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Defining the CPU Control

• Use a finite state machine model to design the control
– Control now has state or memory

– Action depends on input and current cycle

• Signal names in each state are asserted
– Asserted signals are set or enabled

– Unlisted signals are deasserted

• Arcs between states list conditions for transition

• Example State A
– Signal Run is asserted

– Goes to State B when input Up = 0

– Goes to State C when input Up = 1
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Instruction Fetch and Decode Cycles
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Write Register File Cycle

- Load instruction only

Memory Access Cycle

- Read or write memory

Execute Cycle

- Compute memory address

Memory Access Instructions
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Memory Access Cycle

- Write data to register file

Execute Cycle

- Compute operation

- Control must look at function field

R-type Instructions
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Execute Cycle

- Compare register values

- Write PC if Zero asserted

Branch on Equal Instruction
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ALUOp = 01

PCSource = 01

PCWriteCond
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Instruction
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Final State Diagram
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Implementing jal

• Jump and link (jal)
– J-Type

– PC+4  $31

– Jump destination  PC

• What modifications are required?
– 2 Cycle

• Const 31 write destination

• Expand PCSource mux with ALUOut as PC+4

– 3 Cycle
• Const 31 write destination

• PC connected to write data
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Implementing jal
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Implementing jal
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Exceptions and Interrupts

• Unexpected events that change the control flow

– Exceptions: events that occur within the CPU

• Arithmetic overflow

• Invalid instruction

– Interrupts: events caused by external sources

• I/O device communication mechanism

• Watchdog timer

• CPU must provide OS with

– An indication what type of event occurred

– An indication where the event occurred
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Handling Exceptions

• CPU provides the address of the instruction

where the event occurred

– The Exception Program Counter (EPC)

– CPU might undo addition of 4 from fetch cycle

• Two ways to indicate the type of event

– Cause Register: CPU provides the OS with a value in 

a register that indicates what caused the event

– Vectored: CPU starts executing at an address that 

depends on the event type
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Handling Exceptions – Cause Register

• The EPC contains the address of the instruction

• The Cause register contains a value that 
indicates what type of event occurred
– For example:

Invalid Instruction: Cause = 0x0000000A

Arithmetic Overflow: Cause = 0x0000000C

• When an exception or interrupt occurs:
– The CPU sets the EPC and Cause registers

– Starts executing at a defined address
• 0x80000180 in MIPS

– The OS determines how to handle the event

• MIPS handles exceptions and interrupts this way
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Handling Exceptions – Vectored

• EPC contains instruction address

• No Cause register

• CPU goes to an address based on the event type

– Looks at the interrupt vector (or description) table

– For example:

Arithmetic Overflow: PC = 0xC0000000

Undefined Instruction: PC = 0xC0000020

• When an exception or interrupt occurs:

– The CPU sets the EPC and looks up interrupt handler address

– Starts executing the interrupt handler

– The handler returns to the program when done
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Interrupt Classification

• Internal or external

– Internal interrupts caused by instruction

• Overflow

• Invalid instruction

– External interrupts caused by sources outside CPU

• Device request

• Bus error

• Precision

– Precise interrupts

• Instructions before interrupt completed

• Instruction that caused the interrupt and those after have not 

changed the CPU state

– Imprecise interrupts cannot guarantee these conditions
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Control Unit Adaptation

• Control Unit of CPU must be modified to detect 

and handle exceptions and interrupts

– Logic necessary to detect exceptions

• Check for invalid opcode/function field values

• ALU modified to detect overflow

– Exception handling address input to PC multiplexer

– Control signals for Cause and EPC registers

– Use ALU to compute PC of current instruction

• PC updated to PC+4 during fetch cycle

• Compute PC+4-4=PC during exception cycle
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State Diagram with Exceptions


