
1

The Pipelined CPU With Control

Read
Address

IM

Add

PC

4

Write Data

Read Addr 1
Read Addr 2

Write Addr

Register File

Read
 Data 1

Read
 Data 2

ALU

Shift
left 2

DM

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

ALU
Cntrl

RegWrite

MemWrite MemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc

Control

Add

2

Data Hazard Review
•  Caused when data is needed before it is ready

–  Read before write: Result of previous instruction
needed by later instruction

–  Load use: Value in data memory needed by later
instruction

ALU IM Reg DM Reg

ALU IM Reg DM Reg

ALU IM Reg DM Reg

3

Read After Write Hazard Solution
•  Forwarding data improves CPI

ALU IM Reg DM Reg

ALU IM Reg DM Reg

ALU IM Reg DM Reg

add $4, $5, $6

add $8, $4, $6

add $10, $9, $4

4

EX/MEM Forwarding
•  Register value needed by next instruction

–  Calculated by ALU this clock cycle
–  Needed as input to ALU on next clock cycle

ALU IM Reg DM Reg

ALU IM Reg DM Reg

add $4, $5, $6

add $8, $4, $7
 or

add $8, $7, $4

5

EX/MEM Forwarding

ALU

ID/EX

ALU
Cntrl

RegDst

EX/MEM

MemtoReg

MEM/WB

Rd
Rt

MemWrite

RegWrite
R[Rs]

R[Rt]

Immediate

6

EX/MEM Forwarding

ALU

ID/EX

ALU
Cntrl

RegDst

EX/MEM

Forward
Unit

MemtoReg

MEM/WB

Rd
Rt
Rs

MemWrite

RegWrite R[Rs]

R[Rt]

Immediate

7

Forwarding Unit Details

EX/MEM.RegWrite

EX/MEM.RegisterRd[4]
ID/EX.RegisterRs[4]

EX/MEM.RegisterRd[0]
ID/EX.RegisterRs[0]

…

EX/MEM.RegisterRd[4]
0

EX/MEM.RegisterRd[0]
0

…

Forward

EX/MEM.RegisterRd ≠ 0

EX/MEM.RegisterRd =
 ID/EX.RegisterRs

8

MEM/WB Forwarding
•  Register value needed two instructions later

–  Calculated by ALU this clock cycle
–  Needed as input to ALU in two clock cycles

ALU IM Reg DM Reg

ALU IM Reg DM Reg

add $4, $5, $6

add $8, $4, $7
 or

add $8, $7, $4

ALU IM Reg DM Reg

Unrelated
Instruction

9

MEM/WB Forwarding

ALU

ID/EX

ALU
Cntrl

RegDst

EX/MEM

Forward
Unit

MemtoReg

MEM/WB

Rd
Rt
Rs

MemWrite

RegWrite R[Rs]

R[Rt]

Immediate

10

MEM/WB Forwarding

ALU

ID/EX

ALU
Cntrl

RegDst

EX/MEM

Forward
Unit

MemtoReg

MEM/WB

Rd
Rt
Rs

MemWrite

RegWrite R[Rs]

R[Rt]

Immediate

11

Forwarding Complication
•  Forward unit must forward most recent value

–  It may appear necessary to do MEM/WB and EX/
MEM forwarding simultaneously

–  Only do EX/MEM forwarding this cycle
–  Do EX/MEM forwarding again next cycle

ALU IM Reg DM Reg

ALU IM Reg DM Reg

add $4, $5, $6

add $8, $4, $7 ALU IM Reg DM Reg

add $4, $4, $13

12

Complete ALU Input Forwarding

ALU

ID/EX

ALU
Cntrl

RegDst

EX/MEM

Forward
Unit

MemtoReg

MEM/WB

Rd
Rt
Rs

MemWrite

RegWrite R[Rs]

R[Rt]

Immediate

13

Other Forwarding Possible
•  Forwarding to Data Memory

•  Data memory to data memory copy

ALU IM Reg DM Reg

ALU IM Reg DM Reg

add $4, $5, $6

sw $4, 40($7)

