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The Pipelined CPU With Control 
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Data Hazard Review 
•  Caused when data is needed before it is ready 

–  Read before write: Result of previous instruction 
needed by later instruction 

–  Load use: Value in data memory needed by later 
instruction 
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Read After Write Hazard Solution 
•  Forwarding data improves CPI 
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EX/MEM Forwarding 
•  Register value needed by next instruction 

–  Calculated by ALU this clock cycle 
–  Needed as input to ALU on next clock cycle 

ALU IM Reg DM Reg 

ALU IM Reg DM Reg 

add $4, $5, $6 

add $8, $4, $7 
 or 
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EX/MEM Forwarding 
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EX/MEM Forwarding 
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Forwarding Unit Details 

EX/MEM.RegWrite 

EX/MEM.RegisterRd[4] 
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MEM/WB Forwarding 
•  Register value needed two instructions later 

–  Calculated by ALU this clock cycle 
–  Needed as input to ALU in two clock cycles 
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MEM/WB Forwarding 
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MEM/WB Forwarding 
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Forwarding Complication 
•  Forward unit must forward most recent value 

–  It may appear necessary to do MEM/WB and EX/
MEM forwarding simultaneously 

–  Only do EX/MEM forwarding this cycle 
–  Do EX/MEM forwarding again next cycle 
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add $4, $5, $6 

add $8, $4, $7 ALU IM Reg DM Reg 
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Complete ALU Input Forwarding 
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Other Forwarding Possible 
•  Forwarding to Data Memory 

•  Data memory to data memory copy 
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Forwarding to Memory 
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Forwarding to Memory 
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Load Use Hazards Require Stalls 
 No forwarding can help 

 Requires a Hazard Detection Unit 
  Detects hazards 
  Inserts pipeline bubble 

ALU IM Reg DM Reg lw $4, 16($5) 

add $8, $4, $7 

ALU IM Reg DM Reg 

nop 



17 

Stalling The Pipeline 
 Stalls occur by inserting pipeline bubble 

  Hold some state registers (stage repeats) 
  Allow other stages to continue processing 

ALU IM Reg DM Reg lw $4, 16($5) 

add $8, $4, $7 ALU IM Reg DM Reg 

add becomes nop ALU IM Reg DM Reg 

Repeats 
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Stalling The Pipeline 
 Load Use Hazard code 
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Stalling The Pipeline 
 Load Use Hazard code 
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Stalling The Pipeline 
 Load Use Hazard code 
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Stalling The Pipeline 
 Load Use Hazard code 
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Stalling The Pipeline 
 Load Use Hazard code 
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How To Stall The Pipeline 
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Hazard Detection Details 
 Stall pipeline when all of the following occur 

–  ID/EX.MemRead 
–  ID/EX.RegisterRt ≠ 0 
–  ID/EX.RegisterRt = IF/ID.RegisterRs 

   or 
ID/EX.RegisterRt = IF/ID.RegisterRt 
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Stalling Control Hazards 
 Stalling always possible, but affects CPI 
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Branch Delay 
 A taken branch must flush instructions 

       beq $4, $5, label 

       add $7, $8, $9 

       or $10, $11, $12 

          … 

label: sub $7, $8, $9 
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Branch Delay 
 A taken branch must flush instructions 

       beq $4, $5, label 

       add $7, $8, $9 

       or $10, $11, $12 

          … 

label: sub $7, $8, $9 

IM DM Reg 

sub beq nop nop 
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Adding nop To Decode Stage 
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Adding nop To Decode Stage 
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