ECS-154A Fall 2009 Quiz 5

Name: \qquad Student ID number: \qquad
Signature: \qquad

1. (5) Given a logical 29-bit address and a 512Kbyte physical memory for a byte-addressable machine,

How big is the physical address space?

How big is the virtual address space?

Assuming 8 K -byte pages, how many page frames are there? How many pages? How many bits wide is the page table?

Assuming 1K-byte pages, how many page frames are there? How many pages? How many bits wide is the page table?
2. (4pts) Assume a task is divided into 4 equal-sized segments, and that the system builds an 8 -entry page descriptor table for each segment. Thus, the system has a combination of segmentation and paging. Assume also that the page size is 4 K bytes
a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location $0 x 1 \mathrm{ABC}$ is accessed by this task. What is the format of the logical address that the task generates for it?
3. (6 pts) A virtual memory system for a byte-addressable processor with 8-byte words has a page size of 128 words, sixteen virtual pages, and four physical page frames. The page table is as follows:

Virtual page Number Page Frame Number

0	1
1	3
2	-
3	0
4	-
5	-
6	-
7	-
8	-
9	-
10	-
11	-
12	-
13	-
14	-

a. What is the size of the virtual address space? (How many bits in a virtual address?)
b. What is the size of the physical address space? (How many bits in a physical address?)
c. What is the physical address corresponding to the following virtual addresses? (Indicate which, if any, cause page faults).

0x0000, 0xFFFF
4. (8 pts) The following tables contain some of the information about a segmented, paged virtual memory system and certain select memory locations. Total physical memory size is 32 K bytes, and the page size is 2048 bytes. All numbers in this table are in decimal unless otherwise noted.

Segment Table		
Entry Number	Presence Bit	Page Table
0	1	5
1	0	0
2	1	0
3	1	7
4	1	2
5	1	3
6	1	1
7	1	4

Page Table 0			
Entry Number	Present? $(1=$ Yes $)$	Disk Addr	Frame Number
0	1	1234123	0×4
1	0	0893748	$0 x 7$
2	1	2489567	$0 x 1$
3	1	9623873	$0 x 5$
7	1	B0F6BD3	0×2
10	0	32829 AA	0×1
12	1	56 D 87 AC	$0 x 0$
15	1	10A876D	$0 x 6$

Page Table 2			
Entry Number	Present? $(1=$ Yes $)$	Disk Addr	Frame Number
0	1	1234123	0×1
1	0	0893748	0×3
2	1	2489567	0×5
3	1	9623873	0×7
4	1	BC56BD3	$0 x 9$
5	0	832759 E	0×2
11	1	46 B 37 AC	0×4
15	1	810476 D	0×6

Memory	
Address	Contents
0x00A4	0x76
0x01A4	0x73
0x02A4	0x32
0x03A4	0x46
0x04A4	0x30
0x2AA4	0x29
0x05A4	0xa9
0x09A4	0x74
0x0AA4	0x05
0x0CA4	0x23
0x0DA4	0xE3
0x17A4	0xAE
0x22A4	0x92

Page Table 5			
Entry Number	Present? $(1=$ Yes $)$	Disk Addr	Frame Number
0	1	1234123	0×5
1	0	0893748	0×3
5	0	2489567	0×4
7	1	9623873	0×4
11	1	AE76BD3	0×6
13	0	328759 A	0×7
14	1	11D87BE	0×2
15	1	91 C 875 D	0×0

Page Table 7			
Entry Number	Present? $(1=$ Yes $)$	Disk Addr	Frame Number
0	1	1234123	0×5
1	0	0893748	0×6
2	1	2489567	$0 x 1$
3	1	9623873	0×2
4	1	AE76BD3	0×4
5	1	328759 A	0×0
6	1	56D87AC	0×3
7	1	10A876D	$0 x 6$

For each of the following convert the virtual address into a physical address (if possible) and write down the value of the memory location corresponding to the address. If it is not possible to do so, explain why.

0x3AA4 (0011101010100100 in binary).

0x6CA4 (0110110010100100 in binary).

0xD4A4 (1101010010100100 in binary).
5. (7 pts) Add the connections to the following diagram necessary to create a 8 Kx 8 memory. Not all of the hardware shown is required to perform this task.

$$
\begin{array}{ll}
\text { CS - } & \text { Chip Select } \\
\text { OE - } & \text { Output Enable } \\
\text { RD - } & \text { Read (Read/Write, technically) }
\end{array}
$$