ALU IM Reg DM Reg

ALU IM Reg DM Reg

lw $4, 16($7)

sw $4, 40($7)

14

Forwarding to Memory

ALU

ID/EX

ALU
Cntrl

EX/MEM

Forward
Unit

MemtoReg

MEM/WB

Rd
Rt
Rs

MemWrite
RegWrite R[Rs]

R[Rt]

Immediate

15

Forwarding to Memory

ALU

ID/EX

ALU
Cntrl

EX/MEM

Forward
Unit

MemtoReg

MEM/WB

Rd
Rt
Rs

MemWrite
RegWrite R[Rs]

R[Rt]

Immediate

16

Load Use Hazards Require Stalls
 No forwarding can help

 Requires a Hazard Detection Unit
  Detects hazards
  Inserts pipeline bubble

ALU IM Reg DM Reg lw $4, 16($5)

add $8, $4, $7

ALU IM Reg DM Reg

nop

17

Stalling The Pipeline
 Stalls occur by inserting pipeline bubble

  Hold some state registers (stage repeats)
  Allow other stages to continue processing

ALU IM Reg DM Reg lw $4, 16($5)

add $8, $4, $7 ALU IM Reg DM Reg

add becomes nop ALU IM Reg DM Reg

Repeats

18

Stalling The Pipeline
 Load Use Hazard code

lw $4, 16($5)

add $8, $4, $7

ALU
IM Reg DM Reg

add lw

19

Stalling The Pipeline
 Load Use Hazard code

lw $4, 16($5)

add $8, $4, $7

ALU
IM Reg DM Reg

add lw

Hazard
Detected

20

Stalling The Pipeline
 Load Use Hazard code

lw $4, 16($5)

add $8, $4, $7

IM Reg DM Reg

add lw nop

Bubble
Inserted

Stage
Repeated

21

Stalling The Pipeline
 Load Use Hazard code

lw $4, 16($5)

add $8, $4, $7

ALU
IM Reg Reg

add lw nop

Data
Forwarded

22

Stalling The Pipeline
 Load Use Hazard code

lw $4, 16($5)

add $8, $4, $7

ALU
IM Reg DM

add nop

No Register
Written

23

How To Stall The Pipeline

Read
Address

IM

PC

Write Data

Read Addr 1
Read Addr 2

Write Addr

Register File

Read
 Data 1

Read
 Data 2

IF/ID

ID/EX

Control

Hazard
Detection

0
MemRead

Rt

PCWrite

IF/IDWrite

24

Hazard Detection Details
 Stall pipeline when all of the following occur

–  ID/EX.MemRead
–  ID/EX.RegisterRt ≠ 0
–  ID/EX.RegisterRt = IF/ID.RegisterRs

 or
ID/EX.RegisterRt = IF/ID.RegisterRt

25

Stalling Control Hazards
 Stalling always possible, but affects CPI

ALU IM Reg DM Reg

ALU IM Reg DM Reg

ALU IM Reg DM Reg

ALU IM Reg DM Reg

26

Branch Delay
 A taken branch must flush instructions

 beq $4, $5, label

 add $7, $8, $9

 or $10, $11, $12

 …

label: sub $7, $8, $9

ALU
IM Reg DM Reg

add beq or

Incorrect
Branch

27

Branch Delay
 A taken branch must flush instructions

 beq $4, $5, label

 add $7, $8, $9

 or $10, $11, $12

 …

label: sub $7, $8, $9

IM DM Reg

sub beq nop nop

28

Adding nop To Decode Stage

Read
Address

IM

PC

Write Data

Read Addr 1
Read Addr 2

Write Addr

Register File

Read
 Data 1

Read
 Data 2

IF/ID

ID/EX

Control

Hazard
Detection

0

Clears
Execute
Stage

29

Adding nop To Decode Stage

Read
Address

IM

PC

Write Data

Read Addr 1
Read Addr 2

Write Addr

Register File

Read
 Data 1

Read
 Data 2

IF/ID

ID/EX

Control

Hazard
Detection

0

0

Clears
Execute
Stage

Clears Decode Stage

