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Multi-cycle Approach
• Single cycle CPU

• Multi-cycle CPU
– Requires state elements to hold intermediate values
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Multi-cycle Approach
• Each cycle must

– Store values needed in a later cycle of the current instruction in 
an internal register. All except IR hold data for one clock cycle.

IR – Instruction Register MDR – Memory Data Register
A, B – Register File data ALUOut – ALU Result Register

– Store values needed by subsequent instructions in the register 
file or memory 
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Multi-cycle Control
• New control signals needed

– PCWriteCond is set during a beq instruction
• Formerly called Branch signal

– PCWrite is set to write PC
• Unconditional write signal needed during Fetch cycle

– IorD controls what address is used for the memory
• PC holds address for fetch cycle
• ALUOut holds address for memory access instructions

– IRWrite controls when the IR is written
– ALUSrcA control one input to ALU

• rs register for most operations
• PC for branch instructions
• Old ALUSrc renamed ALUSrcB and expanded
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Multi-cycle Control and Datapath
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Multi-cycle Steps
• Instruction Fetch
• Decode and Register Fetch

• Execution
• Memory Access
• Write Register File



6

(1) Instruction Fetch Cycle
• Increment PC using ALU

– PC = PC + 4

• Read instruction from memory
– IR = M[PC]

• Control signals must
– Select memory address source

– Enable memory reading
– Enable PC and IR write
– Select PC source
– Select ALU input as PC and constant 4

– Select ALU operation (addition)
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Instruction Fetch
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(2) Decode and Register Fetch Cycle
• Read register values

– A = R[rs], B = R[rt]

• Compute branch destination
– ALUOut = PC + sign extended immediate value

• Prepare for next step based on instruction
• Control signals must

– Select ALU inputs as PC and immediate value

– Select ALU operation (addition)
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Decode and Register Fetch

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



10

(3) Execution Cycle
• Functionality varies with instructions

– Memory reference
• Compute address
• ALUOut = A + sign extended immediate

– R-type
• Compute operation
• ALUOut = A op B

– Branch
• Store new PC if needed
• PC = ALUOut
• ALUOut contains branch destination from previous cycle

• Control signals will depend on instruction type
– Mem/R-type: Select ALU input and operation
– Branch: Select PC source and set PC write control signal if 

needed
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Execute Branch

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



12

(4) Memory Access Cycle
• Functionality varies with instructions

– Memory reference
• Read memory (lw) or write memory (sw)
• MDR = M[ALUOut] or M[ALUOut] = B

– R-type
• Write result to register file
• R[rd] = ALUOut

• Control signals will depend on instruction type
– Memory reference

• Enable memory read or write

• Select memory address

– R-type
• Select register file write address and data
• Enable register file write
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R-Type “Memory Access”
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(5) Write Register File Cycle
• Only used by load instructions
• Write memory value to register

– Reg[rt] = MDR

• Control signals must
– Enable register file write
– Select register file write address and data
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lw Write Registers
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Review
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Defining the CPU Control
●Use a finite state machine model to design the control

● Control now has state or memory
● Action depends on input and current cycle

●Signal names in each state are asserted
● Asserted signals are set or enabled
● Unlisted signals are deasserted

●Arcs between states list conditions for transition

●Example State A
● Signal Run is asserted
● Goes to State B when input Up = 0
● Goes to State C when input Up = 1

Run
Up=1Up=0

A

B C
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Instruction Fetch and Decode Cycles
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Instruction Fetch and Decode Cycles

MemRead
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Write Register File Cycle
- Load instruction only

Memory Access Cycle
- Read or write memory

Execute Cycle
- Compute memory address

Memory Access Instructions
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ALUOp = 00

MemWrite
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RegDst = 0

MemRead
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From Decode state if SW or LW

SWLW

Fetch Next
Instruction
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Memory Access Cycle
- Write data to register file

Execute Cycle
- Compute operation
- Control must look at function field

R-type Instructions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegWrite
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From Decode state if R-type

Fetch Next
Instruction
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Execute Cycle
- Compare register values
- Write PC if Zero asserted

Branch on Equal Instruction

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCSource = 01
PCWriteCond

From Decode state if BEQ

Fetch Next
Instruction
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Final State Diagram
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Implementing jal
●Jump and link (jal)

– J-Type
– PC+4  $31
– Jump destination  PC

●What modifications are required?
– 2 Cycle

• Const 31 write destination
• Expand PCSource mux with ALUOut as PC+4

– 3 Cycle
• Const 31 write destination
• PC connected to write data
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Implementing jal
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Implementing jal (needs fixing MF)
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