing Stalls

 6 clocks: Unroll loop 4 times code to make faster?

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: LD F0,0(R1)

 2 stall
 3 ADDD F4,F0,F2

 4 SUBI R1,R1,8

 5 BNEZ R1,Loop ;delayed branch

 6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD

FTC.W99 47

Unroll Loop Four Times
(straightforward way)

 Rewrite loop to
minimize stalls?

 1 Loop: LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 ;drop SUBI & BNEZ
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 ;drop SUBI & BNEZ
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12 ;drop SUBI & BNEZ
 10 LD F14,-24(R1)
 11 ADDD F16,F14,F2
 12 SD -24(R1),F16
 13 SUBI R1,R1,#32 ;alter to 4*8
 14 BNEZ R1,LOOP
 15 NOP

 15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
 Assumes R1 is multiple of 4 FTC.W99 48

Unrolled Loop That Minimizes Stalls

• What assumptions
made when moved
code?

– OK to move store past
SUBI even though changes
register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

 14 clock cycles, or 3.5 per iteration
When safe to move instructions?

Page 9

FTC.W99 49

Compiler Perspectives on Code
Movement

• Definitions: compiler concerned about dependencies
in program, whether or not a HW hazard depends on
a given pipeline

• Try to schedule to avoid hazards
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k, and instruction k

is data dependent on instruction i.

• If depedent, can’t execute in parallel

• Easy to determine for registers (fixed names)
• Hard for memory:

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)? FTC.W99 50

Where are the data dependencies?

 1 Loop: LD F0,0(R1)

 2 ADDD F4,F0,F2

 3 SUBI R1,R1,8

 4 BNEZ R1,Loop ;delayed branch

 5 SD 8(R1),F4 ;altered when move past SUBI

FTC.W99 51

Compiler Perspectives on Code
Movement

• Another kind of dependence called name dependence:
two instructions use same name (register or memory
location) but don’t exchange data

• Antidependence (WAR if a hazard for HW)
– Instruction j writes a register or memory location that instruction i

reads from and instruction i is executed first

• Output dependence (WAW if a hazard for HW)
– Instruction i and instruction j write the same register or memory

location; ordering between instructions must be preserved.

FTC.W99 52

Where are the name
dependencies?

 1 Loop: LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 ;drop SUBI & BNEZ
 4 LD F0,-8(R1)
 2 ADDD F4,F0,F2
 3 SD -8(R1),F4 ;drop SUBI & BNEZ
 7 LD F0,-16(R1)
 8 ADDD F4,F0,F2
 9 SD -16(R1),F4 ;drop SUBI & BNEZ
 10 LD F0,-24(R1)
 11 ADDD F4,F0,F2
 12 SD -24(R1),F4
 13 SUBI R1,R1,#32 ;alter to 4*8
 14 BNEZ R1,LOOP
 15 NOP

 How can remove them?
FTC.W99 53

Where are the name
dependencies?

 1 Loop: LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 ;drop SUBI & BNEZ
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 ;drop SUBI & BNEZ
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12 ;drop SUBI & BNEZ
 10 LD F14,-24(R1)
 11 ADDD F16,F14,F2
 12 SD -24(R1),F16
 13 SUBI R1,R1,#32 ;alter to 4*8
 14 BNEZ R1,LOOP
 15 NOP

 Called “register renaming”
FTC.W99 54

Compiler Perspectives on Code
Movement

• Again Name Dependenceis are Hard for Memory
Accesses

– Does 100(R4) = 20(R6)?

– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1
doesn’t change then:

0(R1) � -8(R1) � -16(R1) � -24(R1)

 There were no dependencies between some loads and
stores so they could be moved by each other

Page 10

FTC.W99 55

Compiler Perspectives on Code
Movement

• Final kind of dependence called control dependence

• Example
if p1 {S1;};

if p2 {S2;};

 S1 is control dependent on p1 and S2 is control
dependent on p2 but not on p1.

