
ECS 154B

Computer Architecture II

Winter 2009

Multi-Cycle MIPS Control

Appendix C

2

Single Cycle Control

• Very simple

– Control signals are functions of opcode and possibly

function fields

– Combinational logic suffices

• Ex: RegWrite

– Asserted on R-type, lw

– Deasserted on beq, sw, j

4

Multi-Cycle Control

• Much harder

– Control signals depend on instruction and cycle

• Consider RegWrite

• CPU must “remember” what cycle it is in

– Control unit must maintain state

– Several ways to do this

Cycle

Instruction Fetch Decode Execute Memory Access Write Back

R-Type 0 0 0 1

sw 0 0 0 0

lw 0 0 0 0 1

5

Review

7

Multi-Cycle Control Implementation

• Two main control implementations

– State machine

• Translate finite state machine diagrams to hardware

• Control signals function of current state

– Microprogram

• A small control program runs in parallel to CPU datapath

• Program outputs are control signals

• Logically similar in many respects

– Control “remembers” state and changes signals

– Implementation very different

– Combinations also possible

8

State Machine Control

• From digital design:

– Create state machine

– Assign state values

– Derive control signal

functions

– Derive next state

functions

Control Unit

State Register

Inputs
Outputs

Instruction

Control

Signals

Next State

RegWriteCombinational

Logic
State Register

9

Microprogram Control

• Control Unit is now

an indexed ROM

– Memory bits set

control signals and

next state

– Microprogram state

and instruction select

the memory value

Control Unit

Microprogram State

Inputs
Outputs

Instruction

Control

Signals

Next

State

Instruction | Microprogram State0110011010 … 10010110011011

RegWrite

11

Single Microprogram ROM

• Inputs

– 6 bits from instruction opcode

– 4 bits from current state

• Outputs

– 16 bits for control signals

– 4 bits for next state

• ROM Size

– 210 20-bit words

– Total size: 20 kbits

