The Processor: Overview

F

v

>Add

4 —p

Instruction
Memory

Read
Address

Instruction

v

dAdd

v

A 4

Y

Read Addr 1
Register Read

Read Addr 2 Data 1

File
» Write Addr Read
Data 2
—F[Write Data a

v

>ALU

v

v

\ 4

Address

Data

Memory Read Data

Write Data

Decoding Instructions

* Decoding instructions involves
— Sending the instruction’s fields to the control unit

Control
> Unit

» Read Addr 1
Register
Read Addr 2
File
Write Addr

v

Instruction

Write Data

Read
Data 1

Read
Data 2

— Reading two values from the Register File
* Register File addresses are contained in the instruction

Executing R-Type Instructions

* R-type instructions (add, sub, slt, and, or)
— Perform the operation on values in rs and rt
— Store the result back into the Register File (rd)

RegWrite ALU control

—» Read Addr 1 l
Register Read

File > ALU
—» Write Addr

Read
. Data 2 /
Write Data

\ 4

Instruction

\ 4

v

— The Register File is not written every cycle, so we need an
explicit write control signal for the Register File

Executing Load and Store Operations

* Load and store operations involve

— Compute memory address (base register plus the 16-
bit signed-extended offset field in the instruction)

— Store value to the Data Memory
— Load value to the Register File

RegWrite ALU control MemWrite
» Read Addr 1 l Zero
Register Read > » Address
. Data 1
Instruction > Read Ad(.lr 2 Data
File >ALU Memory Read Data
» Write Addr
Read
Data 2 > / » Write Data
» Write Data —I
\ Sign MemRead
\
16 Extend 39
4

Executing Branch Operations

* Branch operations involve
— Compare the operands for equality (zero)

— Compute the branch target address (PC plus the
16-bit signed-extended offset field in the instruction)

»PC

L

Instruction

5

g Branch
>Add target
address
» Read Addr 1
Register Read >
» Read Addr2 Datal (to branch
File > ALU 210" control logic)
Write Addr Read -
) Data 2 -
Write Data
. Sign ALU Control
V| Extend
16 32

Executing Jump Operations

* Jump operation involves
— Replace the lower 28 bits of the PC with the lower 26

bits of the instruction shifted left by 2 bits

4 —>p

%

» PC

Instruction
Memory

.| Read
Address

Instruction

26

s

t}

Jump
address

Creating a Single Datapath

* Assemble the datapath segments and add control lines
and multiplexers as needed

* Single cycle design — fetch, decode and execute each
Instructions in one clock cycle

— No resource can be used more than once per instruction
* Separate Instruction Memory and Data Memory
* Multiple, parallel adders

— Multiplexers needed at the input of shared elements
— Write control signals for the Register File and Data Memory

* Cycle time is determined by length of the longest path
— The “critical path”

The Complete Datapath

- PCSrc
YAdd |
Add .
% RegWrite ALUSre MemWrite ~ MemtoReg
4 =— l ALUControl l
Z€1ro
Instruction —>| Read Addr 1 l
Register Read » Address
Memory Data 1
—» Read Addr2 Vata Data v
> PCH—> Read Instruction File v Memory Read Data —
Address —»| Write Addr R
Read >
i Data 2 » Write Data >
b[erte Data N
. MemRead
\ Sign
\
16 Extend 32

The Processor: Datapath & Control

* Our implementation of the MIPS 1s simplified
* Memory-reference instructions: 1w, sw
* Arithmetic/Logical instructions: add, sub, and, or, slt
* Control flow instructions: beq, j

* Generic implementation

* Use the program counter (PC) to supply @
instruction address and fetch the instruction

from memory (and update the PC)

* Decode the instruction (and read registers)

* Execute the instruction

* All instructions (except j) use the ALU

Adding the Control

*Selecting the operations to perform (ALU, Register File and
Memory read/write)

*Controlling the flow of data (multiplexer inputs)

*Observations
* op field always in bits 31-26

* Address of registers to be read are always specified by the rs field
(bits 25-21) and rt field (bits 20-16)

* Address of register to be written 1s in one of two places
* rt (bits 20-16) for I-type instructions
* rd (bits 15-11) for R-type instructions

* Offset for beq, Iw, and sw always in bits 15-0

10

Single Cycle Datapath and Control

\ 4

»

>Add
iy

ALUOp /\
Branch

Instr[31-26]

» PC

v

Instruction
Memory

Read

Instr[31-0
Address nstr]]

&

Control
Unit
P
: MemWrite MemtoReg
RegDst RegWrite ALUSrc
A A
Instr]25-211,1 pead Addr 1
Register Read R » Address
Instr[20—i6]: Read Addr 2 Data 1 Z€10 Data
0 File \Y >ALU Memory Read Data >
Write Addr Read > ()
Instr ‘ Data 2 » Write Data >
[15-11] —b[erte Data 1
A
\ @ \ MemRead
\ \
Instr 16 Extend 32 >
[15-0]
Instr[5-0]

11

R-Type Instructions

\ 4

»

>Add
e

Instr[31-26]

PC

v

Instruction
Memory

Read

Instr[31-0
Address nstrf]

™0
>Add |
ALUOp
Control
Unit
RegDst RegWrite
A
Instrf25-2 11 f R ead Addr 1 \
Register Read >
Instr[20-16],] pead Addr2 Datal Zero
0' File >ALU
Write Addr Read -
»
1 Data 2
nstr .
[15-11] —b[erte Data 1
Instr —>
[15-0]
Instr[5-0]
12

Load Instructions

\ 4

»

>Add
iy

ALUOp

Instr[31-26]

PC

| Address

Instruction
Memory

Read

Instr[31-0]

710
1
Control
Unit
RegWrite ALUSrc MemtoReg
A
Instrf25-211f pead Addr 1 \
Register Read > Address
Instr[20-16] Data 1 Zero
. Data
Write Addr B

—b[Write Data

Instr
[15-0]

MemRead

13

Branch on Equal Instruction

PC

\ 4

»

>Add
iy

Instr[31-26]

ALUOp

v

Instruction
Memory

Read

Instr[31-0
Address nstr]]

Instr[25-21]:

Branch
Control
Unit

~

\ 4

Instr[20—16]:

Read Addr 1
Register Read

Read Addr2 Datal
File
Read

v

Data 2

Instr
[15-0]

\ \
16 WM

\ 4
—

14

Adding the Jump Instruction

* Additional multiplexer and control signal

* Jump address
* 4 Most significant bits from PC + 4

* 26 bits from instruction’s address field

* 2 zero bits

v

4 —>

»

Tnstr[31-0]

%

Zero (from ALU)

‘J

Instr[31-26]

| Control

Unit

PC+4[31-28]:Instr(25-0}408

ump

Single Cycle Characteristics

*Uses the clock cycle inefficiently
* The clock cycle must accommodate the slowest instruction

* Especially problematic for more complex instructions (floating point
multiply)

Cycle 1 'F Cycle 2 -
Clk | I I |

Iw I SW Waste

* Wasteful of area since some functional units (e.g., adders) must
be duplicated because they can not be shared during a clock cycle

*But, it 1s simple and easy to understand

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

