The Processor: Overview
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Decoding Instructions

* Decoding instructions involves
— Sending the instruction’s fields to the control unit
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— Reading two values from the Register File
* Register File addresses are contained in the instruction




Executing R-Type Instructions

* R-type instructions (add, sub, slt, and, or)
— Perform the operation on values in rs and rt
— Store the result back into the Register File (rd)
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— The Register File is not written every cycle, so we need an
explicit write control signal for the Register File



Executing Load and Store Operations

* Load and store operations involve

— Compute memory address (base register plus the 16-
bit signed-extended offset field in the instruction)

— Store value to the Data Memory
— Load value to the Register File
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Executing Branch Operations

* Branch operations involve
— Compare the operands for equality (zero)

— Compute the branch target address (PC plus the
16-bit signed-extended offset field in the instruction)
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Executing Jump Operations

* Jump operation involves
— Replace the lower 28 bits of the PC with the lower 26

bits of the instruction shifted left by 2 bits
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Creating a Single Datapath

* Assemble the datapath segments and add control lines
and multiplexers as needed

* Single cycle design — fetch, decode and execute each
Instructions in one clock cycle

— No resource can be used more than once per instruction
* Separate Instruction Memory and Data Memory
* Multiple, parallel adders

— Multiplexers needed at the input of shared elements
— Write control signals for the Register File and Data Memory

* Cycle time is determined by length of the longest path
— The “critical path”



The Complete Datapath
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The Processor: Datapath & Control

* Our implementation of the MIPS 1s simplified
* Memory-reference instructions: 1w, sw
* Arithmetic/Logical instructions: add, sub, and, or, slt
* Control flow instructions: beq, j

* Generic implementation

* Use the program counter (PC) to supply @
instruction address and fetch the instruction

from memory (and update the PC)

* Decode the instruction (and read registers)

* Execute the instruction

* All instructions (except j) use the ALU



Adding the Control

*Selecting the operations to perform (ALU, Register File and
Memory read/write)

*Controlling the flow of data (multiplexer inputs)

*Observations
* op field always in bits 31-26

* Address of registers to be read are always specified by the rs field
(bits 25-21) and rt field (bits 20-16)

* Address of register to be written 1s in one of two places
* rt (bits 20-16) for I-type instructions
* rd (bits 15-11) for R-type instructions

* Offset for beq, Iw, and sw always in bits 15-0
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Single Cycle Datapath and Control
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R-Type Instructions
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Load Instructions
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Branch on Equal Instruction
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Adding the Jump Instruction

* Additional multiplexer and control signal

* Jump address
* 4 Most significant bits from PC + 4

* 26 bits from instruction’s address field

* 2 zero bits
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Single Cycle Characteristics

*Uses the clock cycle inefficiently
* The clock cycle must accommodate the slowest instruction

* Especially problematic for more complex instructions (floating point
multiply)

Cycle 1 'F Cycle 2 -
Clk | I I |

Iw I SW Waste

* Wasteful of area since some functional units (e.g., adders) must
be duplicated because they can not be shared during a clock cycle

*But, it 1s simple and easy to understand
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