FTC.W99 56

Compiler Perspectives on Code
Movement

• Two (obvious) constraints on control dependences:
– An instruction that is control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled by the
branch.

– An instruction that is not control dependent on a branch cannot be
moved to after the branch so that its execution is controlled by the
branch.

• Control dependencies relaxed to get parallelism; get
same effect if preserve order of exceptions (address in
register checked by branch before use) and data flow
(value in register depends on branch)

FTC.W99 57

Where are the control
dependencies?

 1 Loop: LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4

 4 SUBI R1,R1,8

 5 BEQZ R1,exit
6 LD F0,0(R1)
 7 ADDD F4,F0,F2
 8 SD 0(R1),F4

 9 SUBI R1,R1,8

 10 BEQZ R1,exit
 11 LD F0,0(R1)
 12 ADDD F4,F0,F2
 13 SD 0(R1),F4

 14 SUBI R1,R1,8

 15 BEQZ R1,exit
....

FTC.W99 58

When Safe to Unroll Loop?

• Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)
for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

1. S2 uses the value, A[i+1], computed by S1 in the same iteration.

2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same
is true of S2 for B[i] and B[i+1].
This is a “loop-carried dependence”: between iterations

• Implies that iterations are dependent, and can’t be
executed in parallel

• Not the case for our prior example; each iteration was
distinct

FTC.W99 59

HW Schemes: Instruction Parallelism

• Why in HW at run time?
– Works when can’t know real dependence at compile time
– Compiler simpler
– Code for one machine runs well on another

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

– Enables out-of-order execution => out-of-order completion
– ID stage checked both for structuralScoreboard dates to CDC 6600

in 1963

FTC.W99 60

HW Schemes: Instruction Parallelism

• Out-of-order execution divides ID stage:
1. Issue—decode instructions, check for structural hazards
2. Read operands—wait until no data hazards, then read operands

• Scoreboards allow instruction to execute whenever
1 & 2 hold, not waiting for prior instructions

• CDC 6600: In order issue, out of order execution, out
of order commit (also called completion)

Page 11

FTC.W99 61

Scoreboard Implications

• Out-of-order completion => WAR, WAW hazards?

• Solutions for WAR
– Queue both the operation and copies of its operands
– Read registers only during Read Operands stage

• For WAW, must detect hazard: stall until other
completes

• Need to have multiple instructions in execution
phase => multiple execution units or pipelined
execution units

• Scoreboard keeps track of dependencies, state or
operations

• Scoreboard replaces ID, EX, WB with 4 stages
FTC.W99 62

Four Stages of Scoreboard Control
1.Issue—decode instructions & check for

structural hazards (ID1)
 If a functional unit for the instruction is free and no other

active instruction has the same destination register (WAW),
the scoreboard issues the instruction to the functional unit
and updates its internal data structure. If a structural or
WAW hazard exists, then the instruction issue stalls, and no
further instructions will issue until these hazards are cleared.

2.Read operands—wait until no data hazards, then
read operands (ID2)

 A source operand is available if no earlier issued active
instruction is going to write it, or if the register containing
the operand is being written by a currently active functional
unit. When the source operands are available, the
scoreboard tells the functional unit to proceed to read the
operands from the registers and begin execution. The
scoreboard resolves RAW hazards dynamically in this step,
and instructions may be sent into execution out of order. FTC.W99 63

Four Stages of Scoreboard Control

3.Execution—operate on operands (EX)
 The functional unit begins execution upon receiving

operands. When the result is ready, it notifies the scoreboard
that it has completed execution.

