ECS 154B
Computer Architecture |l
Winter 2009

Multi-Cycle MIPS
5.5-5.6

Adapted from slides by Mary Jane Irwin, Penn State

Review

PC

PCWriteCond
PCWrite / PCSource
lorD ALUOp
MemRead Control ALUSICB
MemWrite ALUSrcA
MemtoReqg \ / RegWrite
IRWTrite \ ReqgDst
N——"
4Instr
[31-26] PC[31}28]
_/Shift\ R E'
Instr[25-0] “\left 2/ -8 g
»0
\ 4 A\ 4 “V -
IB" - " - »Read Addr 1 0 g’
Add emory x R
*L} ress - T—*Read Addr 2 Read= < » , \
I_,B\ Data 1
Read Datal_| shrite Add zer01 =
(Instr. or Data) S rite Addr | o L
> Re ALU » D
gister =
. o i Read 0 - 0\ =
»\Write Data % > 1 File Data 2 g
>0 Write Data 4 -»{1
» { =
> 2
@ ' 3
Instr[15-0 left 2 " ,E
32 [ALU
Instr[5-0] \control 2

Defining the CPU Control

« Use a finite state machine model to design the control
— Control now has state or memory
— Action depends on input and current cycle
« Signal names in each state are asserted
— Asserted signals are set or enabled
— Unlisted signals are deasserted

* Arcs between states list conditions for transition

« Example State A
— Signal Run is asserted
— Goes to State B when input Up =0
— Goes to State C when inputUp =1

Instruction Fetch and Decode Cycles

MemRead)

lorD ~— Fetch Instruction

IRWrite

ALUSIcA)
ALUSrcB

ALUOp > Increment PC
PCSource

PCWrite)

MemRead
lorD =0
IRWrite

ALUSrcA=0

Start

Instruction Fetch

ALUSrcA Compute
ALUSTrcB Branch
ALUOp

Destination

Decode

ALUSrcA=0

A 4

A 4

ALUSrcB =01
ALUOp =00
PCSource = 00
PCWrite

ALUSICB = 11
ALUOp = 00

Next state depends
on instruction

v

Memory Access Instructions

‘ From Decode state if SW or LW

ALUSrcA=1
ALUSrcB =10
ALUOp =00

Execute Cycle
- Compute memory address

LW
MemRead MemWrite Memory Access Cycle
lorD = 1 lorD = 1 - Read or write memory

RegWrite \

MemtoReg = 1]—— Fetch Next
RegDst=0 Instruction

Write Register File Cycle
- Load instruction only

R-type Instructions

‘ From Decode state if R-type

Execute Cycle
- Compute operation
- Control must look at function field

ALUSrcA=1
ALUSrcB =00
ALUOp =10

RegWrite
MemtoReg = 0
RegDst =1

Memory Access Cycle
- Write data to register file

!

Fetch Next
Instruction

Branch on Equal Instruction

From Decode state if BEQ

A 4

ALUSrcA=1
ALUSrcB =00
ALUOp =01
PCSource =01
PCWriteCond

Execute Cycle
- Compare register values
- Write PC if Zero asserted

v

Fetch Next
Instruction

12

I . I St t D -
— 1 _’:.rl"cmﬁ s NSrucson decooe
regeter fesch
MemRead 2
0/ ALUSTA -o\\\ v
= ll' ',"R'&;: \ ALUSrcA =0 |
———— - ALUSIEB = 11
ALUScB = 01 | ALUOp = 00 |
PCWite
s

Jump
completion

Branch
camrpletion

Momory address
computabon

H-type completian

Mamory
ACOass acces
3 / "‘\ 5 / \ 7
| MemRead |]' MemWite RegDst = "',
| | Tem=1 || FogWwe
\ Memlnﬁsoj)

=
N AN AN

Mamory read
compieton step

g '\
{ RegDst=
| RegWrite

1
| MemtoReg y"

