
1

Exceptions and Interrupts
●Unexpected events that change the control flow

● Exceptions: events that occur within the CPU

• Arithmetic overflow

• Invalid instruction
● Interrupts: events caused by external sources

• I/O device communication mechanism

• Watchdog timer
●CPU must provide OS with

● An indication what type of event occurred
● An indication where the event occurred



2

Handling Exceptions
●CPU provides the address of the instruction where the event occurred

● The Exception Program Counter (EPC)
● CPU might undo addition of 4 from fetch cycle

●Two ways to indicate the type of event

– Cause Register: CPU provides the OS with a value in a register that 
indicates what caused the event

– Vectored: CPU starts executing at an address that depends on the 
event type



3

Handling Exceptions – Cause Register
●The EPC contains the address of the instruction
●The Cause register contains a value that indicates what type of event occurred

● For example:

Invalid Instruction: Cause = 0x0000000A

Arithmetic Overflow: Cause = 0x0000000C
●When an exception or interrupt occurs:

● The CPU sets the EPC and Cause registers
● Starts executing at a defined address

● 0x80000180 in MIPS
● The OS determines how to handle the event

●MIPS handles exceptions and interrupts this way



4

Handling Exceptions – Vectored
●EPC contains instruction address
●No Cause register
●CPU goes to an address based on the event type

● Looks at the interrupt vector (or description) table
● For example:

Arithmetic Overflow: PC = 0xC0000000

Undefined Instruction: PC = 0xC0000020

●When an exception or interrupt occurs:
● The CPU sets the EPC and looks up interrupt handler address
● Starts executing the interrupt handler
● The handler returns to the program when done



5

Interrupt Classification
●Internal or external

● Internal interrupts caused by instruction
● Overflow
● Invalid instruction

● External interrupts caused by sources outside CPU
● Device request
● Bus error

●Precision
● Precise interrupts

• Instructions before interrupt completed

• Instruction that caused the interrupt and those after have not 
changed the CPU state

● Imprecise interrupts cannot guarantee these conditions



6

Control Unit Adaptation
●Control Unit of CPU must be modified to detect and handle exceptions and 
interrupts

● Logic necessary to detect exceptions
● Check for invalid opcode/function field values
● ALU modified to detect overflow

● Exception handling address input to PC multiplexer
● Control signals for Cause and EPC registers
● Use ALU to compute PC of current instruction

● PC updated to PC+4 during fetch cycle
● Compute PC+4-4=PC during exception cycle



7

State Diagram with Exceptions


