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Defining the CPU Control

« Use a finite state machine model to design the control
— Control now has state or memory
— Action depends on input and current cycle
« Signal names in each state are asserted
— Asserted signals are set or enabled
— Unlisted signals are deasserted

* Arcs between states list conditions for transition

« Example State A
— Signal Run is asserted
— Goes to State B when input Up =0
— Goes to State C when inputUp =1




Instruction Fetch and Decode Cycles
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Memory Access Instructions

‘ From Decode state if SW or LW
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Execute Cycle
- Compute memory address
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R-type Instructions

‘ From Decode state if R-type

Execute Cycle
- Compute operation
- Control must look at function field
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Branch on Equal Instruction

From Decode state if BEQ
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- Compare register values
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Implementing jal

« Jump and link (jal)
— J-Type
— PC+4 > $31
— Jump destination - PC

« What modifications are required?
— 2 Cycle

« Const 31 write destination

« Expand PCSource mux with ALUOut as PC+4
— 3 Cycle

« Const 31 write destination

« PC connected to write data
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Implementing jal
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Implementing jal
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Exceptions and Interrupts

* Unexpected events that change the control flow

— EXxceptions: events that occur within the CPU
* Arithmetic overflow
* |nvalid instruction

— Interrupts: events caused by external sources
* 1/O device communication mechanism
« Watchdog timer

 CPU must provide OS with
— An indication what type of event occurred
— An indication where the event occurred
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Handling Exceptions

 CPU provides the address of the instruction
where the event occurred
— The Exception Program Counter (EPC)
— CPU might undo addition of 4 from fetch cycle

« Two ways to indicate the type of event

— Cause Register: CPU provides the OS with a value in
a register that indicates what caused the event

— Vectored: CPU starts executing at an address that
depends on the event type
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Handling Exceptions — Cause Register

« The EPC contains the address of the instruction

 The Cause register contains a value that
Indicates what type of event occurred

— For example:
Invalid Instruction: Cause = 0x0000000A
Arithmetic Overflow: Cause = 0x0000000C

* When an exception or interrupt occurs:
— The CPU sets the EPC and Cause registers

— Starts executing at a defined address
- 0x80000180 in MIPS

— The OS determines how to handle the event
« MIPS handles exceptions and interrupts this way
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Handling Exceptions — Vectored

« EPC contains instruction address

« No Cause register
« CPU goes to an address based on the event type
— Looks at the interrupt vector (or description) table

— For example:
Arithmetic Overflow: PC = 0xC0000000

Undefined Instruction: PC = 0xC0000020
* When an exception or interrupt occurs:
— The CPU sets the EPC and looks up interrupt handler address

— Starts executing the interrupt handler
— The handler returns to the program when done
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Interrupt Classification

 |Internal or external

— Internal interrupts caused by instruction
* Overflow
 |nvalid instruction
— External interrupts caused by sources outside CPU
» Device request
* Bus error

* Precision

— Precise interrupts
* |nstructions before interrupt completed

 |Instruction that caused the interrupt and those after have not
changed the CPU state

— Imprecise interrupts cannot guarantee these conditions

25



Control Unit Adaptation

« Control Unit of CPU must be modified to detect
and handle exceptions and interrupts
— Logic necessary to detect exceptions

» Check for invalid opcode/function field values
« ALU modified to detect overflow

— Exception handling address input to PC multiplexer
— Control signals for Cause and EPC reqgisters

— Use ALU to compute PC of current instruction
« PC updated to PC+4 during fetch cycle
« Compute PC+4-4=PC during exception cycle
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State Diagram with Exceptions
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