ECS 154A Lab 3 Cache Design Specification

File name: dmcache.cpp

To begin this assignment you first need to implement a 256-byte Direct-mapped
cache with a line size of 8 bytes. The cache is byte addressable. Your cache will need
to support a read operation (reading a byte from the cache) and a write operation
(writing a new byte of data into the cache). This cache will support a write-back
write policy, which will require you to use a dirty-bit. In addition, cache must
support a write-allocate write miss policy, in which a write miss causes the
appropriate line to be brought into the cache from memory, and the write's value to
update the correct part of the line in the cache, which will then become dirty.

Filename: sacache.cpp

After implementing the Direct-mapped cache you will alter it (in a separate file) in
order to implement a 192-byte, 6-way set associative cache with line size of 4 bytes.
The other specifications will remain the same, you must support read and write
operations, as well as a write-back policy, write-allocate policy, and a least-recently-
used (LRU) replacement policy for blocks.

Input File Specification
Both caches take as input a file name from the command line. The file specified by
the file name will be an ASCII file with each line in the following 4-byte format

Bytes Function
1-2 16 bit address
3 *Read /Write
4 8 bits of Data

*The read will be designated by all 0's and the write will be designated by all 1's.
Upon a read operation the data segment of the 4-byte format will be ignored.
However when a write occurs the data will be written into the specified byte and the

dirty bit may or may not be set.

Input files will be an ASCII file with each line in the above 4-byte format and each
entry given on separate lines. For ease of creation the input file will be in hex

For example:

Address Read/Write Data
002D FF FD
002E FF 4E
002D 00 28

Which would appear in the input file as:
002D FF FD
002E FF 4E

002D 00 28

Where the first two lines in this example would write data to the designated
addresses, and the third line would tell cause your cache to be read and the data
bytes would be ignored at this point.

Output File Specifications

The cache produces as output a file named dm_out.txt/ sa_out.txt. Each line of the
output will contain three elements separated by a space. The first element is the
data requested by the read command. The second element is whether or not the
read was a HIT (1) or MISS (0). The last element is the dirty-bit for that line. More
specifically, it is formatted as:

“data” “HIT/MISS” “dirty bit”

Below is an example:

FD10

FD is the data read from cache. 1 means it is a HIT. 0 indicates the dirty-bit.

To get you started I've provided a test input file and the resulting outputs. Please
note, in the case of a read miss [will not look at the data output from your cache.

test file: test.txt
Direct-Mapped output file: dm-out.txt
Set-Associative output file: sa-out.txt

These are available here:
http://american.cs.ucdavis.edu/academic/ecs154a.sum14 /html/test.txt

http://american.cs.ucdavis.edu/academic/ecs154a.sum14/html/dm-out.txt
http://american.cs.ucdavis.edu/academic/ecs154a.sum14/html/sa-out.txt

Other Specification:

1. You do not have to use C/C++ to implement the cache simulation program.
However, whatever language you are using, your program needs to be able
to:

1) Run under CSIF machine environment.
2) Read the input file from the command line and output to the output file.

2. Please use diff command (http://unixhelp.ed.ac.uk/CGI/man-cgi?diff) to
check your program’s output with the 2 outputs above.

3. Please submit all your source code to me.

If you find any errors within this text, please e-mail to: yfhong@ucdavis.edu.