4.Write result—finish execution (WB)
 Once the scoreboard is aware that the functional unit has

completed execution, the scoreboard checks for WAR
hazards. If none, it writes results. If WAR, then it stalls the
instruction.
Example:

 DIVD F0,F2,F4
 ADDD F10,F0,F8
 SUBD F8,F8,F14
 CDC 6600 scoreboard would stall SUBD until ADDD reads

operands

FTC.W99 64

Three Parts of the Scoreboard

1.Instruction status—which of 4 steps the instruction is in

2.Functional unit status—Indicates the state of the
functional unit (FU). 9 fields for each functional unit

Busy—Indicates whether the unit is busy or not
Op—Operation to perform in the unit (e.g., + or –)
Fi—Destination register
Fj, Fk—Source-register numbers

Qj, Qk—Functional units producing source registers Fj, Fk
Rj, Rk—Flags indicating when Fj, Fk are ready

3.Register result status—Indicates which functional unit
will write each register, if one exists. Blank when no
pending instructions will write that register FTC.W99 65

Detailed Scoreboard Pipeline
Control

Read
operands

Execution
complete

Instruction
status

Write
result

Issue

Bookkeeping

Rj← No; Rk← No

∀f(if Qj(f)=FU then Rj(f)← Yes);
∀f(if Qk(f)=FU then Rj(f)← Yes);

Result(Fi(FU))← 0; Busy(FU)← No

Busy(FU)← yes; Op(FU)← op;
Fi(FU)← `D’; Fj(FU)← `S1’;

Fk(FU)← `S2’; Qj← Result(‘S1’);
Qk← Result(`S2’); Rj← not Qj;
Rk← not Qk; Result(‘D’)← FU;

Rj and Rk

Functional unit
done

Wait until

∀f((Fj(f)�Fi(FU)
or Rj(f)=No) &

(Fk(f) �Fi(FU) or
Rk(f)=No))

Not busy (FU)
and not result(D)

FTC.W99 66

Scoreboard Example

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2
LD F2 45+ R3
MULTDF0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
FU

Page 12

FTC.W99 67

Scoreboard Example Cycle 1

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1
LD F2 45+ R3
MULTDF0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F6 R2 Yes
Mult1 No
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
1 FU Integer

FTC.W99 68

Scoreboard Example Cycle 2

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2
LD F2 45+ R3
MULTDF0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F6 R2 Yes
Mult1 No
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
2 FU Integer

• Issue 2nd LD? FTC.W99 69

Scoreboard Example Cycle 3

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3
LD F2 45+ R3
MULTDF0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F6 R2 Yes
Mult1 No
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Integer

• Issue MULT?

FTC.W99 70

Scoreboard Example Cycle 4

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3
MULTDF0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F6 R2 Yes
Mult1 No
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
4 FU Integer

FTC.W99 71

Scoreboard Example Cycle 5

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5
MULTDF0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Mult1 No
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
5 FU Integer

FTC.W99 72

Scoreboard Example Cycle 6

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6
MULTDF0 F2 F4 6
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Mult1 Yes Mult F0 F2 F4 Integer No Yes
Mult2 No
Add No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
6 FU Mult1 Integer

Page 13

FTC.W99 73

Scoreboard Example Cycle 7

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7
MULTDF0 F2 F4 6
SUBD F8 F6 F2 7
DIVD F10 F0 F6
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Mult1 Yes Mult F0 F2 F4 Integer No Yes
Mult2 No
Add Yes Sub F8 F6 F2 Integer Yes No
Divide No

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
7 FU Mult1 Integer Add

• Read multiply operands? FTC.W99 74

Scoreboard Example Cycle 8a

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7
MULTDF0 F2 F4 6
SUBD F8 F6 F2 7
DIVD F10 F0 F6 8
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Mult1 Yes Mult F0 F2 F4 Integer No Yes
Mult2 No
Add Yes Sub F8 F6 F2 Integer Yes No
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
8 FU Mult1 Integer Add Divide

FTC.W99 75

Scoreboard Example Cycle 8b

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6
SUBD F8 F6 F2 7
DIVD F10 F0 F6 8
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No
Add Yes Sub F8 F6 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
8 FU Mult1 Add Divide

FTC.W99 76

Scoreboard Example Cycle 9

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9
DIVD F10 F0 F6 8
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

10 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No

2 Add Yes Sub F8 F6 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
9 FU Mult1 Add Divide

• Read operands for MULT & SUBD? Issue ADDD? FTC.W99 77

Scoreboard Example Cycle 11

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11
DIVD F10 F0 F6 8
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

8 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No

0 Add Yes Sub F8 F6 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
11 FU Mult1 Add Divide

FTC.W99 78

Scoreboard Example Cycle 12

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

7 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No
Add No
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
12 FU Mult1 Divide

• Read operands for DIVD?