13

Implementing jal

« Jump and link (jal)
— J-Type
— PC+4 > $31
— Jump destination - PC

« What modifications are required?
— 2 Cycle

« Const 31 write destination

« Expand PCSource mux with ALUOut as PC+4
— 3 Cycle

« Const 31 write destination

« PC connected to write data

15

Implementing jal

PCWriteCond
PCWrite / PCSource
lorD ALUOp
MemRead Control ALUSIcB
MemWrite ALUSIrcA
MemtoReg \ / RegWrite
IRWrite \ RegDst
N——"
tInstr
[31-26] PC[31}28]
_/Shift\ ‘E'
Instr[25-0] “\left 2/ -8 g
v »0
A 4 y Y I
O IB" - " Y »Read Addr 1 0 g’
dd emory x R
*L}A ress - T—*Read Addr 2 Read= < » , \
I_,B\ Data 1
Read Data|_| \rite Add zer01 .
(Instr. or Data) . rite Addr >ALU > S -
Register -
. o { i Read 0 - 0\ =
»\\Write Data % > 1 File Data 2 i
>0 Write Data 4 -»{1
r{ =
> 2
@ ' 3
Instr[15-0 left 2 " ,E
32 [ALU
Instr[5-0] \control 16

Implementing jal

netruction fesch
_1 Instnuction feict nstrucson decode

/ MemRead ™ st
0/ AUScA=0 \ V \
/

| il \ ALUSrcA =0

IRWrite

Stat ————=| ALUSKCB 01 ALUSTcB = 11 |
| ALUCp = 00 \ ALUOp =00
PCWrite
PCSourca = 00 = b

(Op =)

Momory address Branch Jump
computation oamplation comphetion
2 S /
[/ ALUSTcA =1 | \

ALUS(cB = 10 | (AstB =00 | THARE chSoume-1o|

5 . r—..
* | Memaory Mamory
5 ACCass aceess A-type completian
/ NN\ et
\
|] Memwiite | [FAegDst<1
|

forD =1 ,I

A

Mamory read
compieton step

/e

'@”“”/

17

Exceptions and Interrupts

* Unexpected events that change the control flow

— EXxceptions: events that occur within the CPU
* Arithmetic overflow
* |nvalid instruction

— Interrupts: events caused by external sources
* 1/O device communication mechanism
« Watchdog timer

 CPU must provide OS with
— An indication what type of event occurred
— An indication where the event occurred

19

Handling Exceptions

 CPU provides the address of the instruction
where the event occurred
— The Exception Program Counter (EPC)
— CPU might undo addition of 4 from fetch cycle

« Two ways to indicate the type of event

— Cause Register: CPU provides the OS with a value in
a register that indicates what caused the event

— Vectored: CPU starts executing at an address that
depends on the event type

21

Handling Exceptions — Cause Register

« The EPC contains the address of the instruction

 The Cause register contains a value that
Indicates what type of event occurred

— For example:
Invalid Instruction: Cause = 0x0000000A
Arithmetic Overflow: Cause = 0x0000000C

* When an exception or interrupt occurs:
— The CPU sets the EPC and Cause registers

— Starts executing at a defined address
- 0x80000180 in MIPS

— The OS determines how to handle the event
« MIPS handles exceptions and interrupts this way

22

Handling Exceptions — Vectored

« EPC contains instruction address

« No Cause register
« CPU goes to an address based on the event type
— Looks at the interrupt vector (or description) table

— For example:
Arithmetic Overflow: PC = 0xC0000000

Undefined Instruction: PC = 0xC0000020
* When an exception or interrupt occurs:
— The CPU sets the EPC and looks up interrupt handler address

— Starts executing the interrupt handler
— The handler returns to the program when done

23

Interrupt Classification

 |Internal or external

— Internal interrupts caused by instruction
* Overflow
 |nvalid instruction
— External interrupts caused by sources outside CPU
» Device request
* Bus error

* Precision

— Precise interrupts
* |nstructions before interrupt completed

 |Instruction that caused the interrupt and those after have not
changed the CPU state

— Imprecise interrupts cannot guarantee these conditions

25

Control Unit Adaptation

« Control Unit of CPU must be modified to detect
and handle exceptions and interrupts
— Logic necessary to detect exceptions

» Check for invalid opcode/function field values
« ALU modified to detect overflow

— Exception handling address input to PC multiplexer
— Control signals for Cause and EPC reqgisters

— Use ALU to compute PC of current instruction
« PC updated to PC+4 during fetch cycle
« Compute PC+4-4=PC during exception cycle

26

State Diagram with Exceptions

l Instruction fesch

"~

MemRead
0 ALUSrcA = 0
loD =0
IRWrite

/

ANCY N \ Pcsoww-O)

Instruction decode/
registar fesch

g —
7R

[ALUSrcA=0
ALUSHKB = 11 |
ALUOp =00 /

Jump
completion

PCWrita |

J
| | Pcsource « 10/

NS

~—

27

