
ECS 154B

Computer Architecture II

Winter 2009

Multi-Cycle MIPS

5.5-5.6

Adapted from slides by Mary Jane Irwin, Penn State

2

Review

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
o

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1

4

Defining the CPU Control

• Use a finite state machine model to design the control
– Control now has state or memory

– Action depends on input and current cycle

• Signal names in each state are asserted
– Asserted signals are set or enabled

– Unlisted signals are deasserted

• Arcs between states list conditions for transition

• Example State A
– Signal Run is asserted

– Goes to State B when input Up = 0

– Goes to State C when input Up = 1

Run

Up=1Up=0

A

B C

6

Instruction Fetch and Decode Cycles

MemRead

IorD = 0

IRWrite

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSource = 00

PCWrite

Instruction Fetch

Start ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

Next state depends

on instruction

Decode

MemRead

IorD

IRWrite
Fetch Instruction

ALUSrcA

ALUSrcB

ALUOp

PCSource

PCWrite

Increment PC

ALUSrcA

ALUSrcB

ALUOp

Compute

Branch

Destination

8

Write Register File Cycle

- Load instruction only

Memory Access Cycle

- Read or write memory

Execute Cycle

- Compute memory address

Memory Access Instructions

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

MemWrite

IorD = 1

RegWrite

MemtoReg = 1

RegDst = 0

MemRead

IorD = 1

From Decode state if SW or LW

SWLW

Fetch Next

Instruction

10

Memory Access Cycle

- Write data to register file

Execute Cycle

- Compute operation

- Control must look at function field

R-type Instructions

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

RegWrite

MemtoReg = 0

RegDst = 1

From Decode state if R-type

Fetch Next

Instruction

12

Execute Cycle

- Compare register values

- Write PC if Zero asserted

Branch on Equal Instruction

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSource = 01

PCWriteCond

From Decode state if BEQ

Fetch Next

Instruction

13

Final State Diagram

15

Implementing jal

• Jump and link (jal)
– J-Type

– PC+4  $31

– Jump destination  PC

• What modifications are required?
– 2 Cycle

• Const 31 write destination

• Expand PCSource mux with ALUOut as PC+4

– 3 Cycle
• Const 31 write destination

• PC connected to write data

16

Implementing jal

Address

Read Data

(Instr. or Data)

MemoryP
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A

A
L

U
o

u
t

Sign

Extend

Shift

left 2

ALU

control

ALUOp

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr

[31-26]

32

28

Control

Shift

left 2

0

1

0

0

1

1

0

B 0

1

2

3

2

0

1

17

Implementing jal

19

Exceptions and Interrupts

• Unexpected events that change the control flow

– Exceptions: events that occur within the CPU

• Arithmetic overflow

• Invalid instruction

– Interrupts: events caused by external sources

• I/O device communication mechanism

• Watchdog timer

• CPU must provide OS with

– An indication what type of event occurred

– An indication where the event occurred

21

Handling Exceptions

• CPU provides the address of the instruction

where the event occurred

– The Exception Program Counter (EPC)

– CPU might undo addition of 4 from fetch cycle

• Two ways to indicate the type of event

– Cause Register: CPU provides the OS with a value in

a register that indicates what caused the event

– Vectored: CPU starts executing at an address that

depends on the event type

22

Handling Exceptions – Cause Register

• The EPC contains the address of the instruction

• The Cause register contains a value that
indicates what type of event occurred
– For example:

Invalid Instruction: Cause = 0x0000000A

Arithmetic Overflow: Cause = 0x0000000C

• When an exception or interrupt occurs:
– The CPU sets the EPC and Cause registers

– Starts executing at a defined address
• 0x80000180 in MIPS

– The OS determines how to handle the event

• MIPS handles exceptions and interrupts this way

23

Handling Exceptions – Vectored

• EPC contains instruction address

• No Cause register

• CPU goes to an address based on the event type

– Looks at the interrupt vector (or description) table

– For example:

Arithmetic Overflow: PC = 0xC0000000

Undefined Instruction: PC = 0xC0000020

• When an exception or interrupt occurs:

– The CPU sets the EPC and looks up interrupt handler address

– Starts executing the interrupt handler

– The handler returns to the program when done

25

Interrupt Classification

• Internal or external

– Internal interrupts caused by instruction

• Overflow

• Invalid instruction

– External interrupts caused by sources outside CPU

• Device request

• Bus error

• Precision

– Precise interrupts

• Instructions before interrupt completed

• Instruction that caused the interrupt and those after have not

changed the CPU state

– Imprecise interrupts cannot guarantee these conditions

26

Control Unit Adaptation

• Control Unit of CPU must be modified to detect

and handle exceptions and interrupts

– Logic necessary to detect exceptions

• Check for invalid opcode/function field values

• ALU modified to detect overflow

– Exception handling address input to PC multiplexer

– Control signals for Cause and EPC registers

– Use ALU to compute PC of current instruction

• PC updated to PC+4 during fetch cycle

• Compute PC+4-4=PC during exception cycle

27

State Diagram with Exceptions