Page 14

FTC.W99 79

Scoreboard Example Cycle 13

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

6 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
13 FU Mult1 Add Divide

FTC.W99 80

Scoreboard Example Cycle 14

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

5 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No

2 Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
14 FU Mult1 Add Divide

FTC.W99 81

Scoreboard Example Cycle 15

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

4 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No

1 Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
15 FU Mult1 Add Divide

FTC.W99 82

Scoreboard Example Cycle 16

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14 16
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

3 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No

0 Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
16 FU Mult1 Add Divide

FTC.W99 83

Scoreboard Example Cycle 17

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14 16
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

2 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
17 FU Mult1 Add Divide

• Write result of ADDD? FTC.W99 84

Scoreboard Example Cycle 18

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14 16
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

1 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
18 FU Mult1 Add Divide

Page 15

FTC.W99 85

Scoreboard Example Cycle 19

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9 19
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14 16
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

0 Mult1 Yes Mult F0 F2 F4 Yes Yes
Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
19 FU Mult1 Add Divide

FTC.W99 86

Scoreboard Example Cycle 20

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8
ADDD F6 F8 F2 13 14 16
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Yes Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
20 FU Add Divide

FTC.W99 87

Scoreboard Example Cycle 21

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8 21
ADDD F6 F8 F2 13 14 16
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add Yes Add F6 F8 F2 Yes Yes
Divide Yes Div F10 F0 F6 Yes Yes

Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
21 FU Add Divide

FTC.W99 88

Scoreboard Example Cycle 22

Instruction status Read ExecutionWrite
Instruction j k Issue operandscomplete Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8 21
ADDD F6 F8 F2 13 14 16 22
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add No

40 Divide Yes Div F10 F0 F6 Yes Yes
Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
22 FU Divide

FTC.W99 89

Scoreboard Example Cycle 61

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8 21 61
ADDD F6 F8 F2 13 14 16 22
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add No

0 Divide Yes Div F10 F0 F6 Yes Yes
Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
61 FU Divide

FTC.W99 90

Scoreboard Example Cycle 62

Instruction status Read ExecutionWrite
Instruction j k Issue operandscompleteResult
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTDF0 F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12
DIVD F10 F0 F6 8 21 61 62
ADDD F6 F8 F2 13 14 16 22
Functional unit status dest S1 S2 FU for j FU for k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add No

0 Divide No
Register result status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
62 FU

Page 16

FTC.W99 91

CDC 6600 Scoreboard

• Speedup 1.7 from compiler; 2.5 by hand
BUT slow memory (no cache) limits benefit

• Limitations of 6600 scoreboard:
– No forwarding hardware
– Limited to instructions in basic block (small window)

– Small number of functional units (structural hazards),
especailly integer/load store units

– Do not issue on structural hazards
– Wait for WAR hazards
– Prevent WAW hazards

FTC.W99 92

Summary

• Instruction Level Parallelism (ILP) in SW or HW

• Loop level parallelism is easiest to see
• SW parallelism dependencies defined for program,

hazards if HW cannot resolve

• SW dependencies/compiler sophistication determine if
compiler can unroll loops

– Memory dependencies hardest to determine

• HW exploiting ILP
– Works when can’t know dependence at run time
– Code for one machine runs well on another

• Key idea of Scoreboard: Allow instructions behind stall
to proceed (Decode => Issue instr & read operands)

– Enables out-of-order execution => out-of-order completion
– ID stage checked both for structural

