
1

Multi-cycle Approach
• Single cycle CPU

• Multi-cycle CPU
– Requires state elements to hold intermediate values

State
element

State
element

Combinational
logic

clock

one clock cycle or instruction

State
Element

A
Combinational

logic

State
Element

B

…

State
Element

N-1
Combinational

logic

State
Element

N

clock

one instruction

…

one clock cycle



2

Multi-cycle Approach
• Each cycle must

– Store values needed in a later cycle of the current instruction in 
an internal register. All except IR hold data for one clock cycle.

IR – Instruction Register MDR – Memory Data Register
A, B – Register File data ALUOut – ALU Result Register

– Store values needed by subsequent instructions in the register 
file or memory 

Address

Read Data
(Instr. or Data)

Memory

P
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A
B A

L
U

O
u

t



3

Multi-cycle Control
• New control signals needed

– PCWriteCond is set during a beq instruction
• Formerly called Branch signal

– PCWrite is set to write PC
• Unconditional write signal needed during Fetch cycle

– IorD controls what address is used for the memory
• PC holds address for fetch cycle
• ALUOut holds address for memory access instructions

– IRWrite controls when the IR is written
– ALUSrcA control one input to ALU

• rs register for most operations
• PC for branch instructions
• Old ALUSrc renamed ALUSrcB and expanded



4

Multi-cycle Control and Datapath

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



5

Multi-cycle Steps
• Instruction Fetch
• Decode and Register Fetch

• Execution
• Memory Access
• Write Register File



6

(1) Instruction Fetch Cycle
• Increment PC using ALU

– PC = PC + 4

• Read instruction from memory
– IR = M[PC]

• Control signals must
– Select memory address source

– Enable memory reading
– Enable PC and IR write
– Select PC source
– Select ALU input as PC and constant 4

– Select ALU operation (addition)



7

Instruction Fetch

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



8

(2) Decode and Register Fetch Cycle
• Read register values

– A = R[rs], B = R[rt]

• Compute branch destination
– ALUOut = PC + sign extended immediate value

• Prepare for next step based on instruction
• Control signals must

– Select ALU inputs as PC and immediate value

– Select ALU operation (addition)



9

Decode and Register Fetch

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



10

(3) Execution Cycle
• Functionality varies with instructions

– Memory reference
• Compute address
• ALUOut = A + sign extended immediate

– R-type
• Compute operation
• ALUOut = A op B

– Branch
• Store new PC if needed
• PC = ALUOut
• ALUOut contains branch destination from previous cycle

• Control signals will depend on instruction type
– Mem/R-type: Select ALU input and operation
– Branch: Select PC source and set PC write control signal if 

needed



11

Execute Branch

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



12

(4) Memory Access Cycle
• Functionality varies with instructions

– Memory reference
• Read memory (lw) or write memory (sw)
• MDR = M[ALUOut] or M[ALUOut] = B

– R-type
• Write result to register file
• R[rd] = ALUOut

• Control signals will depend on instruction type
– Memory reference

• Enable memory read or write

• Select memory address

– R-type
• Select register file write address and data
• Enable register file write



13

R-Type “Memory Access”

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



14

(5) Write Register File Cycle
• Only used by load instructions
• Write memory value to register

– Reg[rt] = MDR

• Control signals must
– Enable register file write
– Select register file write address and data



15

lw Write Registers

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
O

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



16

Review

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
o

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



17

Defining the CPU Control
●Use a finite state machine model to design the control

● Control now has state or memory
● Action depends on input and current cycle

●Signal names in each state are asserted
● Asserted signals are set or enabled
● Unlisted signals are deasserted

●Arcs between states list conditions for transition

●Example State A
● Signal Run is asserted
● Goes to State B when input Up = 0
● Goes to State C when input Up = 1

Run
Up=1Up=0

A

B C



18

Instruction Fetch and Decode Cycles

Instruction Fetch

Start

Next state depends
on instruction

Decode

MemRead
IorD
IRWrite

Fetch Instruction

ALUSrcA
ALUSrcB
ALUOp
PCSource
PCWrite

Increment PC

ALUSrcA
ALUSrcB
ALUOp

Compute
Branch
Destination



19

Instruction Fetch and Decode Cycles

MemRead
IorD = 0
IRWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 00

PCSource = 00
PCWrite

Instruction Fetch

Start ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

Next state depends
on instruction

Decode

MemRead
IorD
IRWrite

Fetch Instruction

ALUSrcA
ALUSrcB
ALUOp
PCSource
PCWrite

Increment PC

ALUSrcA
ALUSrcB
ALUOp

Compute
Branch
Destination



20

Write Register File Cycle
- Load instruction only

Memory Access Cycle
- Read or write memory

Execute Cycle
- Compute memory address

Memory Access Instructions

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemWrite
IorD = 1

RegWrite
MemtoReg = 1

RegDst = 0

MemRead
IorD = 1

From Decode state if SW or LW

SWLW

Fetch Next
Instruction



21

Memory Access Cycle
- Write data to register file

Execute Cycle
- Compute operation
- Control must look at function field

R-type Instructions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegWrite
MemtoReg = 0

RegDst = 1

From Decode state if R-type

Fetch Next
Instruction



22

Execute Cycle
- Compare register values
- Write PC if Zero asserted

Branch on Equal Instruction

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCSource = 01
PCWriteCond

From Decode state if BEQ

Fetch Next
Instruction



23

Final State Diagram



24

Implementing jal
●Jump and link (jal)

– J-Type
– PC+4  $31
– Jump destination  PC

●What modifications are required?
– 2 Cycle

• Const 31 write destination
• Expand PCSource mux with ALUOut as PC+4

– 3 Cycle
• Const 31 write destination
• PC connected to write data



25

Implementing jal

Address

Read Data
(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
o

u
t

Sign
Extend

Shift
left 2

ALU
control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr
[31-26]

32

28

Control

Shift
left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1



26

Implementing jal (needs fixing MF)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Review
	Slide 17
	Instruction Fetch and Decode Cycles
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Final State Diagram
	Slide 24
	Slide 25
	Slide 26

