Exceptions and Interrupts

*Unexpected events that change the control flow
* Exceptions: events that occur within the CPU
* Arithmetic overflow
* Invalid instruction
* Interrupts: events caused by external sources
* 1/O device communication mechanism
* Watchdog timer
*CPU must provide OS with
* An indication what type of event occurred
* An indication where the event occurred

Handling Exceptions

*CPU provides the address of the instruction where the event occurred
* The Exception Program Counter (EPC)
* CPU might undo addition of 4 from fetch cycle

*Two ways to indicate the type of event

— Cause Register: CPU provides the OS with a value in a register that
indicates what caused the event

— Vectored: CPU starts executing at an address that depends on the
event type

Handling Exceptions — Cause Register

*The EPC contains the address of the instruction
*The Cause register contains a value that indicates what type of event occurred
* For example:
Invalid Instruction: Cause = 0x0000000A
Arithmetic Overflow: Cause = 0x0000000C
*WWhen an exception or interrupt occurs:
* The CPU sets the EPC and Cause registers

* Starts executing at a defined address
* 0x80000180 in MIPS
* The OS determines how to handle the event

*MIPS handles exceptions and interrupts this way

Handling Exceptions — Vectored

*EPC contains instruction address

*No Cause register
*CPU goes to an address based on the event type
* Looks at the interrupt vector (or description) table

* For example:
Arithmetic Overflow: PC = 0xC0000000

Undefined Instruction: PC = 0xC0000020

*\When an exception or interrupt occurs:
* The CPU sets the EPC and looks up interrupt handler address

 Starts executing the interrupt handler
* The handler returns to the program when done

Interrupt Classification

*Internal or external
* Internal interrupts caused by instruction
* Overflow
* Invalid instruction
* External interrupts caused by sources outside CPU
* Device request
* Bus error

*Precision

* Precise interrupts
* Instructions before interrupt completed
* Instruction that caused the interrupt and those after have not
changed the CPU state

* Imprecise interrupts cannot guarantee these conditions

Control Unit Adaptation

*Control Unit of CPU must be modified to detect and handle exceptions and
interrupts

* Logic necessary to detect exceptions
* Check for invalid opcode/function field values
* ALU modified to detect overflow
* Exception handling address input to PC multiplexer
* Control signals for Cause and EPC registers
* Use ALU to compute PC of current instruction
* PC updated to PC+4 during fetch cycle
* Compute PC+4-4=PC during exception cycle

State Diagram with Exceptions

l Instrction fedch instruction decods
T e
“‘\\ mﬂmrfﬂ
o ALLISrcA = O
/ lorD = 0 i
' M.Iw =
E‘Iﬂ —"-I uugm:ﬂ o .*.LUE'I:E il I

'-‘ ALunp 00 .' — ALUCg =00 /

1
%
Mamory addness Jump
computalion Exgscution complation comnplation
o s [B = B
// ’/A:l._la-rmn ,// K\
ALUSITA = 1 ALUSmA=1Y / ALSEERE N eowie
AI.LJEN:E-W | .hl.uSmE-{HJJI | ALUOpeg1 | | POScurce =10
ALUOp = ALY — 10 I. PCWrileCand | g
\ \\ A ', PCSource = 01 A

%‘ g “‘m ./ i
. Il Memony
ARCIES Fl-l;rm mmﬂmn

3// 5/’ _"\\?,--’ w;L; /ﬂtﬂm\

Memfead | | MemWris | | F'Bnﬂm-l ALLISrcA = 0
| h.-u=1 [1 lodD=1 PiagVrita m_us.n:a n1 ALUSIES = 0
o o mrﬂ.uﬁeq-ul,. n1 ALLIOR = 01
/ \ H/‘ \\\ Emwrrm
Se ' _..«*’
PGE-nurm 11 Fl::Euurca 11
_'i'l'l'ﬂﬂ-b-alﬂ'lm Overllow
4 /” ‘\\
f Aaglst =0

-

